The Proactive Security Toolkit and Applications

Boaz Barak

Amir Herzberg

Dalit Naor Eidad Shai

IBM Haifa Research Lab, Tel-Aviv Site
E-Commerce and Technologies Group
{barak,amir,dalit,eldad@il.ibm.com}

“You can't chear all people alf of the time - {Gronymous)

Abstract

Existing security mechamsms focus on prevention of penetrations,
detectron of a pengtration and {(manual) recovery lools Indeed
attackers focus their penetration efforts on breaking into critical
modules, and on avoiding detection of the attack. As a result,
security 10ols and procedures may cause the attackers 1o lose
control over a specific module (computer. account), since the
attacker would rather lose control than risk detection of the attack.
While controlling the module, attacker may learn critical secret
iformation or modify the madule that make it much easier for the
attacker to regain control over that module later Recent results in
crypiography give some hope of improving this situaiion; they
show that many fundamental secunity tasks can be achieved with
proactive securily Proactive security does not assume that there 18
any module completely secure against penetration Instead, we
assume that at any given time period (day, week, .), a sufficient
number of the modules 1n the system are secure (not penctrated).
The resulis obtaned so far include some of the most important
cryplographic prinnitives such as signatures, secret sharing, and
secure commumication However. there was no usable
implementation, and several critical issues (for actual use) were
not addressed

In this work we report on a practical tooliut implementing the key
proactive secursty mechanisms The toolkit provides secure
nterfaces to make it easy for applications to recover from
penetrations. The toolkit also addresses other critical
smplementation 1ssues. such as the miialization of the proactive
sccure system We descnbe the toolkit and discuss some of the
potential applications Some appiications require minimal
enhancements to the existing implementations - e g. for secure
logging (especially for intrusion detection), secure end-to-¢nd
communication and timestampimg Other applications require
more significant enhancements, mainly distribution over multiple
servers, examples are certification authority, key recovery, and
secure file system or archive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use s granted without fee provided that

coptes are nat made or distnbuted for prolit or commercral advant

-age and that copies bear this notce and the full citation on the first page
To copy atherwisa, to rapublish, to post on servers or 1o

redistritiute to hsts, raquires prior specdic patrmissian and/or a fee

CCS "89 11/99 Singapore

© 1989 ACM 1-58112-148-8/99/0010 . $5.00

i8

1 Introduction

Traditional security systems assume that one or more systems are
always secure. 1 ¢ are never controiled by the aftackers. The
model of Proactive Security does not make this assumption.
Instead, 1t considers cases where all components of the system
may be broken-into and controlled by an attacker. with restrictions
on the number of components broken-inte during the same time
period (day. week,). Proactive securily shows how (0 mainiain
the overal! security of a system even under such conditions In
particular 1t provides automated recovery of the security of
individual components. aveiding the use of expensive and
inconvenient manual processes (except for some “aggressive’
attacks, which cannet be prevented - but are definitely and clearly
detected) The technigue combines two well-known approaches to
enhance the security of the system distributed (or threshold)
cryptography. which ensures security as long as a threshold (say
half}) of the servers are not corrupled (see [12]); and periodic
refresh (or update) of the sensitive data (e g keys) held by the
servers In short.

proactive = disiributed + refresh
This way. the proactive approach guarantees uninterrupted
securliy as fong as not oo many scrvers are broken into at the
same lime Furthermore. it does not require 1dentification when a
systemn 1s broken into, ot after the attacker loses control: instead,
the system proactively invokes recovery procedures cvery so
often, hoping to restore security to components over which the
attacker lost control.

Proactive security is highly desirable in many realistic settings. m

particular;

* When a high level of sceurity 1s required. together with fault
tolerance (as redundancy improves fault tolerance but opens
more points for attack)

* To ensure acceptable levél of system security using weakly
secure components such as most commercially available
operating syslems

{Examples of specific applications are given below.)

Recent results show that many fundamental cryptographic

functionalities may be achieved even under the proactive security

modei - as long as most components are secure most of the time

In particular, proactively secure protocols have been devised for

the lollowing problems:

¢ Secret sharing [21,16]

+ I[nscrete-log-based digital signatures [15], and in particular
DSA [13]

Secure end-to-end communication | 5]

RSA [10,11.24], and in pariicular generation of the RSA
shared key [3]

Pseudo-random generation [6.8]

Key distribution center [20]

This substantial set of known results in proactive security did not
vet produce any practical security product or selution (In fact,
there are only a few deployments of distributed security - the mosi
well known may be the SET credit card standard’s certificate
authority [7): sec ulso "related works’ below) The creation of
such a proactive selution is non-trivial. as the protocols are often
quite complex and nontrivial to implement. Furthermore, the
protocols are specified under some simphifying assumptions and
do not address some needed elements, such as interfacing between
the proactive service and the applications using it This paper
reports on a toolkit. to be soon placed for public experimentation,
to allow practical deployment of proactive secunty. The main new
coniributions are:

* A secure imnialization mechanism, with reasonable, practical
requirements (rom the computer and operating system.
Specitically, all we require is a secure boot process (which 1s
a good 1dea anyway. against viruses - and easily done with
signed code). and a per-machine secret-private key pair, with
the public key protected from modification (e g 1n ROM or
write-once EEROM). and the seeret key in ¢rasable memory
(e g disk). Previous results required storage of parameters
specific to the particutar application (such as the group’s
public key} in sceure storage, which is not practical

s Asel of application program interfaces (APls) that allow the
use of the toolkit to improve secunity, specifically provide
security in spite of break-ins into computers, of existing
applications, as well as the development of new applications
which arc proactive sceure

The security of any proactive solution relies heavily upon its
correct architecture and integration with existing. non-proactive,
operating system The design of our toolkit. which does not view
the proacttve model as series of protocols but. rather. as a security
e¢nhancement of the operating system which transforms it into a
proactively secured system via the appropriate use of proactive
protocols, has not been defined nor implemented in the past. We
show that 1t 15 possible to transform general applications which
are required (o remain sceure for long periods of time to operate 1n
a proactive environment. namely proactivizing applications.
Specifically. we show how to appropriately use the proactive
cryptographic functions as key primittves in the proactivization
process. To this end, we define an architecture for a proactive
operating environment which serves as a platform on which
standard applications can be proactivized This operating
environment consists of a network of servers which is set up once,
which we call the proacfive nerwork Each server 1s instantiated at
boot time by the operaung system and 1s checked periodically.
also by the operating system. Servers can recover data (both
public and private data) from other servers in the proactive
network., 1f such data 1s corrupled or lost Once the proactive
network 15 set up, any application can run on the top of the
nctwork and request proaclive services by the means of APL The
teasibility of the proactive modecl and of the architecture presented
hereby has been demonstrated by the Proactive Security Toolkit,
which 15 a Java implementation described in this manuscript.

19

1.1 Applications of the Proactive Security
Toolkit

There are three kinds of applications that may take advaniage of
the proactive security toofkit to recover from penetrations.
Centralized applications - a "traditional” application running on
one server only. The apphcation uses a proactivelv secure service
provided by the toolkit For some applications and services, this
could provide significant advantage - at minimal change to
existing applications Some tvpical applications are:

* Secure logging: each client application may add entries
(cvents) 1o the log, however none of them can modify or
erase the log. This could be of great value in improving
intrusion detection tools, as intruders often try to erase traces
i log files.

= Secure end-to-end communication: the proactive toolkit
can provide the applications with freshly generated and
certified public keys perodically. This could be integrated
with tunneling mechanisms such as secure IP or SSL

* Timestamping: the teolkit could be used io sign a document
{or 1ts hash) and current time. to prove that the document
existed at this time

A
&) ‘
P G g e

App3

Figure 1: Distributed Application of the Toolkit

Distributed applications (Figure 1) - the application runs
simultancously on all machines (App_I, ., App_n) and requests
services through all machines. Each App_i inieracis directly with
1ts own proactive server (PS_i). A typical application 1s a
certificate authority, or in general any workflow application
requiring secure (multi-person) digital signatures Another
application 15 Key recovery (escrow agents),

Proactive applications - the application runs in a distributed
configuration but, in addition, goes through periodical refreshes
by uithzing the proactive toolkit services. This is required when
the application securnity or efficiency requirements cannot be met
by the services of the toolkit. Examples include multiparty
proiocols such as voting and trading, database, operating system,
and access control mechanisms An especially interesting
application 1s a Secure Coinmerce Server - such scrver can not
lie within the firewall although it handles confidential data and

matters (such as access contrel, certificates etc) It 1s therefore
natural to proactively distribute the server among a number of
(independent, and pessibly not even mutually trusted) hosts and
locations, thus achieving increased trust tn the server.

1.2 Related Systems

A number of distributed systems related to the proactive model
have been designed and implemented. The Intrusion Tolerance via
Threshold Cryptography (ITTC) project [17,19,29] designs and
builds tools and an mfrastructure that are based on Threshold
Cryptography, and use an intrusion toferant Certification
Authonity and an mtrusion tolerant web server to demonstrate
these tools. The technical approach is based upon a distributed
RSA key. such that 4 “share servers™ generate a private RSA key
that 15 shared among them from the moment of creation, and any ¢
of the share serves can be used to apply the key Another related
system 18 the Omega Key Management Service system [27],
designed and developed at Bell-Labs. The Q system s a
distnibuted public key management system It employs threshold
techniques which can tolerate a number of server failures (via the
implementation of the Rampart toolkit [23]), but not recovering
(proactive) techniques. The e-Fault (electronic-Vault) project [18]
of IBM is an implementation of a distribuied data repository It
employs RSA-based shared signatures as the basic cryplographic
function.

There are a few implementation efforts of proactive algonthms.
Specifically, the Network Randomization Protocel (NRP) of [8],
which provides a proactive pseudo-random generator. has been
implemented at IBM. It also provides a simple AP for client
applications to get pseudo-random values from the servers
Another ¢ffort, the implementation of proactive threshold key
protocols, has been reported in {14].

1.3 Organization of the paper

This paper is orgamized as follows In Section 2 we deseribe the
model as well as an overview of related work. Section 3 discusses
the basic architecture of the proactive server Sections 4 presents
the protocol that inttializes the network of servers and handies
refresh/recovery of a server The APl module, which provides
mechanisms for proactivization of applications, 1s fully described
in Sectton 5 Java-related and other implementation 1ssues,
user-mnterface are the focus of Section 6.

2 Overview of the Proactive Model and
Algorithms

2.1 Model

The proactive model assumes a set of n servers, {P], P2,
that are interconnected by a complete point-to-point
communication channels Tinte 15 divided into periods (like days,
weeks, .) which are determined by some global clock. An
adversary may (temporariiy) attack up 1o ¢ of the n servers at any
given tme penod - but at different time penods, different sets of ¢
servers can be attacked. As a result, all servers engage ina
refreshment stage at the beginning of each tume pernod, so that any
server which has been atlacked during past periods may
automatically recover from possible undetected break-ins

Pnj,

20

Corruption 1s assumed to be either static (for example, disconnect
a server [rom the rest of the network. eavesdrop, read secret data)
or active/malicious {for example. deviale from ihe protocol,
corrupt local data cte } Therefore, afier the aitacker loses control
over a server, the attacker may still know secret information of
that server (e g passwords or secret keys) Furthermore, before
losing control, the attacker may have corrupted (modified) some
of the server’s data (e.g. public keys of certificate authorities). The
refreshment stage deals with both aspects, 1¢ recovers any
corrupted data and invalidates any old secret data (by choosing
new secrets or splitting global secrets into a new set of shares)
This brings the server back to a running stage, and guarantees that
any information that was gathered by the adversary becomes
worthless after recovery

The fact that we lumit the altacker (o ¢ corruptions. out of n
servers, is similar (o the distributed {(or threshold) security modef
used in many works m disteibuted computing and cryptography.
However, in the proactive security model we allow the attacker to
COrTuUpt every server - as long as 1t does not corrupt more than ¢
servers at the same period 'We say that adversary in the proactive
riodel 13 mobile, namely attacked components may be released at
some point {(due to some security measure or other change in the
system or the adversary causing loss of control, often as a result of
an attempl by the adversary to avoid detection of the attack)
Furthermore, in contrast to other approaches, proaclively secure
systems do not wait until a break-in 1s detected Instead. a
proactively secure system invokes the refteshment protocol
periodically (and proactively) in order to mamtain uninicrrupted
security, or force detecton For more discussion on the motrvation
behind this model, see [4,5.6,16]

Seme attacks on the system cannot be prevented The “classical’
example is 1f the attacker is breaking into a server. thereby finding
all its secret keys; 1t then pretends to be that server while keeping
this server disconnected from the other servers (when the atiacker
lost control over that server) [However, i such cases we wall be
ablc to deiect the attack, and raise an aler? - inform the operator
about the atrack Operators will normally respond to such an alert
by mvoking special cmergency security resources and procedures,
which are very likely to remove the attacker - and possibly catch
her as well Therefore, it ¢s highly unhkely that (smart) attackers
will use such “visible® attacks

The proactive security model assumes that even during attack,
some specific data cannot be corrupled The obvious example for
dala that we must assume cannot be corrupted 15 the program
itself: 1f it could be changed, recovery 1s ¢clearly impossible
Clearly, the program 1s not any different than any constant value
used by the program: we will therefore assume that each computer
comes with a read only memory which we can specify its contents
Spectfically we assume that each computer comes with such a
read only memory contamning a fixed public key, and the
corresponding secret key 1s known only at imtialization - for a
more detailed discussion, see Section 3.2, This assumption is not
too difficult to implement in practice

2.2 Toolkit’s Functionalities and Algorithms

Our toolkit mamtamns iwo basic proactive functionalities for the
entire lifetime of the system, as long as there are ‘enough’
working components m the System:

1 Proactively secure end-to-end communication (autheaticated
and encrypted) among all the nodes of the proactive
networks, that 1s, new commuaication keys are agreed upon
at the begmning of each period This functionality is
achieved usig the protocols of 5]

2 A distnibuted signature key that s generated at imtiation of
the proactive environment, shared among all servers of the
neiwork and proactively maintamed so that private shares are
refreshed periodically without changing the signature public
key This internal signature key 1s often used for *group
certification” purposes and. for example, is mandatory for
the implementation of the proactive cnd-lo-end
communication Our toolkit implements a DSS distributed
key using the algorithms of [13.13]. but in principal it 1s also
possible to use a distributed RSA key, based on the signature
algorithm of [24.11] with the key generation algorithm of
[3].

The umplementation of these functionalities are based on a number

of algorithms which, for completencss, are briefly outlined in the

Appendix of the paper’s ful version

(http //w3 research telaviv ibm com/proactive/Papers/Toolkit/proa

ctive-paper ps)

3 The Proactive Toolkit Architecture

Recall that the proactive aperating environment serves as a
platform on which standard applications can be proactivized In
this section we define the basic architecture and functional
components for such environment,

The proactive operating environment consists of a network of
servers which 1s set up once - ths network 1s referred to as the
Proactive Network Each node in the network runs a proactive
server (PServer), whose basic architecture 1s depicted mn Figure 2
A Pserver communicates with other Pservers via the proactive
nelwork. and provides proactive services to applications by the
means of APl A server is instantiated at boot time and checked
perwodically by the operating system Current implementation does
not support dynamic resizing of the network

The internal design of a Pserver is composed of the following
modules:

* Library of Proactive Utilities

» Library of Proactive Protocols

» The API Module (section 3)

* The Controiler and Communication modulcs

21

<___Application >

{al Il ! API
Proactive
Proactive ﬁ_ Proacive Server data
Network
boot [b] pencdical check

Operating Systems

Figure 2: Architecture

3.2 The Pserver Data

The Pserver, as any other program, maintains some key internal
data However, the manrtenance of this data raises a few
algorithmic problems, as the server must be able to refresh and
recover 1tself periodically. and this includes recovering its data or
at least verifying that it has not been corrupted The server’s data
is one of three types

I ROM data - this “write once” data 1s assumed to be
immutable so that any attack on the system can not tamper
with 11, however an adversary may learn 1t It 15 used for
bootstrapping purposes as otherwise a recovering server
could not bring itself to a secured state. Our design. as
detailed in Section 4, attempis to minimize the amount of
data that must be stored in the ROM 1n order to safely boot
the server: In particular it shows that 1t suffices to store one
public key (in our specific implementation, the server’s port
number as weil) in tha ROM for the Pserver to be completely
recoverable

2 Pubhlic data Parts of tins data are common to all servers. but
other parts are specific to the particular Pserver, yet its
exposure to the entire proaciive network does not interlere
with the sceurity of a PServer. Since this data 1s necessaty for
the proper operation of any server and thus must be
recoverable, it 15 duplicated the data among all servers so that
during recevery 1t can be reconstructed if needed with the
assistance of the proactive network The details of this
process are described in Section 4. The public data may be
extended during the lifetime of the system. for example by
generaling new long-lived secrets (the common fields of
these long-lived secrets is added to the public information)

3. Private data. specific o a particular server One such
example 1s the server’s share of a distributed key This data 1s
typically not recovered, but instead 1s refreshed 11 also
requires the ability to be completely erased from the system
without lcaving any traces, which is a property that needs to
be supported by the operating system.

4 The Proactive Toolkit Protocols

Our suggested design for a proactive operating environment must
maintain proactively secure cormmunication among the servers as
well as a proactive internal signature key for the entire lifetime of

the system For that. thesc two protocols must be imitiated and
undergo refresh at every period, where a refresh may actually
involve recovery at some server 1f it had detected that some of 1ts
data was corrupted or lost We foliow [5] for the design of the
mtegrated proactive protocols of signatures and secure
communication, and [13,15] for the specific proactive signature
mechanism However, [3] requires every server to keep in
read-only memory (ROM) a copy of the venfication key Veert of
proactive system (whose corresponding secrel hey Scert 15 shared
between all the proactive servers, and these shares St} are
refreshed al every period £). This assumption 15 not very practical,
as the proactive system’s key Feert is not available when the
computer 15 manufaciured and sold, but only much later - when it
is integrated into a specific proactive environment We show how
to provide the requirements of [5] while requiring only that each
computer comes with pre-installed, machine-unique pair of secret
key S\ (on erasable disk) and public key V.. (on ROM)

Another pracuical aspect which we had o deal with is that the
proactive server needs some constants configuration informatton
such as [P addresses of other servers. cryptographic parameters
used 1n the cryplographic algorithms. and so on We denole this
set of these {public) constants by C. Qur protocels include
mechanisms 1o recover C penodically (if the adversary corrupted
C when breaking into the server at the previous period). Let
Mi=[S it Veer, C)] be the signature of server i on (Ve., C) using its
initial key S'vay We denote by M the concatenation of all Mi's,
that 1s M = (M, M M,) Hence, M 1s the Jnvariant Information
of the system

We begin by briefly reviewing the periodical refresh protocol of
[5]. which assumes the avatlability of an vnmodified Feers at
every proactive server We then descnbe the Peert-recover
protocol, with a periodical-recover module which recovers Feert
at the beginning of every refresh period (before using [5]). and an
unializatron module that uses (Swmn Fime)

4.1 The Refresh Protocol of |5] for Period t

The goal of this sub-protocol, detailed in Table 1. 1s to refresh the
communication/authentication keys as well as the shares of all
long-lived kevs, including Scert. A server which participates in
this protocol may be “operational”, in which case 1t has a valid
parir of keys (Sit-1), Vi(e-1)), (Ei(t-1),Di(t-1}) and vahd shares of
the long-lived secrets (including S'...(2-1)) from period -7
Alternatively, a server can be “recovering” so that all of the above
imformation is missing (or corrupted), even n this case we can
assume that server posses Feert and the constants (C (1o be ensured
by the Veert-recover protocol)

Remarks:

I Step 3 of the standard key refresh allows the option of
sending K in the clear. since a recovering server has no vahd
Si(z-1) at this pomnt. Hence, the following judgment should be
made:

[1] if more than one (but different) authenticated messages
arrtve from server 7, discard all of them

[1i] if one authenticated message arrives, but few others in
the clear, accept authenticated

[ni] 1f more than one (but different) messages arrive in the
clear, discard all of them

2 Recovering servers do not take part in the Joint-signature
generation.

3. When venfving the signature Scert(KeyTable) server i must
veniy that KeyTable contains Ki (this serves as a "random
challenge” to avoid replay of signature). If server 1 discovers
that K1 1s not part of the signed KeyTable, then raise an alert
for a detected attack

4. Use the secret recovery and refresh algorithms for proactive
secret sharing, as described m [16]

Perform a standard key refresh for period r:
1. Generate (Si2), Viit))
2 Generate (Extj, i), Sign with Sict)

5. Verily the signature Scert(KeyTable) |')

Refresh long-lived data (S'...):
2 Tor any long lived secret S [*]

(i1) Engage in a standard Refresh (S) protocol

3. Broadcast K1 — (Vi(t), Stt)((Eifr))) (using Siit-1) when available) [']
4 Generate a distributed signature ScerifKeyTable) where KeyTable = [K],

(All channels are now authenticated/encrypted with refreshed keys of period 1)

1 Perform an agreement protocol on the data that needs to be refreshed/recovered

(1) Reconstruct the missing shares of the secret S for the recovering servers

- Knj [}

Table t: Refresh Protacol for period t

PushM algorithm of server i

If signature on M is valid - server i is operational
* Send M Lo all other servers

has tatled)

Read V.. from ROM and check validity of the signature fScert(M), M] stored in a file:
(i} Extract M from M and check validity of signature of Mi with 7,
(#i) If signature on M is valid. obtain Veert from Mr and vahidate signature Scers(M)

Otherwise (M is not valid or file does not exist) - server { is recovering
*« Watuntl a venfiable copy of [Sceri(M), M] amves from other servers (otherwise raise ALERT - recovery

Table 2: The Veert-recover Protocol - perivdical-recover module

l“ pu t: (Sm‘nﬂ, V\mrl)a C

e Generate (Su(0), Vi(0))
* Generate (E«0), Di(0)), Sign [Su0)(Er(0))]

must be operational!)
¥ Generate (Scert,Vceert):

v Generate (Scert{M),M}:
+ Sign Mi=[8,..(Veert, C)]
+ FErase .S (VERY IMPORTANT)

(Communication is secure - inactive adversary). Broadcast keys:

* broadcast (in clear) (Vef0), Sy)(Ey0))) to all servers
(Channels are now authenticated and encrvpted. All servers must be cooperative, all communication channels

+ Engage in the gencration of a distributed signature key (Scert, Veert). Server i gets [Veert, Seer]

+ Broadcast Mi to all and receive My trom all ; Construct the lnvariantinfo M=(Mi, . ,Mn)
+ Engage in a generation of a distnibuted signature to generate [Sceri(M), M/
(Channels authenticated/encrypted. No further assumptions on adversary behavior)

Table 3: Initialization Protocol of server §

4.2 The Veert-recover Protocol -
periodical-recover module

The perodical-recover module, detailed in Table 2, is mvoked at
the very beginning of very refresh period. and re-generates Feeri
and the constants C for any server which 1ost this data. As a result,
it brings a recovenng server o 4 state from which it can
participate in the Refresh protocol described above We assume
that any operational server has a valid copy of a signature on M,
the Invariant Information of the system. signed by the distributed
signature key Scert - an assumption that is justtfies by the
mitialization module described next

Esscntially, this protocol allows any recovering server to gather
M, the invariant Information of the system. from other operational
servers as long as there are enough of them Note that M needs o
be “pushed™ around the system since a recovering server may not
know who 1ts partners are (recall that C, the program constants,
contains information such as IP addresses). The protocol 1s
exccuted by all servers. and by the end of it a server delects
whether 1t 15 “operational™ or “‘recovering”

4.3 The Vcert-recover Protocol - initialization maodule

This protocol 1s exceuted at the setup of the system 1ts goal is 1o
bring the servers to a state from which they can safcly perform the
periodical-recover module at every Refresh stage and achieve

23

proper operation of the system The protocol does the following it
first generates the nitial set of authentication/encryption keys of
the system, it generates the distributed signature key (Veert, Scert)
and finally produces a joint signature [Scert (M), M] on the
Invariant information to help recovering servers bootstrap their
data in the future The input to this protocol 15 C, the program’s
constants, and (S V) where VP, the public part of this key,
15 also written in the ROM. Table 3 summarizes the details of the
Intialization protocol

5. The Application Program Interface (AP])
Module

This section describes the interface between the proactive toolkit
and the applications using it A cemiralized application runs on the
same computer running the proactive server, distributed or
proactive applications (Figure 1) run one instance of the
application on cach of the proactive scrvers The goals of the API
are to provide secure communication between the application and
the server We will assume that the operating system is providing
basic security services which allow server and chent to restrict
communication to the same computer, and to separate between
two applications There is one element of security that we must
add n the API, which is, how te identify multiple instances of the
same application runming on the different servers - this will be
done with a secure registration mechanism. The API’s categories
are.

I Registration AP1's (must be used first. to get a handle to be
used for other API calls)

2 Dara Storage API's

3. Communication APl’s

4 Service API's

3.1 Registration API’s

Since a Pserver can possibly service many clients, 1t s necessary
to provide an authentication mechamsm for requests, by which a
request is uniquely associated with the client application 1t
onginaled from (the application’s “name™) For example, 1f an
application by the name of “VenSign_CertificateAuthority™ is
registered at the proactive server, asks for a generation of a
proactive sighature key and then repeatedly asks to proactively
s1gn messages by this key, then the server needs o authenticate
these requests The registration mechanism 13 designed to address
exactly this problem Registration will provide the application
with a Aandle, which it will append to every subsequent request
Dnfferent registration mechamsms are needed for different client
configurations (centralized vs distributed/proactive}

Centralized Application - this is the straightforward registration,
designed to support requests that are iitiated by a single chent
The client sends

Registration_Req(Name, UniquelDl}

where UmiquelD 1s some random idenufier of the appheation, the
server responds with a handle

The server necds to assign a quota on the number of services a
specific client can request

Distributed Application - The group of Pservers need 1o Wdentify
clients with the same name runnig on different machines In
particular, a request will be serviced by the proactive servers only
if a majority of authenticated clients have intiated {ot approved)
this request We suggest two options

1 Password based: Cach client must register at its Pserver
with the same (name,pswd)

Client 1 sends Registration Reqiname, pswd) 1o Pserver 1

Fserver . retumns a handle apr_kandle 1 to 1is chient
A requestas serviced only if requested by a majority of
servers For that, if Pserver 1 gets a request
Request_protocolfapr_handle_i, protocol) from Chient .,
then Pserver ! sends (hash{pswd). name, protocol) to all I
at some Pserver_j no such request has arrived, it asks for
approval from its client_j (after checking hash(pswd)).

2 Certilicate based Assume a Certificate Authority common
to alt clients Prior to regstration at the Pserver, each
Client_1 gets a one-time certificate
Certificate 1 = Ceri_CA(Chent _PubKey, name, 1. server 1,
time)

Thus certificate 1s used to convince Pserver_s that the
registration request indeed comes from a valid client which is
the 1i_th component of some application named rame (that 15,
if the same name 1s used at various clients, then they are
instantiations of the same application) Of course, the
application must also prove ownership of the secret key
corresponding to the public key in the certificate (by signing

time or a challenge from the proactive server) This protocol
1s depicted in Figure 3
The passwerd solutien 1s much weaker since if one finds out the
password ii can "forge” a.chient at ali other machines at once,
whereas a different certificate {and secret key) is needed at each
machine,

PK_CA, Gertificated PK_CA, Certrficatoz

Appd handled e sy handied App2
I_—_l 1 reg(handled protocol) " \.Z 3 regfhandtezprotocol) D
4 apprave

Certificate_r = Cert_CA{Pk, name, 1, server_id, time)

Figure 3: Certificate-based registration for distribuied
applications

5.2 Data Storage APPs

These APls provide secure store and recovery tunctionalities for
the application data which are all based on the various Secret
Sharmg algorithmic techniques The API supports the following
functions

StoreData { DatalD. DataValue, data_type)

Remeve (DatalD)

Write (DatalD, newValue)

where DatalD uniquely wdenbfies the data entry, and data_tvpe

indicates what security options/requirements apply to this data

Below we categerize the various fypes of data, specificatly, data

can be either read/write or write-once memory. can be pubhic or

private, distributed or local. Table 4 summarizes these Lypes

+ Public (non-secret) data can be requested to be stored and
retrieved either as a write-once data or with read/write
privileges. The latter case makes no sensc 1n a local (central)
apphication, since then it could be erased by a single
corrupted server while under attack Hence, 1n order to
change the secret value (namely, perform a write operation).
a quorum of the Pservers must request the operation

+ Secret write-once data can either be “single writer/reader”.
hence 1t 15 private to its owner but is distrtbuted (via secret
sharing) among servers for securnty and tolerance, or “single
writer/cdhstributed reader™ data which has already been
distributed among the servers elsewhere and can be
read/reconstructed only if a quorum of the servers request to
read 1t. Note that the system automatcally provides refresh
and recovery of shares for this type of data.

* Secret read/write 15 “distributed writer/distributed reader”.
It requires a quorum of the servers to change its value, hence
1t is applhicable only in the distnibuicd scenario

An additional interesting secure storage service is Store Uniil

{DatalD, Data Value, Date} This s a special inleresting service

that is derrved from the “single writer/distributed reader”™ or

“distributed writer/distributed reader” variant The data 1s kept

secret uniil the specified date

Read/Write Data must accept request for

Same as write-once, but the | N.A.
secret value may be changed

-

24

store/retrieve from a quorum
of servers

if requested by a quorum of
SErvers

Write Once Data accepts request for

store/retrieve from one

“single writer/distributed
reader”.
Receive secret shares that

“single writer/reader”
Secret sharing w/dealer.,

server Only owner may
arc computed elsewhere (by | reconstruct.
the app). Can not be modified
Perform periodical refresh Perform periodical refresh
and share recovery when and share recovery when
needed needed.

Publi¢ (not secret) distributed private

Secret Data

Table 4: Data Storgae API

5.3 Service APDP’s

The following services are readily available from the proactive

network.

* GenerateDSSKey (params) - Pservers engage n the
generation of a distributed DSS key

* GenerateDSASignature(message, DSSKey) - Pservers engage
in the generation of a distributed signature, using the
algorithm of [13].

* GeiTume() - returns a vector with the local time at each
proactive server.

* GelRandom() - every Pserver gencrates and sends a random
number, return XOR on them.

¢ GenerateJoiniSecretf) - engage in the protocol that generates
a joint secret. Secret value can be erther specified or a
random value.

5.4 Communication API’s

The proactive toolkit can supply means for proactively secure
communication between two nodcs, either by supplying preactive
keys. or by supplying proactive comnwunicatton-links

Proactive Keys - Communication applications often require
generatton of session keys, and these heys need to be refreshed
from time to time Such refreshed keys can be generated by the
proactive tooikit and supplied to the application, together with
certificate (s1gned by the proactive key of the Pservers) which
cernfies the public key of penod 1 (K 1)

Proactively secure communication links - Since the Pservers
already mamtain proactively secured communication among
themselves. this mechanism can be provided as a service 1o an
external application To achieve that, an application first needs to
register as a client on both servers (using the same name) and then
use the send/recetve APL's between the client and the Pservers,

6. Implementation

The Proactive Security Toolkit has been prototyped mJava 11 A
beta version of the toolkit will be available by YE 99 for public
experimentation, and a running demo is i our web site
Performance: The toolkit’s current implementation serves
mainly as a feasibility study for the proactive model As such, 1t
does not consider performance as s primary goal, and mdeed was
developed 1n Java for fast prototyping rather than to achieve good
performance Moreover, since proactive algorithms typically have

25

a bursty communzcation pattern, the communication bottieneck
constitutes the performance barrier Therefore, tume performance
is basically a function of two parameters- 4 - the maximum delay
on a pont-to-point communication that the system expects. and ¢ -
the maximum number of bad servers. ¢ directly affects the
complexity of the step which broadcasts a message to all servers, a
fundamental step in all protocols proactive

Rough estimations show that with current implementation the
toolkit’s heavy tasks are performed off-line {(during refresh) and
require the order of 10 minutes for a complete periodical refresh
(for n=5). An important on-line task is the generation of a
signature. Thes task requires the order of 4 broadcast steps, where
a single broadcast takes about id time

6.1 Java Related Implementation Issues

The proactive cnvironment architecture and is algonthms
constitute quite a complex system to implement and test As such,
the Java language was a natural choice for implementation singe it
provides a fast and simple prolofyping environment. Maoreover, its
portability across platforms was an important feature. since
different nodes n the proactive network may have to run the
toolkit on entrrely different platforms (for example, our demo runs
on a network of five nodes, some of which are UNIX based and
others are Windows based). Yet. besides 1ts poor performance,
this choice of programming lagnguage had a number of
wnplications

1. Erasing mformation from memory, which is an absolutely
necessily for the correct implementation of secrets refresh, is
an issue in all environments (due to virtual memory) and. in
particular, in a garbage collected environment Iike Java,
since garbage collectors typically copy memory as part of the
collection proccess.

2 The proactive model assumes that afier the adversary has fost
control on a maching the code of the proactive server
program is valid, so 1t is either protected by some
tampered-proof memory device or can be safely loaded by
the operating system (see the API section). The code fora
Java program includes the code for the JVM (Java Virtual
Machine), as well as the byte-code of all classes loaded
(dynamically) by the machine in the course of its execution
Therefore. satisfying the code-validation assumption for Java
programs may require assistance nol only from the Operating
System, but also from the JVM, possibly by using

mechanisms like signed classes or by writing a custormized
class loader.

3 We were able to use some of the more advanced (eatures of
Java to simplify both the protocols and communication (by
using serialization), and the API { by using dynamic class
loading and reflection). Al protocols and messages are
implemented as subclasses of an abstract superclass. In this
way all protocols are treated in a uniform way, which
simpfifies both the dispatch of messages to protocols and the
addition of new protocols. In addition, we didn’t have lo
define ‘protocol messages’ in a strict, well structured, way
and parsc them, Instead, all messages are sent as serialization
of some object.

6.2 Signing an agreed-upon object

The following implementation 1ssue. not necessarily exclusive to
Java . 1s relevant in order to jointly sign and validate an
agreed-upon object An object is signed by first converting it to a
number. but a conventional conversion may not guarantee that
identical objects will be converted 1dentically. For example, if two
identical sets are implemented via linked lists then the
representations may be different due to distinct orders within the
lsts.

In cur implementation, it is ofien desirable that all “good™ servers

sign an identical object which they all posses For that, the

following protocol has been used:

s Each server broadcasts a byte array which 1s a serialization
of the object

= A server aceepts the byte array which 1s the seriahization of
an identical object to 1is own , and comes from the lowest
indexed server

6.3 API Implementation

Using the Java language enabied us to implement the API
between the server and its cltents 1n a convenient and simple way,
similar to the AP for writing applets. To write a proactive
application the client must write a class which is a subclass of the
class ProactiveApplet which 15 part of the toolkit This
superclass provides its subclass with methods to request services
from the server, send messages Lo clients runniag on the other
machines, and load new classes to the proaciive server. In
addition, this class defines abstract methods which the subclass
must implement and which the server uses to notity the client
about (he status of request and about incoming messages from
other clients. The class also defines an interface which the client
implements to atlow its data to be saved and restored from the
server In short, a large part of the API specifications outlined 11
Section 5 s already provided, either as methods, abstract methods
or interfaces, of the ProactiveApplet superclass

As aresult, cxecuting a ““client” application is essentially reduced
to loading a class which is a subclass of ProactiveApplet into the
JVM executing the Pserver class, and the 1ssue of registering the
client application is now reduced to an authorization/policy
mechanism to aliow the loading of this class. To this end, we
suggest that the code for some predefined list of classes is part of
the initzal constants C of the server, and, as mentioned above,
these classes can invoke methods to load new classes (in the same

26

package or subpackages - to avoid namespace conflicts). A class is
loaded at the next peniodic refrest if a majonty of the servers
received a request from a client to load it The code for all loaded
classes is also validated at each refresh. Therefore, the server
trusts classes that have been loaded to 1t, and the classes that are
loaded mitally are responsible for implementing the policy of
which new client classes to load

One natural policy that can be emploved is via “signed code™
mechamsms provided by the Java language We mitend to supply
standard intial classes which provide a GUI interface to request
loading of new classes, and which will only load classes that are
signed by a predetermined certificate authority However,
different imtial classes can implement different policies such as a
“class that will delay requests for loading new classes for a weck,
while notifying managers and requesting their authorization™.
Some initial classes may decided not to load classes at all, but
listen for requests through a TCP socket and decide whether to
accept them on a per requesi basis {(such a class can act as a proxy
for a non-Java or a2 non-lacal client application)

Since there are no inter-process or inter-cComputer communication
between the client and the server, the 1ssue of authentication is
much simphificd A misbebaving clients can bring down the server
by exhausting resources but can not (modulo Java security) learn
of other clients’ data.

The ServerGui component: It 1s desirable to provide the abulity
to remotely inspect the proactive nerwork, or any specific node
within this network To achieve this, we created the ServerGui
component. This component is not part of the Pscrver, but rather
an ndependent program whose purpose is 1o send requests to a
Pserver and to display the server’s responses. It is written as a
Java applet and can be downloaded throught the browser The
main request it supports is the “View PServer’s Status and
information.

7 References

[1] H. Attiya, and J. Welch, Distributed Computing-
Sundamentals, simulaiions and advariced topics
Mc.Grow-Hill, 1998

[2] G. R. Blakiey, Safecuarding cryptographic keys. In
Proc. AFIPS 1979 National Computer Conference, pp.
313-317. AFIPS, 1979,

[3] D. Boneh and M. Franklin. Efficient generation of
shared RSA keys. In Proc. Crypto ‘97, pp. 425-539.

[4] R. Caneiti, R. Gennaro, A. Herzberg and D. Naor,
Proactive Security: Long-term protection against
break-ins. CryptoBytes: the technical newsletter of
RSA Labs, Vol. 3, number 1 - Spring, 1997.

[51 R.Canetti, 8. Halevi, and A. Herzberg. "Maintaining
authenticaled communication in the presence of
break-ins". To be published in Joumal of
Cryptography, 1999. An extended abstract of this
paper appeared in the Proceedings of the 16th ACM
Symp. on Principles of Distributed Computation. 1997.

{6] R.Canetti and A. Herzberg. Maintaimng security in
the presence of lransient faults In Crypto’ 94, pp.
425-438, August, 1994

CertCo, Root Authority, http://www.certco.com

C.S. Chow and A. Herzberg. Network randomization

protocol: 4 proactive pseudo-random generator.

Appears in Proc. 5th USENIX UNIX Security

Symposium, Salt Lake City, Utah, June 19935, pp.

55-63.

P. Feldman. A Practical Scheme for non-mteractive

verifiable secret sharing. In Proc.28th Annual Symp.

on Foundations of Computer Science, pp. 427-437.

IEEE, 1987.

[101 Y. Frankel, ?, Gemmell, P. Mackenzie, and M. Yung,
Optimal resilience proactive public-key cryptosystems.
In Proc. 38th Annual Symp. on Foundations of
Computer Science. IEEE, 1997,

[111Y. Frankel, P. Gemmell, P. Mackenzie, and M. Yung.
Proactive RSA. In Proc. of Crypto '97.

(12] P. Gemmell. An introduction to threshold
cryptography. In Cryptobytes, Winter 97, pp. 7-12,
1997,

{131 R. Gennaro, S, Jarecki, H Krawczyk and T. Rabin,
Robust threshold DSS signature. In Ueli Maurer,
editor, Advances in Cryptology - Eurocrypt '96, pp.
354-371, 1996. Springer-Verlag Lecture Notes in
Computer Science No. 1070.

[14] V. Hamilton, G. Istrail - Sandia National Labs.
Implementation of proactive threshold public-key
protocols, Proceedings of the 1998 RSA Data Security
Conference.

[15] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk
and M. Yung. Proactive public key and signature
systems, ACM Security '97.

[16] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung,
Proactive secret sharing, or: How (o cope with
perpetual leakage. In D. Coopersmith, editor,
Advances in Cryptology - Crypto '95, pp. 339-352,
1993, Lecture Notes in Computer Science No. 963.

(17} {TTC http://www.stanford.edu/~dabo/ITTC

[18] A. Iyengar, R. Cahn, C. Jutla and I.A. Garay, Design
and implementation of a secure distributed data
reposutory, in [FIP 1998,

[191 M. Malkin, T. Wu and D. Boneh, Experimenting with
shared generation of RSA keys, in proceedings of the
Internet Society's 1999 Symposium on Network and
Distributed System Security (SNDSS), pp. 43-56.

[20] M. Naor, B. Pinkas and Q. Reingold, Distributed

17}
(8}

(9]

pseudo-random functions and KDCs, to appear in Proc.

of Eurocrypt '99.

[21] R. Ostrovsky and M. Yung, How to withstand mobile
virus attacks, PODC 1991, pp.51-61.

{221 T. Pedersen. Non-interactive and information theoretic
secure verifiable secret sharing. In D, Davies, editor,

27

Advances in Cryptology - Eurocrypto ‘91, pp. 522-526,
1991. Lecture Notes in Computer Science No. 547.

[23] T. Pedersen. A threshold cryptosysiem without a
trusted party in J. Feigenbaum, editor, Advances in
Cryptology - Crypte ‘91, pp. 129-140, 1991. Lecture
Notes in Computer Science No, 576

[24] T. Rabin, 4 simplified approach to threshold and
proactive RSA4, Proc. of Crypto “98.

[251 M. K. Reiter, The Rampart toofkit for building
high-integruty services. In K. P. Birman, F. Mattern and
A. Schiper, editors, Theory and Practice in Distributed
Systems (LNCS 938), 99-110, Springer-Verlag, 1995.

[26] M. K. Reiter, Secure agreement proiocols Reliable
and atomic group multicast in Rampart Proc. 2nd
ACM Conference on Computer and Communication
Security, 1994.

[271 M. Reiter, M. Franklin, J. Lacy and R. Wright, The 12
Key Management Service, Proc. of the 3rd ACM
Conference on Computer and Communication Security,
199¢.

[28) A. Shamir. How to Share a Secret. Communications of
the ACM, 22:612-613, 1979.

[29] T. Wu, M. Malkin and D. Boneh, Building intrusion
tolerant applications, submitted to 8th USENIX
Security Symposium.

