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Abstract 

Existing security mechamsms |bcus on prevention of  penetrations, 
detection of  a penetration and (manual) recovery tools Indeed 
attackers focus their penetration efforts on breaking into critical 
modules, and on avoiding detection of  the attack. As a result, 
security tools and procedures may cause the attackers to lose 
control over a specific module (computer, account), since the 
attacker would rather lose control than risk detection of  the attack. 
While controlling the module, attacker may learn critical secret 
information or modify the module that make it much easier for the 
attacker to regain control over that module later Recent results in 
cryptography give some hope of  improving this situation; they 
show that many fundamental security tasks can be achieved w~th 
proacttve security Proact~ve security does not assume that there is 
any module completely secure agamst penetration Instead, we 
assume that at any given time period (day, week,.  ), a sufficient 
number of  the modules in the system are secure (not penetrated). 
The results obtamed so far include some of the most important 
cryptographic primitives such as signatures, secret sharing, and 
secure communication However, there was no usable 
implementation, and several critical issues (for actual use) were 
not addressed 

In this work we report on a practical toolkit implementmg the key 
proacttve security mechanisms The toolkit provides secure 
interfaces to make it easy for applications to recover from 
penetrations. The toolkit also addresses other critical 
Implementation issues, such as the initialization of  the proactwe 
secure system We describe the toolkit and discuss some of the 
potential applications Some applications require mmlmal 
enhancements to the existing implementations - e g. for secure 
logging (especially for intrusion detectmn), secure end-to-end 
communication and tlmestampmg Other applications require 
more significant enhancements, mainly distribution over multiple 
servers, examples are certification authority, key recovery, and 
secure file system or archive 
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1 Introduction 

Traditional security systems assume that one or more systems are 
always secure, 1 e are never controlled by the attackers. The 
model of  Proactlve Security does not make this assumption. 
Instead, it considers cases where all components of  the system 
may be broken-taro and controlled by an attacker, with restrictions 
on the number of  components broken-into during the same time 
period (day, week, ). Proactive security shows how to maintain 
the overall security of  a system even under such conditions In 
particular it provides automated recovery o f  the security o f  
individual components, avoiding the use of  expensive and 
mconvenient manual processes (except for some "aggressive" 
attacks, which cannot be prevented - but are definitely and clearly 
detected) The technique combines two well-known approaches to 
enhance the security of  the system chstrtbuted (or threshold) 
co/ptography, which ensures security as long as a threshold (say 
half) of  the servers are not corrupted (see [12]); and periodic 
refresh (or update) of the sensltwe data (e g keys) held by the 
servers In short, 

proactlve = distributed + re fi*esh 
This way, the proactlve approach guarantees uninterrupted 
security as long as not too many servers are broken into at the 
same time Furthermore, it does not require identification when a 
system is broken into, or after the attacker loses control: instead, 
the system proact~vely invokes recovery procedures every so 
often, hopmg to restore security to components over which the 
attacker lost control. 

Proactive security is highly desirable in many reahstic settings, m 
particular: 
• When a high level o f  security is required, together with thult 

tolerance (as redundancy improves fault tolerance but opens 
more points for attack) 

• To ensure acceptable level of  system security using weakly 
secure components such as most commeroally available 
operating systems 

(Examples of  specific applications are given below.) 

Recent results show that many fundamental cryptographlc 
functionalities may be achieved even under the proactlve security 
model - as long as most components are secure most of  the time 
In particular, proactively secure protocols have been devised for 
the following problems" 
• Secret sharing [21,16] 
• Discrete-log-based digital signatures [15], and in particular 

DSA [13] 
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• Secure end-to-end communication [5] 
• RSA [10,11,24], and m particular generation of  the RSA 

shared key [3] 
• Pseudo-random generation [6.8] 
• Key d~stribution center [20] 

This substantial set of  known results in proactwe security did not 
yet produce any practical security product or solution (In fact, 
there are only a few deployments of  distributed security - the most 
well known may be the SET credit card standard's certificate 
authority [7]: see also "related works" below ) The creation of  
such a proactive solution is non-tnwal, as the protocols are often 
qmte complex and nontrivml to Implement. Furthermore, the 
protocols are specified under some simphfymg assumptions and 
do not address some needed elements, such as interfacing between 
the proactwe service and the apphcations using It This paper 
reports on a toolkit, to be soon placed for public experimentation, 
to allow practical deployment ofproactwe security. The main new 
contributions are: 
• A secure mtttahzatton mechamsm, with reasonable, practical 

reqmrements from the computer and operating system. 
Specifically, all we require is a secure boot process (which is 
a good idea anyway, against viruses - and easdy done with 
signed code), and a per-machine secret-private key pair, with 
the puhhc key protected from modification (e g m ROM or 
write-once EEROM), and the secret key in erasable memory 
(e g disk). Previous results required storage of  parameters 
specific to the particular apphcat~on (such as the group's 
pubhc key) m secure storage, which is not practical 

• A set o fapphcat ton program interfaces (APls) that allow the 
use of  the toolkit to improve security, specifically provide 
security m sp~te of  break-ins into computers, of  existing 
apphcat~ons, as well as the development of  new applications 
which are proactwe secure 

The security of  any proactive solution relies heawly upon its 
correct architecture and integration with existing, non-proactive, 
operating system The design of  our toolkit, which does not view 
the proachve model as series of  protocols but, rather, as a security 
enhancement of  the operating system which transforms it into a 
proact~vely secured system via the appropriate use of  proactlve 
protocols, has not been defined nor implemented in the past. We 
show that it ~s possible to transform general apphcatJons which 
are reqmred to remain secure for long periods of  time to operate m 
a proactwe enwronment, namely proaettvtzmg applications. 
Specifically. we show how to approprmtely use the proact~ve 
cryptographic functions as key primitwes in the proactivizaUon 
process. To this end, we define an architecture for a proactive 
operating environment which serves as a platform on which 
standard apphcahons can be proactwlzed This operating 
environment consists of  a network of  servers which is set up once, 
which we call the proactzve network Each server is mstantmted at 
boot time by the operating system and Is checked periodically. 
also by the operating system. Servers can recover data (both 
pubhc and private data) t?om other servers m the proact~ve 
network, ffsuch data ~s corrupted or lost Once the proactwe 
network is set up, any apphcatJon can run on the top of  the 
network and request proactive serwces by the means of  API. The 
t~asibdJty of  the proactive model and of  the architecture presented 
hereby has been demonstrated by the Proactlve Securtty Toolktt, 
which Is a Java implementation described in this manuscript. 

1.1 Applications of the Proactive Security 
Toolkit 

There are three kinds o f  applications that may lake advantage of  
the proactlve security toolkit to recover from penetrations. 
Centralized applications - a 'traditional" apphcatlon running on 
one server only, The application uses a proact~vely secure serwce 
provided by the toolkit For some applications and services, this 
could provide significant advantage - at mimmal change to 
existing apphcatlons Some typical apphcations are: 
• Secure logging: each chent application may add entries 

(events) to the log, however none of  them can modify or 
erase the log. This could be of  great value m improving 
intrusion detection tools, as intruders often try to erase traces 
m log files. 

• Secure end-to-end communication: the proactwe toolkit 
can prowde the applications with freshly generated and 
certified public keys periodically. This could be integrated 
with tunnehng mechanisms such as secure IP or SSL 
Timestamping: the toolkit could be used to sign a document 
(or ~ts hash) and current time, to prove that the document 
existed at this time 

App$ Appl 

% 

App3 

Figure I: Distributed Application of the Toolkit 

Distributed applications (Figure 1) - the application runs 
simultaneously on all machines (App_l,  . ,  App_n) and requests 
services through all machines. Each App_i interacts directly with 
its own proactJve server (PS_i). A typical apphcation Js a 
certificate authority, or in general any workflow application 
requiring secure (multPperson) digital signatures Another 
apphcation as key recovery (escrow agents). 

Proactive applications - the apphcation runs in a distributed 
configuration but, in addition, goes through periodical refreshes 
by utdlzmg the proactlve toolkit services. This is reqmred when 
the apphcation security or efficiency requirements cannot be met 
by the services of  the toolkit. Examples include mulhparty 
protocols such as voting and trading, database, operating system, 
and access control mechanisms An especially interesting 
application is a Secure Commerce Server - such server can not 
lie within the firewall although it handles confidential data and 
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matters (such as access control, certificates etc ) It is therefore 
natural to proactively distribute the server among a number of  
(Independent, and possibly not even mutually trusted) hosts and 
locations, thus achieving increased trust In the server. 

1.2 Related Systems 

A number of  distributed systems related to the proactlve model 
have been designed and implemented. The Intrusion Tolerance via 
Threshold Cryptography (ITTC) project [17,19,29] designs and 
builds tools and an infrastructure that are based on Threshold 
Cryptography, and use an intrusion tolerant Certification 
Authority and an intrusion tolerant web server to demonstrate 
these tools. The techmcal approach is based upon a distributed 
RSA key, such that k "share servers" generate a private RSA key 
that is shared among them from the moment of  creation, and any t 
of  the share serves can be used to apply the key Another related 
system is the Omega Key Management Service system [27], 
designed and developed at Bell-Labs. The f2 system Is a 
distributed public key management system It employs threshold 
techmques which can tolerate a number of  server failures (via the 
implementation of  the Rampart toolkit [25]), but not recovering 
(proactive) techniques. The e-Vault (electronic-Vault) proiect [181 
of  IBM is an implementation of  a distributed data repository It 
employs RSA-based shared signatures as the basic cryptographlc 
funcuon. 

There are a few implementation efforts ofproactive algorithms. 
Specifically, the Network Randomization Protocol (NRP) of  [8], 
which provides a proactlve pseudo-random generator, has been 
implemented at IBM. It also provides a srmple API for client 
applications to get pseudo-random values from the servers 
Another effort, the implementation of  proactlve threshold key 
protocols, has been reported m [14]. 

1.3 Organization of the paper 

This paper is organized as follows In Section 2 we describe the 
model as well as an overview of  related work. Section 3 discusses 
the basic architecture of  the proactive server Sections 4 presents 
the protocol that initializes the network of  servers and handles 
refresh/recovery of  a server The APi module, which provides 
mechanisms for proactlvization of  applications, is fully described 
in Section 5 Java-related and other implementation issues, 
user-interface are the focus of  Section 6. 

2 Overview of the Proactive Model and 
Algorithms 

2.1 Model 

The proactwe model assumes a set o f n  servers, {P1, P2, Pn}. 
that are interconnected by a complete point-to-point 
commumcation channels Time is divided into periods (like days, 
weeks,.  ) which are determined by some global clock. An 
adversary may (temporardy) attack up to t of  the n servers at any 
given time period - but at different time periods, different sets o f t  
servers can be attacked. As a result, all servers engage in a 
refreshment stage at the beginning of  each time period, so that any 
server which has been attacked during past periods may 
automatically recover from possible undetected break-ms 

Corruption is assumed to be either static (for example, disconnect 
a server from the rest of  the network, eavesdrop, read secret data) 
or active/malicmus (for example, dewate from the protocol, 
corrupt local data etc ) Therefore, after the attacker loses control 
over a server, the attacker may still know secret information of  
that server (e g passwords or secret keys) Furthermore, before 
losing control, the attacker may have corrupted (modified) some 
of the server's data (e.g. public keys of  certificate authorities). The 
refreshment stage deals with both aspects, i e recovers any 
corrupted data and invahdates any old secret data (by choosing 
new secrets or splitting global secrets into a new set of  shares) 
This brings the server back to a running stage, and guarantees that 
any information that was gathered by the adversary becomes 
worthless after recovery 

The fact that we hmlt the attacker to t corruptions, out o f n  
servers, is similar to the distributed (or threshold) security model 
used in many works m distributed computing and cryptography. 
However, in the proactlve security model we allow the attacker to 
corrupt every server - as long as It does not corrupt more than t 
servers at the same pemod We say that adversary in the proactwe 
model is mobile, namely attacked components may be released at 
some point (due to some security measure or other change in the 
system or the adversary causing loss of  control, often as a result of  
an attempt by the adversary to avoid detection of  the attack) 
Furthermore, in contrast to other approaches, proactively secure 
systems do not wait until a break-m ~s detected Instead, a 
proactwely secure system invokes the refreshment protocol 
permdically (and proactively) in order to maintain uninterrupted 
security, or force detection For more dlscussmn on the motivation 
behind this model, see [4,5,6,16] 

Some attacks on the system cannot be prevented The "classical" 
example is if the attacker is breaking into a server, thereby finding 
all its secret keys; it then pretends to be that server while keeping 
this server disconnected from the other servers (when the attacker 
lost control over that server) However, m such cases we wall be 
able to detect the attack, and raise an alert - mfbrm the operator 
about the attack Operators will normally respond to such an alert 
by revoking special emergency security resources and procedures, 
which are very likely to remove the attacker - and possibly catch 
her as well Therefore, it is highly unlikely that (smart) attackers 
will use such "visible" attacks 

The proactlve security model assumes that even during attack, 
some specific data cannot be corrupted The obvious example for 
data that we must assume cannot be corrupted is the program 
itsell, if it could be changed, recovery is clearly impossible 
Clearly, the program is not any different than any constant value 
used by the program; we will therefore assume that each computer 
comes with a read only memory which we can specify Its contents 
Specifically we assume that each computer comes with such a 
read only memory containing a fixed pubhc key, and the 
corresponding secret key is known only at m~tiahzatlon - for a 
more detailed discussion, see Section 3.2. This assumption is not 
too difficult to implement in practice 

2.2 Toolkit's Functionalities and Algorithms 
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Our toolkit maintains two basic proacuve functionalities for the 
entire lifetime of  the system, as long as there are 'enough' 
working components m the system: 
1 Proactively secure end-to-end communication (authenticated 

and encrypted) among all the nodes of  the proacuve 
networks, that is, new commumcation keys are agreed upon 
at the begmmng of each period This functionality is 
achieved using the protocols of  [5] 

2 A distributed signature key that is generated at initiation of  
the proactwe environment, shared among all servers of  the 
network and proacttvely maintained so that private shares are 
refreshed periodically without changing the signature public 
key This internal signature key is often used for "group 
certification' purposes and, for example, is mandatory for 
the implementation of  the proactive end-to-end 
communication Our toolkit implements a DSS distributed 
key using the algorithms of  [ 15,13]. but in principal it Js also 
possible to use a distributed RSA key, based on the signature 
algorithm of [24, I I ] with the key generation algorithm of  
[31. 

The implementation of  these functlonahties are based on a number 
of  algorithms which, for completeness, are briefly outhned in the 
Appendix of  the paper's ful version 
(http//w3 research telavw ibm com/proacUve/Papers/Toolk~t/proa 
cUve-paper ps) 

3 The Proactive Toolkit Architecture 

Recall that the proactive operating environment serves as a 
platform on which standard apphcations can be proactlvized In 
this section we define the basic architecture and functional 
components for such enwronment. 

The proacUve operating environment consists of  a network of  
servers which ~s set up once - this network is referred to as the 
Proactive Network Each node in the network runs a proacUve 
server (PServer), whose basic architecture is depicted in Figure 2 
A Pserver communicates with other Pservers vm the proachve 
network, and provides proactwe services to apphcauons by the 
means o fAPl  A server is mstantlated at boot time and checked 
periodically by the operating system Current implementation does 
not support dynamic reslzmg of the network 

The internal design o f a  Pserver is composed of  the following 
modules: 
• Library of  Proactwe Utilities 
• L~brary of  ProacUve Protocols 
• The API Module (section 5) 
• The Controller and Commumcahon modules 

[a ]  

I 
ProactNe Server I ProactlVedata 
I [b] IP er,od,ca, check 

Operating Systems I 

Figure 2: Architecture  

3.2 The Pserver Data 

The Pserver, as any other program, maintains some key internal 
data However, the maintenance of  this data raises a few 
algorithmic problems, as the server must be able to refresh and 
recover itself periodically, and this includes recovering its data or 
at least verifying that it has not been corrupted The server's data 
is one of  three types 

1 ROM data - this "write once" data Js assumed to be 
immutable so that any attack on the system can not tamper 
with it, however an adversary may learn Jt It is used for 
bootstrapping purposes as otherwise a recovering server 
could not bring itself to a secured state. Our design, as 
detailed m Section 4, attempts to minimize the amount of  
data that must be stored in the ROM m order to safely boot 
the server: m particular it shows that it suffices to store one 
public key (in our specific implementation, the server's port 
number as well) in the ROM for the Pserver to be completely 
recoverable 

2 Pubhc data Parts of  this data are common to all servers, but 
other parts are specific to the particular Pserver, yet its 
exposure to the entire proactwe network does not interfere 
with the security o f a  PServer. Since this data is necessary for 
the proper operation of  any server and thus must be 
recoverable, it is duplicated the data among all servers so that 
during recovery It can be reconstructed if needed with the 
assistance of  the proactive network The details of  this 
process are described in Section 4. The public data may be 
extended during the lifetime of  the system, for example by 
generating new long-lived secrets (the common fields of  
these long-lived secrets is added to the public mlbrmation) 

3. Private data, specific to a particular server One such 
example is the server's share o f  a distributed key This data is 
typically not recovered, but instead is refreshed It also 
requires the ability to be completely erased from the system 
without leaving any traces, which is a property that needs to 
be supported by the operating system. 

4 The Proactive Toolkit Protocols 

Our suggested design for a proactJve operating environment must 
maintain proactively secure communication among the servers as 
well as a proactwe internal signature key for the entire lifetime of  
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the system For that, these two protocols must be imtiated and 
undergo refresh at every period, where a refi'esh may actually 
involve recovery at some server ff it had detected that some of its 
data was corrupted or lost We follow [5] for the design of the 
integrated proactive protocols of signatures and secure 
commumcatlon, and [ 13,15] for the specific proactive sagnature 
mechanism However, [5] requires every server to keep in 
read-only memory (ROM) a copy of the verification key Vcert of 
proactlve system (whose corresponding secret key Scert is shared 
between all the proactive servers, and these sharesS'.,.(t) are 
refreshed at every period t). This assumption is not very practical, 
as the proactive system's key Vcert is not available when the 
computer is manufactured and sold, but only much later - when it 
is integrated into a specific proactive environment We show how 
to provide the reqmrements of [5] whde requiring only that each 
computer comes with pre-mstalled, machme-umque parr of secret 
key S' ..... (on erasable disk) and public key V',,.. (on ROM) 

Another practacal aspect which we had to deal with is that the 
proactwe server needs some constants configuration information 
such as IP addresses of other servers, cryptographic parameters 
used m the cryptographlc algorithms, and so on We denote this 
set of  these (pubhc) constants by C. Our protocols include 
mechamsms to recover C penodicaUy (if the adversary corrupted 
C when breaking into the server at the prevaous period). Let 
Mt=[~..,,(V.,~,,C)] be the signature of server t on (V~r,,C) using its 
initml key S',t.~, We denote by M the concatenation of all Mr's. 
that is M = (M;,M:, M.) Hence. M is the lnvarzant lnformatton 
of the system 

We begin by briefly reviewing the periodical refresh protocol of 
[5], which assumes the avadabdity of an unmodified Vcert at 
every proactive server We then describe the Vcert-recover 
protocol, with a perzodwal-recover module which recovers Vcert 
at the beginning of every refresh period (before using [5]). and an 
mltlahzataon module that uses (S'~t~., ~,,~.) 

4.1 The Refresh Protocol of  15] for Period t 

The goal of this sub-protocol, detailed in Table I, is to refresh the 
communication/authentication keys as well as the shares of all 
long-lived keys, including Scert. A server which participates in 
this protocol may be "operational", in which case ~t has a valid 
paar of keys (St(t-l), Vt(t-l)), (Et(t-1),Dt(t-1)) and vahd shares of 
the long-lived secrets (including S'.,r,(t-l)) from period t-1 
Alternatively, a server can be "recovering" so that all of  the above 
reformation is missing (or corrupted), even m this case we can 
assume that server posses Vcert and the constants C (to be ensured 
by the Vcert-recover protocol) 

Remarks: 
1 Step 3 of the standard key refresh allows the option of 

sending Kt m the clear, since a recovering server has no vahd 
Sl(t-1) at this point. Hence. the following judgment should be 
made: 
[l] If more than one (but different) authentacated messages 

arrive from server t, dfscard all of  them 
[ill if one authentacated message arrives, but few others Jn 

the clear, accept authentacated 
[ali] ffmore than one (but different) messages arrive m the 

clear, discard all of  them 
2 Recovering servers do not take part m the Joint-signature 

generation. 
3. When verifying the sagnature Scert(KeyTable) server t must 

verify that KeyTable contains Kt (thas serves as a "random 
challenge" to avoid replay of signature). If server t discovers 
that Kt is not part of  the signed KeyTable, then rinse an alert 
for a detected attack 

4. Use the secret recovery and refresh algorithms for proactwe 
secret sharing, as described m [16] 

P e r f o r m  a standard key refresh for p e r i o d  t:  
I. Generate (Sl(t), Vl(t)) 
2 Generate (Et(tj, Dt(tJJ, Sign with S~(tj 
3. Broadcast Kt = (Vl(t), Sl(t)((El(t)) ) (using Sz(t-1) when avadable) [~1 
4 Generate a distributed signature Scert(KeyTable) where KeyTable = [K1. , Kn] [2] 
5. Veril~¢ the signature Scert(KeyTable) [3] 

( A l l  channels are now authenticated/encrypted with refreshed keys of  p e r i o d  t .)  

Refresh long-lived data (s%,,): 
1 Perform an agreement protocol on the data that needs to be refreshed/recovered 
2 For any long hved secret S [4] 

(0 Reconstruct the missing shares of the secret S for the recovering servers 
(i0 Engage in a standard ReJ~esh (SJ protocol 

Table I: Refresh Protocol for period t 
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PushM algorithm of server i 
Read V' ..... from ROM and check validity of  the signature [Scert(M),M] stored in a file: 

(i) Extract Mt from M and check vahdJty of  signature of Mr with //',,.~, 
(ii) If signature on &It is valid, obtain Vcert from Mz and vahdate signature Scert(M) 

I f  s ignature on M is val id - s e r v e r  i is opera t iona l  
• Send M to all other servers 

Otherwise  ( M  is not  valid or  file does not  exist) - s e r v e r  i is recover ing  
• Wait until a verifiable copy of[Scert(M), M] arrives from other servers (otherwise raise ALERT - recovery 

has failed) 

Table 2: The Vcert-recover Protocol-periodical-recover module 

lnput:(A',,.,., F',,..), C 
(Communica t ion  is secure - inactive adversary).  Broadcast  keys: 

• Generate (St(O), Vt(O)) 
• Generate (Et(O), Di(O)), S~gn [Sl(O)(Et(O))] 
• broadcast (in clear) (Vl(O), Sl(O)(El(O)) ) to all servers 

(Channels  are now authenticated and encrypted.  All servers must  be coopera t ive ,  all communica t ion  channels  

must be operat ional!)  

¢ G e n e r a t e  (Scert, Vcert): 
• Engage in the generation of  a distributed signature key (Scert, Vcert). Server i gets [Vcert, S'~J 

¢" Generate (Scert(M),M): 
• Sign Mt=[~,~dVcert, C)] 
• Erase .S%,~, (VERY IMPORTANT) 
• Broadcast Mt to all and receive Mj from al l j  Construct the Invartantlnfo M=(M1,. ,Mn) 
+ Engage in a generation of  a distributed signature to generate [Scert(M), M] 

(Channels  authent icated/encrypted.  N o  further assumptions on adversary behavior)  

Table 3: Initialization Protocol of server i 

4.2 The Vcert-recover Protocol  - 
periodical-recover module 

The periodical-recover module, detailed in Table 2, is invoked at 
the very beginning of  very refresh period, and re-generates Vcert 
and the constants C for any server which lost this data. As a result, 
it brings a recovering server to a state from which Jt can 
participate in the Refresh protocol described above We assume 
that any operational server has a valid copy of  a signature on M, 
the invariant Information of  the system, signed by the distributed 
signature key Scert - an assumptmn that is justifies by the 
lnttlaltzatton module described next 

Essentially, this protocol allows any recovering server to gather 
M, the Invariant Information of  the system, from other operational 
servers as long as there are enough of  them Note that M needs to 
be "pushed" around the system since a recovering server may not 
know who its partners are (recall that C. the program constants, 
contains infbrmation such as lP addresses). The protocol is 
executed by all servers, and by the end of it a server detects 
whether it is "~operatlonal" or "recovering" 

4.3 The Vcert-recover Protocol - initialization module 

This protocol is executed at the setup of  the system Its goal is to 
bring the servers to a state from which they can safely perform the 
perlodwal-recover module at every Refresh stage and achieve 

proper operatmn of the system The protocol does the following it 
first generates the initial set of  authentication/encrypt,on keys of  
tile system, it generates the distributed signature key (Vcert, ScerO 
and finally produces a joint signature [Seert(M),M] on the 
lnvanant information to help recovering servers bootstrap their 
data in the future The input to this protocol is C, the program's 
constants, and (~,,~t, V'.~r~) where V'~,.,,, the public part of this key, 
is also written in the ROM. Table 3 summarizes the detads of  the 
Imtializatlon protocol 

5. The  Appl icat ion Program Interface (API) 
Module  

This section describes the interface between the proactive toolkit 
and the applications using it A centralized apphcatlon runs on the 
same computer running the proactive server, distributed or 
proactlve applications (F~gure 1) run one instance of  the 
applicatmn on each of  the proactive servers The goals of  the API 
are to provide secure communication between the application and 
the server We will assume that the operating system is providing 
basic security services which allow server and chent to restrict 
communication to the same computer, and to separate between 
two applications There is one element o f  security that we must 
add m the API, which is, how to identify multiple instances of  the 
same application running on the different servers - this will be 
done with a secure registration mechanism. The API 's  categories 
are. 
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1 Registration API's  (must be used first, to get a handle to be 
used for other APi calls) 
2 Data Storage API 's  
3. Commumcation API 's  
4 ServiceAPl ' s  

5.1 Registration API's 

Since a Pserver can possibly service many clients, it =s necessary 
to provide an authentication mechanism for requests, by which a 
request is umquely associated with the chent apphcat~on it 
originated from (the apphcauon's  "name") For example, If an 
apphcation by the name of  "VerlSign_CertlficateAuthonty'" is 
registered at the proactwe server, asks for a generauon of a 
proactlve signature key and then repeatedly asks to proactlvely 
s~gn messages by this key, then the server needs to authenticate 
these requests The reglstratmn mechanism ~s designed to address 
exactly th~s problem Registration will provide the apphcatmn 
with a handle, which it wall append to every subsequent request 
Different registration mechanisms are needed for dift~rent client 
configurations (centrahzed vs distributed/proactwe) 

Centralized Application - th~s is the strmghtforward reglstrauon, 
designed to support requests that are initiated by a single client 
The client sends 
Regtstratlon_Req(Name, UmquelD) 
where UmquelD ~s some random identifier of the appheatmn, the 
server responds with a handle 
The server needs to assign a quota on the number of serwces a 
specific chent can request 
Distributed Application - The group of Pservers need to ~dentsfy 
chents wfth the same name running on different machines In 
pamcular, a request wdl be serviced by the proactlve servers only 
~f a maloray of  authenticated chents have mmated (or approved) 
this request We suggest two optmns 

I Password based: Each chent must reg=ster at its Pserver 
w~th the same (name,pswd) 

Chent j  sends Regtstratton_Req(name, pswd) to Pserver t 
Pserver_:. returns a handle ap~handle j  to ~ts cheat 

A request ~s serviced only if requested by a majority of 
servers For that, ff Pserverj  gets a request 
Request_protocol(apt_handler, protocol) from Chentj ,  
then Pserve%~ sends (hash(pswd). name. protocol) to all If 
at some Pserver_j no such request has arrwed, it asks for 
approval from tts chen t j  (after checking hash(pswd)). 

2 Certificate based Assume a Cemficate Authority common 
to all clients Prior to reg~stratton at the Pserver, each 
Chent_~ gets a one-time cemficate 
Certoqcate ~ = Cert CA(Chent_PubKey, name, ~, server M, 
ttme) 
This cemficate ~s used to convince Pserver j  that the 
registration request indeed comes from a valid chent which is 
the l_th component of some apphcatmn named name (that ~s, 
ffthe same name ts used at various chents, then they are 
mstantmttons of the same applicatmn) Of course, the 
apphcanon must also prove ownership of the secret key 
corresponding to the pubhc key in the cemficate (by s~gmng 

I Read/Write Data I mus t  accept  request  for  

time or a challenge from the proactwe server) This protocol 
is depicted in hgu re  3 

The password solutmn Is much weaker since ffone finds out the 
password it can "forge" a chent at all other machines at once, 
whereas a different certificate (and secret key) is needed at each 
machine. 

PKCA, Certd/cate4 ~ PK_CA, Certificate2 
A[~j4 • handle4 " ~ handle2 App2 

1 req(handle,4,protocol)~_~ ~ "  3 req(handfe2,protocol) [ ]  

4 approve 

CertJfieatej  = Cert~CA(Pk, name, =, se rve r jd ,  time) 

Figure 3: Certificate-based registration for distributed 
applications 

5.2 Data Storage API's 

These APIs provide secure store and recovery functlonalmes for 
the apphcatlon data which are all based on the various Secret 
Sharing algorithmic techmques The API supports the following 
functmns 

StoreData (DatalD, Data Value, data_type) 
Retr:eve ( DatalD) 
Write ( DatalD, new l'alue) 

where DatalD umquely identifies the data entry, and data_type 
indicates what security optlons/reqmrements apply to this data 
Below we categorize the various types of data, specifically, data 
can be either read/write or write-once memory, can be pubhc or 
private, distributed or local. Table 4 summarizes these types 
• Public (non-secret) data can be requested to be stored and 

retrieved either as a write-once data or with read/write 

privileges. The latter case makes no sense m a local (central) 
apphcatmn, since then tt could be erased by a single 
corrupted server whde under attack Hence, m order to 
change the secret value (namely, perform a write operation), 
a quorum of the Pservers must request the operatmn 

• Secret write-once data can e~ther be "single writer/reader', 
hence ~t ~s private to its owner but ~s d~stnbuted (vta secret 
sharing) among servers for security and tolerance, or "'single 
writer/distributed reader" data which has already been 
distributed among the servers elsewhere and can be 
read/reconstructed only if a quorum of the servers request to 
read it, Note that the system automatically provides refresh 
and recovery of  shares for this type of data, 

• Secret read/write Is "~d~strlbuted wnter/dJsmbuted reader". 
It requires a quorum of  the servers to change ~ts value, hence 
it is applicable only in the distributed scenario 

An additional interesting secure storage serwce is StoreUntd 
(DatalD, Data Value, Date) This Js a special interesting serwee 
that is derived from the "'single water/distributed reader" or 
"'distributed wr~ter/dlsmbuted reader" variant The data ~s kept 

secret until the specified date 

I Same as wri te-once,  but the  
secret  value  may  be changed  I N.A.  
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Write Once Data 

store/retrieve from a quorum 
of servers 

accepts request for 
store/retrieve from one 
server 

Public (not secret) 

Table  4: Data 

5.3 Service API's 

The following services are readily available from the proactive 
network. 
• G e n e r a t e D S S K e y  ( p a r a m s )  - Pservers engage in the 

generation of a distributed DSS key 
• G e n e r a t e D S A S t g n a t u r e ( m e s s a g e ,  D S S K e y )  - Pservers engage 

in the generation of a distributed signature, using the 
algorithm of [ 13]. 

• G e t T ~ m e O  - returns a vector with the local time at each 
proactive server. 

• G e t R a n d o m O  - every Pserver generates and sends a random 
number, return XOR on them. 

• G e n e r a t e J o m t S e c r e t O  - engage in the protocol that generates 
a joint secret. Secret value can be either specified or a 
random value. 

5.4 Communication API's 

The proactive toolkit can supply means for proactwely secure 
communication between two nodes, either by supplying proactwe 
keys, or by supplying proactive communication-links 
Proactive Keys - Communication applications often require 
generation of session keys, and these keys need to be refreshed 
from time to time Such refreshed keys can be generated by the 
proachve toolkit and supplied to the apphcatlon, together with 
certificate (signed by the proactwe key of the Pservers) which 
certifies the public key of period t (K_t) 
Proactively secure communication links - Since the Pservers 
already maintain proactively secured communication among 
themselves, this mechanism can be prowded as a serwce to an 
external application To achieve that, an apphcation first needs to 
register as a client on both servers (using the same name) and then 
use the send/receive API's between the client and the Pservers. 

6. Implementation 

The Proactive Security Toolkit has been prototyped m Java i 1 A 
beta version of the toolkit will be available by YE 99 for pubhc 
experimentation, and a running demo is in our web site 
Performance: The toolkJt's current implementation serves 
mainly as a feaslbihty study for the proactlve model As such, it 
does not constder performance as Its primary goal, and indeed was 
developed in Java for fast prototypmg rather than to achieve good 
performance Moreover, since proactive algorithms typically have 

if requested by a quorum of  [ 
] servers 

"single writer/distributed 
reader". 
Receive secret shares that 
are computed elsewhere (by 
the app). 
Perform periodical refi'esh 
and share recovery when 
needed 
distributed 

Secret 
Storgae API 

"single writer/reader" 
Secret sharing w/dealer. [ 

Only owner may 
reconstruct. 
Can not be modified 
Perform periodical refresh 
and share recovery when 
needed. 
private 

Data 

a bursty commumcation pattern, the commumcation bottleneck 
constitutes the performance barrier Therefore~ ttme performance 
is basically a function of two parameters" d - the maximum delay 
on a point-to-point commumcation that the system expects, and t - 
the maximum number of bad servers, t directly affects the 
complexity of the step which broadcasts a message to all servers, a 
fundamental step in all protocols proactwe 

Rough estimations show that with current implementatton the 
toolk~t's heavy tasks are performed off-line (during refYesh) and 
reqmre the order of 10 minutes for a complete periodical refresh 
(for n=5). An important on-line task is the generation of a 
signature. This task requires the order of 4 b r o a d c a s t  steps, where 
a single broadcast takes about td time 

6.1 Java Related Implementation Issues 

The proactwe environment architecture and its algorithms 
consutute qu~te a complex system to implement and test As such, 
the Java language was a natural choice for implementation since it 
prowdes a fast and simple prototypmg environment. Moreover, Its 
ponabdlty across platforms was an important feature, since 
different nodes m the proactive network may have to run the 
toolkit on entirely different platforms (for example, our demo runs 
on a network of five nodes, some of which are UNIX based and 
others are Windows based). Yet, besides its poor performance, 
this choice of programming lagnguage had a number of 
implications 
i. Erasing reformation from memory, which is an absolutely 

necessity for the correct implementation of secrets refresh, is 
an issue in all environments (due to virtual memory) and. in 
particular, m a garbage collected environment hke Java, 
since garbage collectors typically copy memory as part of the 
collection proccess. 

2 The proactwe model assumes that after the adversary has lost 
control on a machine the code of the proact~ve server 
program is valid, so tt is either protected by some 
tampered-proof memory device or can be safely loaded by 
the operating system (see the API section). The code for a 
Java program includes the code for the JVM (Java Virtual 
Machine), as well as the byte-code of all classes loaded 
(dynamically) by the machine in the course of ~ts execution 
Therefore. satisfying the code-vahdation assumption for Java 
programs may require assistance not only from the Operating 
System, but also from the JVM, possibly by using 
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mechamsms like signed classes or by writing a customized 
class loader. 

3 We were able to use some of the more advanced features of 
Java to simplify both the protocols and communication (by 
using serialization), and the API ( by using dynamic class 
loading and reflection). All protocols and messages are 
implemented as subclasses of an abstract superclass. In this 
way all protocols are treated in a uniform way, which 
simplifies both the dispatch of messages to protocols and the 
addition of new protocols. In addition, we didn't have to 
define 'protocol messages' in a strict, well structured, way 
and parse them. Instead, all messages are sent as serialization 
of some object. 

6.2 Signing an agreed-upon object 

The following lmplementatmn issue, not necessarily exclusive to 
Java, is relevant in order to jointly sign and vahdate an 
agreed-upon object An oblect is signed by first converting it to a 
number, but a conventional conversion may not guarantee that 
identical objects will be converted identically. For example, if two 
identical sets are implemented via hnked lists then the 
representations may be d~fferent due to distinct orders within the 
hsts. 

In our Implementation, it is often desirable that all "'good" servers 
sign an identical object which they all posses For that, the 
following protocol has been used: 
• Each server broadcasts a byte array which is a serialization 

of the object 
• A server accepts the byte array which is the seriahzation of 

an identical object to its own, and comes from the lowest 
indexed server 

6.3 API Implementation 

Using the Java language enabled us to implement the API 
between the server and its clients in a convenient and simple way, 
similar to the API for writing applets. To wrtte a proactwe 
application the client must write a class which is a subclass of the 
class PruaetiveApplet which ~s part of the toolkit This 
superclass provides its subclass with methods to request services 
from the server, send messages to chents running on the other 
machines, and load new classes to the proactive server. In 
addition, this class defines abstract methods which the subclass 
must implement and which the server uses to notify the client 
about the status of request and about incoming messages from 
other clients. The class also defines an interface which the client 
implements to allow its data to be saved and restored from the 
server In short, a large part of the API specifications outlined in 
Section 5 ~s already provided, either as methods, abstract methods 
or interfaces, of the ProactiveApplet superclass 

As a result, executing a "chent" application is essentially reduced 
to loading a class which is a subclass of ProactweApplet into the 
JVM executing the Pserver class, and the issue of registering the 
client application is now reduced to an authorization/policy 
mechanism to allow the loading of this class. To this end, we 
suggest that the code for some predefined list of classes is part of 
the initmi constants C of the server, and, as mentioned above, 
these classes can invoke methods to load new classes (in the same 

package or subpackages - to avoid namespace conflicts). A class is 
loaded at the next permdic refresh if a majority of the servers 
received a request from a client to load ~t The code for all loaded 
classes is also validated at each refresh. Therefore, the server 
trusts classes that have been loaded to it, and the classes that are 
loaded initially are responsible for implementing the pohcy of 
which new client classes to load 

One natural policy that can be employed is via "'signed code" 
mechamsms provided by the Java language We intend to supply 
standard initial classes which provide a GUI interface to request 

loading of new classes, and which wall only load classes that are 
signed by a predetermined certificate authorHy However, 
different inmal classes can implement different policies such as a 
"class that will delay requests for loading new classes for a week, 
while notifying managers and requesting their authorization". 
Some initial classes may decided not to load classes at all, but 
listen for requests through a TCP socket and decide whether to 
accept them on a per request basis (such a class can act as a proxy 
for a non-Java or a non-local client application) 

Since there are no inter-process or inter-computer commumcation 
between the client and the server, the ~ssue of authentication is 
much simplified A misbehaving chents can bring down the server 
by exhausting resources but can not (modulo Java security) learn 
of other clients' data. 

The ServerGui component: It is desirable to provide the abdity 
to remotely inspect the proactive network, or any specific node 
within this network To achieve this, we created the ServerGui 
component. This component is not part of the Pserver, but rather 
an independent program whose purpose is to send requests to a 
Pserver and to display the server's responses. It is written as a 
Java applet and can be downloaded throught the browser The 
main request it supports is the "View PServer's Status and 
information. 
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