
The Proactive Security Toolkit and Applications

Boaz Barak Amir Herzberg Dalit Naor Eldad Sham

IBM Harfa Research Lab, TeI-Aviv Site
E-Commerce and Technologies Group
{barak,amir, dalit,eldad@il.ibm.com}

"You can't cheat all people all of the ame -- (anonymous)

Abstract

Existing security mechamsms |bcus on prevention of penetrations,
detection of a penetration and (manual) recovery tools Indeed
attackers focus their penetration efforts on breaking into critical
modules, and on avoiding detection of the attack. As a result,
security tools and procedures may cause the attackers to lose
control over a specific module (computer, account), since the
attacker would rather lose control than risk detection of the attack.
While controlling the module, attacker may learn critical secret
information or modify the module that make it much easier for the
attacker to regain control over that module later Recent results in
cryptography give some hope of improving this situation; they
show that many fundamental security tasks can be achieved w~th
proacttve security Proact~ve security does not assume that there is
any module completely secure agamst penetration Instead, we
assume that at any given time period (day, week,.), a sufficient
number of the modules in the system are secure (not penetrated).
The results obtamed so far include some of the most important
cryptographic primitives such as signatures, secret sharing, and
secure communication However, there was no usable
implementation, and several critical issues (for actual use) were
not addressed

In this work we report on a practical toolkit implementmg the key
proacttve security mechanisms The toolkit provides secure
interfaces to make it easy for applications to recover from
penetrations. The toolkit also addresses other critical
Implementation issues, such as the initialization of the proactwe
secure system We describe the toolkit and discuss some of the
potential applications Some applications require mmlmal
enhancements to the existing implementations - e g. for secure
logging (especially for intrusion detectmn), secure end-to-end
communication and tlmestampmg Other applications require
more significant enhancements, mainly distribution over multiple
servers, examples are certification authority, key recovery, and
secure file system or archive

Permission to make digital or hard copies of all or part o f thin work for
personal or classroom use is granted without fee provided that
copies ere not made or distr ibuted for prof i t or commercial advant
-age and that copies hear this notice and the full c i ta t ion on the first page
To copy otherwise, to tepubhsh, to post on servers or to
redmtrlbute to lists, requires prior specific permission and/or a fee
CCS ' 99 11 /99 Singapore
© 1999 A C M 1 - 5 8 1 1 3 - 1 4 8 - 8 / 9 9 / 0 0 1 0 . $5 .00

1 Introduction

Traditional security systems assume that one or more systems are
always secure, 1 e are never controlled by the attackers. The
model of Proactlve Security does not make this assumption.
Instead, it considers cases where all components of the system
may be broken-taro and controlled by an attacker, with restrictions
on the number of components broken-into during the same time
period (day, week,). Proactive security shows how to maintain
the overall security of a system even under such conditions In
particular it provides automated recovery o f the security o f
individual components, avoiding the use of expensive and
mconvenient manual processes (except for some "aggressive"
attacks, which cannot be prevented - but are definitely and clearly
detected) The technique combines two well-known approaches to
enhance the security of the system chstrtbuted (or threshold)
co/ptography, which ensures security as long as a threshold (say
half) of the servers are not corrupted (see [12]); and periodic
refresh (or update) of the sensltwe data (e g keys) held by the
servers In short,

proactlve = distributed + re fi*esh
This way, the proactlve approach guarantees uninterrupted
security as long as not too many servers are broken into at the
same time Furthermore, it does not require identification when a
system is broken into, or after the attacker loses control: instead,
the system proact~vely invokes recovery procedures every so
often, hopmg to restore security to components over which the
attacker lost control.

Proactive security is highly desirable in many reahstic settings, m
particular:
• When a high level o f security is required, together with thult

tolerance (as redundancy improves fault tolerance but opens
more points for attack)

• To ensure acceptable level of system security using weakly
secure components such as most commeroally available
operating systems

(Examples of specific applications are given below.)

Recent results show that many fundamental cryptographlc
functionalities may be achieved even under the proactlve security
model - as long as most components are secure most of the time
In particular, proactively secure protocols have been devised for
the following problems"
• Secret sharing [21,16]
• Discrete-log-based digital signatures [15], and in particular

DSA [13]

18

• Secure end-to-end communication [5]
• RSA [10,11,24], and m particular generation of the RSA

shared key [3]
• Pseudo-random generation [6.8]
• Key d~stribution center [20]

This substantial set of known results in proactwe security did not
yet produce any practical security product or solution (In fact,
there are only a few deployments of distributed security - the most
well known may be the SET credit card standard's certificate
authority [7]: see also "related works" below) The creation of
such a proactive solution is non-tnwal, as the protocols are often
qmte complex and nontrivml to Implement. Furthermore, the
protocols are specified under some simphfymg assumptions and
do not address some needed elements, such as interfacing between
the proactwe service and the apphcations using It This paper
reports on a toolkit, to be soon placed for public experimentation,
to allow practical deployment ofproactwe security. The main new
contributions are:
• A secure mtttahzatton mechamsm, with reasonable, practical

reqmrements from the computer and operating system.
Specifically, all we require is a secure boot process (which is
a good idea anyway, against viruses - and easdy done with
signed code), and a per-machine secret-private key pair, with
the puhhc key protected from modification (e g m ROM or
write-once EEROM), and the secret key in erasable memory
(e g disk). Previous results required storage of parameters
specific to the particular apphcat~on (such as the group's
pubhc key) m secure storage, which is not practical

• A set o fapphcat ton program interfaces (APls) that allow the
use of the toolkit to improve security, specifically provide
security m sp~te of break-ins into computers, of existing
apphcat~ons, as well as the development of new applications
which are proactwe secure

The security of any proactive solution relies heawly upon its
correct architecture and integration with existing, non-proactive,
operating system The design of our toolkit, which does not view
the proachve model as series of protocols but, rather, as a security
enhancement of the operating system which transforms it into a
proact~vely secured system via the appropriate use of proactlve
protocols, has not been defined nor implemented in the past. We
show that it ~s possible to transform general apphcatJons which
are reqmred to remain secure for long periods of time to operate m
a proactwe enwronment, namely proaettvtzmg applications.
Specifically. we show how to approprmtely use the proact~ve
cryptographic functions as key primitwes in the proactivizaUon
process. To this end, we define an architecture for a proactive
operating environment which serves as a platform on which
standard apphcahons can be proactwlzed This operating
environment consists of a network of servers which is set up once,
which we call the proactzve network Each server is mstantmted at
boot time by the operating system and Is checked periodically.
also by the operating system. Servers can recover data (both
pubhc and private data) t?om other servers m the proact~ve
network, ffsuch data ~s corrupted or lost Once the proactwe
network is set up, any apphcatJon can run on the top of the
network and request proactive serwces by the means of API. The
t~asibdJty of the proactive model and of the architecture presented
hereby has been demonstrated by the Proactlve Securtty Toolktt,
which Is a Java implementation described in this manuscript.

1.1 Applications of the Proactive Security
Toolkit

There are three kinds o f applications that may lake advantage of
the proactlve security toolkit to recover from penetrations.
Centralized applications - a 'traditional" apphcatlon running on
one server only, The application uses a proact~vely secure serwce
provided by the toolkit For some applications and services, this
could provide significant advantage - at mimmal change to
existing apphcatlons Some typical apphcations are:
• Secure logging: each chent application may add entries

(events) to the log, however none of them can modify or
erase the log. This could be of great value m improving
intrusion detection tools, as intruders often try to erase traces
m log files.

• Secure end-to-end communication: the proactwe toolkit
can prowde the applications with freshly generated and
certified public keys periodically. This could be integrated
with tunnehng mechanisms such as secure IP or SSL
Timestamping: the toolkit could be used to sign a document
(or ~ts hash) and current time, to prove that the document
existed at this time

App$ Appl

%

App3

Figure I: Distributed Application of the Toolkit

Distributed applications (Figure 1) - the application runs
simultaneously on all machines (App_l, . , App_n) and requests
services through all machines. Each App_i interacts directly with
its own proactJve server (PS_i). A typical apphcation Js a
certificate authority, or in general any workflow application
requiring secure (multPperson) digital signatures Another
apphcation as key recovery (escrow agents).

Proactive applications - the apphcation runs in a distributed
configuration but, in addition, goes through periodical refreshes
by utdlzmg the proactlve toolkit services. This is reqmred when
the apphcation security or efficiency requirements cannot be met
by the services of the toolkit. Examples include mulhparty
protocols such as voting and trading, database, operating system,
and access control mechanisms An especially interesting
application is a Secure Commerce Server - such server can not
lie within the firewall although it handles confidential data and

19

matters (such as access control, certificates etc) It is therefore
natural to proactively distribute the server among a number of
(Independent, and possibly not even mutually trusted) hosts and
locations, thus achieving increased trust In the server.

1.2 Related Systems

A number of distributed systems related to the proactlve model
have been designed and implemented. The Intrusion Tolerance via
Threshold Cryptography (ITTC) project [17,19,29] designs and
builds tools and an infrastructure that are based on Threshold
Cryptography, and use an intrusion tolerant Certification
Authority and an intrusion tolerant web server to demonstrate
these tools. The techmcal approach is based upon a distributed
RSA key, such that k "share servers" generate a private RSA key
that is shared among them from the moment of creation, and any t
of the share serves can be used to apply the key Another related
system is the Omega Key Management Service system [27],
designed and developed at Bell-Labs. The f2 system Is a
distributed public key management system It employs threshold
techmques which can tolerate a number of server failures (via the
implementation of the Rampart toolkit [25]), but not recovering
(proactive) techniques. The e-Vault (electronic-Vault) proiect [181
of IBM is an implementation of a distributed data repository It
employs RSA-based shared signatures as the basic cryptographlc
funcuon.

There are a few implementation efforts ofproactive algorithms.
Specifically, the Network Randomization Protocol (NRP) of [8],
which provides a proactlve pseudo-random generator, has been
implemented at IBM. It also provides a srmple API for client
applications to get pseudo-random values from the servers
Another effort, the implementation of proactlve threshold key
protocols, has been reported m [14].

1.3 Organization of the paper

This paper is organized as follows In Section 2 we describe the
model as well as an overview of related work. Section 3 discusses
the basic architecture of the proactive server Sections 4 presents
the protocol that initializes the network of servers and handles
refresh/recovery of a server The APi module, which provides
mechanisms for proactlvization of applications, is fully described
in Section 5 Java-related and other implementation issues,
user-interface are the focus of Section 6.

2 Overview of the Proactive Model and
Algorithms

2.1 Model

The proactwe model assumes a set o f n servers, {P1, P2, Pn}.
that are interconnected by a complete point-to-point
commumcation channels Time is divided into periods (like days,
weeks,.) which are determined by some global clock. An
adversary may (temporardy) attack up to t of the n servers at any
given time period - but at different time periods, different sets o f t
servers can be attacked. As a result, all servers engage in a
refreshment stage at the beginning of each time period, so that any
server which has been attacked during past periods may
automatically recover from possible undetected break-ms

Corruption is assumed to be either static (for example, disconnect
a server from the rest of the network, eavesdrop, read secret data)
or active/malicmus (for example, dewate from the protocol,
corrupt local data etc) Therefore, after the attacker loses control
over a server, the attacker may still know secret information of
that server (e g passwords or secret keys) Furthermore, before
losing control, the attacker may have corrupted (modified) some
of the server's data (e.g. public keys of certificate authorities). The
refreshment stage deals with both aspects, i e recovers any
corrupted data and invahdates any old secret data (by choosing
new secrets or splitting global secrets into a new set of shares)
This brings the server back to a running stage, and guarantees that
any information that was gathered by the adversary becomes
worthless after recovery

The fact that we hmlt the attacker to t corruptions, out o f n
servers, is similar to the distributed (or threshold) security model
used in many works m distributed computing and cryptography.
However, in the proactlve security model we allow the attacker to
corrupt every server - as long as It does not corrupt more than t
servers at the same pemod We say that adversary in the proactwe
model is mobile, namely attacked components may be released at
some point (due to some security measure or other change in the
system or the adversary causing loss of control, often as a result of
an attempt by the adversary to avoid detection of the attack)
Furthermore, in contrast to other approaches, proactively secure
systems do not wait until a break-m ~s detected Instead, a
proactwely secure system invokes the refreshment protocol
permdically (and proactively) in order to maintain uninterrupted
security, or force detection For more dlscussmn on the motivation
behind this model, see [4,5,6,16]

Some attacks on the system cannot be prevented The "classical"
example is if the attacker is breaking into a server, thereby finding
all its secret keys; it then pretends to be that server while keeping
this server disconnected from the other servers (when the attacker
lost control over that server) However, m such cases we wall be
able to detect the attack, and raise an alert - mfbrm the operator
about the attack Operators will normally respond to such an alert
by revoking special emergency security resources and procedures,
which are very likely to remove the attacker - and possibly catch
her as well Therefore, it is highly unlikely that (smart) attackers
will use such "visible" attacks

The proactlve security model assumes that even during attack,
some specific data cannot be corrupted The obvious example for
data that we must assume cannot be corrupted is the program
itsell, if it could be changed, recovery is clearly impossible
Clearly, the program is not any different than any constant value
used by the program; we will therefore assume that each computer
comes with a read only memory which we can specify Its contents
Specifically we assume that each computer comes with such a
read only memory containing a fixed pubhc key, and the
corresponding secret key is known only at m~tiahzatlon - for a
more detailed discussion, see Section 3.2. This assumption is not
too difficult to implement in practice

2.2 Toolkit's Functionalities and Algorithms

20

Our toolkit maintains two basic proacuve functionalities for the
entire lifetime of the system, as long as there are 'enough'
working components m the system:
1 Proactively secure end-to-end communication (authenticated

and encrypted) among all the nodes of the proacuve
networks, that is, new commumcation keys are agreed upon
at the begmmng of each period This functionality is
achieved using the protocols of [5]

2 A distributed signature key that is generated at initiation of
the proactwe environment, shared among all servers of the
network and proacttvely maintained so that private shares are
refreshed periodically without changing the signature public
key This internal signature key is often used for "group
certification' purposes and, for example, is mandatory for
the implementation of the proactive end-to-end
communication Our toolkit implements a DSS distributed
key using the algorithms of [15,13]. but in principal it Js also
possible to use a distributed RSA key, based on the signature
algorithm of [24, I I] with the key generation algorithm of
[31.

The implementation of these functlonahties are based on a number
of algorithms which, for completeness, are briefly outhned in the
Appendix of the paper's ful version
(http//w3 research telavw ibm com/proacUve/Papers/Toolk~t/proa
cUve-paper ps)

3 The Proactive Toolkit Architecture

Recall that the proactive operating environment serves as a
platform on which standard apphcations can be proactlvized In
this section we define the basic architecture and functional
components for such enwronment.

The proacUve operating environment consists of a network of
servers which ~s set up once - this network is referred to as the
Proactive Network Each node in the network runs a proacUve
server (PServer), whose basic architecture is depicted in Figure 2
A Pserver communicates with other Pservers vm the proachve
network, and provides proactwe services to apphcauons by the
means o fAPl A server is mstantlated at boot time and checked
periodically by the operating system Current implementation does
not support dynamic reslzmg of the network

The internal design o f a Pserver is composed of the following
modules:
• Library of Proactwe Utilities
• L~brary of ProacUve Protocols
• The API Module (section 5)
• The Controller and Commumcahon modules

[a]

I
ProactNe Server I ProactlVedata
I [b] IP er,od,ca, check

Operating Systems I

Figure 2: Architecture

3.2 The Pserver Data

The Pserver, as any other program, maintains some key internal
data However, the maintenance of this data raises a few
algorithmic problems, as the server must be able to refresh and
recover itself periodically, and this includes recovering its data or
at least verifying that it has not been corrupted The server's data
is one of three types

1 ROM data - this "write once" data Js assumed to be
immutable so that any attack on the system can not tamper
with it, however an adversary may learn Jt It is used for
bootstrapping purposes as otherwise a recovering server
could not bring itself to a secured state. Our design, as
detailed m Section 4, attempts to minimize the amount of
data that must be stored in the ROM m order to safely boot
the server: m particular it shows that it suffices to store one
public key (in our specific implementation, the server's port
number as well) in the ROM for the Pserver to be completely
recoverable

2 Pubhc data Parts of this data are common to all servers, but
other parts are specific to the particular Pserver, yet its
exposure to the entire proactwe network does not interfere
with the security o f a PServer. Since this data is necessary for
the proper operation of any server and thus must be
recoverable, it is duplicated the data among all servers so that
during recovery It can be reconstructed if needed with the
assistance of the proactive network The details of this
process are described in Section 4. The public data may be
extended during the lifetime of the system, for example by
generating new long-lived secrets (the common fields of
these long-lived secrets is added to the public mlbrmation)

3. Private data, specific to a particular server One such
example is the server's share o f a distributed key This data is
typically not recovered, but instead is refreshed It also
requires the ability to be completely erased from the system
without leaving any traces, which is a property that needs to
be supported by the operating system.

4 The Proactive Toolkit Protocols

Our suggested design for a proactJve operating environment must
maintain proactively secure communication among the servers as
well as a proactwe internal signature key for the entire lifetime of

21

the system For that, these two protocols must be imtiated and
undergo refresh at every period, where a refi'esh may actually
involve recovery at some server ff it had detected that some of its
data was corrupted or lost We follow [5] for the design of the
integrated proactive protocols of signatures and secure
commumcatlon, and [13,15] for the specific proactive sagnature
mechanism However, [5] requires every server to keep in
read-only memory (ROM) a copy of the verification key Vcert of
proactlve system (whose corresponding secret key Scert is shared
between all the proactive servers, and these sharesS'.,.(t) are
refreshed at every period t). This assumption is not very practical,
as the proactive system's key Vcert is not available when the
computer is manufactured and sold, but only much later - when it
is integrated into a specific proactive environment We show how
to provide the reqmrements of [5] whde requiring only that each
computer comes with pre-mstalled, machme-umque parr of secret
key S' (on erasable disk) and public key V',,.. (on ROM)

Another practacal aspect which we had to deal with is that the
proactwe server needs some constants configuration information
such as IP addresses of other servers, cryptographic parameters
used m the cryptographlc algorithms, and so on We denote this
set of these (pubhc) constants by C. Our protocols include
mechamsms to recover C penodicaUy (if the adversary corrupted
C when breaking into the server at the prevaous period). Let
Mt=[~..,,(V.,~,,C)] be the signature of server t on (V~r,,C) using its
initml key S',t.~, We denote by M the concatenation of all Mr's.
that is M = (M;,M:, M.) Hence. M is the lnvarzant lnformatton
of the system

We begin by briefly reviewing the periodical refresh protocol of
[5], which assumes the avadabdity of an unmodified Vcert at
every proactive server We then describe the Vcert-recover
protocol, with a perzodwal-recover module which recovers Vcert
at the beginning of every refresh period (before using [5]). and an
mltlahzataon module that uses (S'~t~., ~,,~.)

4.1 The Refresh Protocol of 15] for Period t

The goal of this sub-protocol, detailed in Table I, is to refresh the
communication/authentication keys as well as the shares of all
long-lived keys, including Scert. A server which participates in
this protocol may be "operational", in which case ~t has a valid
paar of keys (St(t-l), Vt(t-l)), (Et(t-1),Dt(t-1)) and vahd shares of
the long-lived secrets (including S'.,r,(t-l)) from period t-1
Alternatively, a server can be "recovering" so that all of the above
reformation is missing (or corrupted), even m this case we can
assume that server posses Vcert and the constants C (to be ensured
by the Vcert-recover protocol)

Remarks:
1 Step 3 of the standard key refresh allows the option of

sending Kt m the clear, since a recovering server has no vahd
Sl(t-1) at this point. Hence. the following judgment should be
made:
[l] If more than one (but different) authentacated messages

arrive from server t, dfscard all of them
[ill if one authentacated message arrives, but few others Jn

the clear, accept authentacated
[ali] ffmore than one (but different) messages arrive m the

clear, discard all of them
2 Recovering servers do not take part m the Joint-signature

generation.
3. When verifying the sagnature Scert(KeyTable) server t must

verify that KeyTable contains Kt (thas serves as a "random
challenge" to avoid replay of signature). If server t discovers
that Kt is not part of the signed KeyTable, then rinse an alert
for a detected attack

4. Use the secret recovery and refresh algorithms for proactwe
secret sharing, as described m [16]

P e r f o r m a standard key refresh for p e r i o d t:
I. Generate (Sl(t), Vl(t))
2 Generate (Et(tj, Dt(tJJ, Sign with S~(tj
3. Broadcast Kt = (Vl(t), Sl(t)((El(t))) (using Sz(t-1) when avadable) [~1
4 Generate a distributed signature Scert(KeyTable) where KeyTable = [K1. , Kn] [2]
5. Veril~¢ the signature Scert(KeyTable) [3]

(A l l channels are now authenticated/encrypted with refreshed keys of p e r i o d t .)

Refresh long-lived data (s%,,):
1 Perform an agreement protocol on the data that needs to be refreshed/recovered
2 For any long hved secret S [4]

(0 Reconstruct the missing shares of the secret S for the recovering servers
(i0 Engage in a standard ReJ~esh (SJ protocol

Table I: Refresh Protocol for period t

22

PushM algorithm of server i
Read V' from ROM and check validity of the signature [Scert(M),M] stored in a file:

(i) Extract Mt from M and check vahdJty of signature of Mr with //',,.~,
(ii) If signature on &It is valid, obtain Vcert from Mz and vahdate signature Scert(M)

I f s ignature on M is val id - s e r v e r i is opera t iona l
• Send M to all other servers

Otherwise (M is not valid or file does not exist) - s e r v e r i is recover ing
• Wait until a verifiable copy of[Scert(M), M] arrives from other servers (otherwise raise ALERT - recovery

has failed)

Table 2: The Vcert-recover Protocol-periodical-recover module

lnput:(A',,.,., F',,..), C
(Communica t ion is secure - inactive adversary). Broadcast keys:

• Generate (St(O), Vt(O))
• Generate (Et(O), Di(O)), S~gn [Sl(O)(Et(O))]
• broadcast (in clear) (Vl(O), Sl(O)(El(O))) to all servers

(Channels are now authenticated and encrypted. All servers must be coopera t ive , all communica t ion channels

must be operat ional!)

¢ G e n e r a t e (Scert, Vcert):
• Engage in the generation of a distributed signature key (Scert, Vcert). Server i gets [Vcert, S'~J

¢" Generate (Scert(M),M):
• Sign Mt=[~,~dVcert, C)]
• Erase .S%,~, (VERY IMPORTANT)
• Broadcast Mt to all and receive Mj from al l j Construct the Invartantlnfo M=(M1,. ,Mn)
+ Engage in a generation of a distributed signature to generate [Scert(M), M]

(Channels authent icated/encrypted. N o further assumptions on adversary behavior)

Table 3: Initialization Protocol of server i

4.2 The Vcert-recover Protocol -
periodical-recover module

The periodical-recover module, detailed in Table 2, is invoked at
the very beginning of very refresh period, and re-generates Vcert
and the constants C for any server which lost this data. As a result,
it brings a recovering server to a state from which Jt can
participate in the Refresh protocol described above We assume
that any operational server has a valid copy of a signature on M,
the invariant Information of the system, signed by the distributed
signature key Scert - an assumptmn that is justifies by the
lnttlaltzatton module described next

Essentially, this protocol allows any recovering server to gather
M, the Invariant Information of the system, from other operational
servers as long as there are enough of them Note that M needs to
be "pushed" around the system since a recovering server may not
know who its partners are (recall that C. the program constants,
contains infbrmation such as lP addresses). The protocol is
executed by all servers, and by the end of it a server detects
whether it is "~operatlonal" or "recovering"

4.3 The Vcert-recover Protocol - initialization module

This protocol is executed at the setup of the system Its goal is to
bring the servers to a state from which they can safely perform the
perlodwal-recover module at every Refresh stage and achieve

proper operatmn of the system The protocol does the following it
first generates the initial set of authentication/encrypt,on keys of
tile system, it generates the distributed signature key (Vcert, ScerO
and finally produces a joint signature [Seert(M),M] on the
lnvanant information to help recovering servers bootstrap their
data in the future The input to this protocol is C, the program's
constants, and (~,,~t, V'.~r~) where V'~,.,,, the public part of this key,
is also written in the ROM. Table 3 summarizes the detads of the
Imtializatlon protocol

5. The Appl icat ion Program Interface (API)
Module

This section describes the interface between the proactive toolkit
and the applications using it A centralized apphcatlon runs on the
same computer running the proactive server, distributed or
proactlve applications (F~gure 1) run one instance of the
applicatmn on each of the proactive servers The goals of the API
are to provide secure communication between the application and
the server We will assume that the operating system is providing
basic security services which allow server and chent to restrict
communication to the same computer, and to separate between
two applications There is one element o f security that we must
add m the API, which is, how to identify multiple instances of the
same application running on the different servers - this will be
done with a secure registration mechanism. The API 's categories
are.

23

1 Registration API's (must be used first, to get a handle to be
used for other APi calls)
2 Data Storage API 's
3. Commumcation API 's
4 ServiceAPl ' s

5.1 Registration API's

Since a Pserver can possibly service many clients, it =s necessary
to provide an authentication mechanism for requests, by which a
request is umquely associated with the chent apphcat~on it
originated from (the apphcauon's "name") For example, If an
apphcation by the name of "VerlSign_CertlficateAuthonty'" is
registered at the proactwe server, asks for a generauon of a
proactlve signature key and then repeatedly asks to proactlvely
s~gn messages by this key, then the server needs to authenticate
these requests The reglstratmn mechanism ~s designed to address
exactly th~s problem Registration will provide the apphcatmn
with a handle, which it wall append to every subsequent request
Different registration mechanisms are needed for dift~rent client
configurations (centrahzed vs distributed/proactwe)

Centralized Application - th~s is the strmghtforward reglstrauon,
designed to support requests that are initiated by a single client
The client sends
Regtstratlon_Req(Name, UmquelD)
where UmquelD ~s some random identifier of the appheatmn, the
server responds with a handle
The server needs to assign a quota on the number of serwces a
specific chent can request
Distributed Application - The group of Pservers need to ~dentsfy
chents wfth the same name running on different machines In
pamcular, a request wdl be serviced by the proactlve servers only
~f a maloray of authenticated chents have mmated (or approved)
this request We suggest two optmns

I Password based: Each chent must reg=ster at its Pserver
w~th the same (name,pswd)

Chent j sends Regtstratton_Req(name, pswd) to Pserver t
Pserver_:. returns a handle ap~handle j to ~ts cheat

A request ~s serviced only if requested by a majority of
servers For that, ff Pserverj gets a request
Request_protocol(apt_handler, protocol) from Chentj ,
then Pserve%~ sends (hash(pswd). name. protocol) to all If
at some Pserver_j no such request has arrwed, it asks for
approval from tts chen t j (after checking hash(pswd)).

2 Certificate based Assume a Cemficate Authority common
to all clients Prior to reg~stratton at the Pserver, each
Chent_~ gets a one-time cemficate
Certoqcate ~ = Cert CA(Chent_PubKey, name, ~, server M,
ttme)
This cemficate ~s used to convince Pserver j that the
registration request indeed comes from a valid chent which is
the l_th component of some apphcatmn named name (that ~s,
ffthe same name ts used at various chents, then they are
mstantmttons of the same applicatmn) Of course, the
apphcanon must also prove ownership of the secret key
corresponding to the pubhc key in the cemficate (by s~gmng

I Read/Write Data I mus t accept request for

time or a challenge from the proactwe server) This protocol
is depicted in hgu re 3

The password solutmn Is much weaker since ffone finds out the
password it can "forge" a chent at all other machines at once,
whereas a different certificate (and secret key) is needed at each
machine.

PKCA, Certd/cate4 ~ PK_CA, Certificate2
A[~j4 • handle4 " ~ handle2 App2

1 req(handle,4,protocol)~_~ ~ " 3 req(handfe2,protocol) []

4 approve

CertJfieatej = Cert~CA(Pk, name, =, se rve r jd , time)

Figure 3: Certificate-based registration for distributed
applications

5.2 Data Storage API's

These APIs provide secure store and recovery functlonalmes for
the apphcatlon data which are all based on the various Secret
Sharing algorithmic techmques The API supports the following
functmns

StoreData (DatalD, Data Value, data_type)
Retr:eve (DatalD)
Write (DatalD, new l'alue)

where DatalD umquely identifies the data entry, and data_type
indicates what security optlons/reqmrements apply to this data
Below we categorize the various types of data, specifically, data
can be either read/write or write-once memory, can be pubhc or
private, distributed or local. Table 4 summarizes these types
• Public (non-secret) data can be requested to be stored and

retrieved either as a write-once data or with read/write

privileges. The latter case makes no sense m a local (central)
apphcatmn, since then tt could be erased by a single
corrupted server whde under attack Hence, m order to
change the secret value (namely, perform a write operation),
a quorum of the Pservers must request the operatmn

• Secret write-once data can e~ther be "single writer/reader',
hence ~t ~s private to its owner but ~s d~stnbuted (vta secret
sharing) among servers for security and tolerance, or "'single
writer/distributed reader" data which has already been
distributed among the servers elsewhere and can be
read/reconstructed only if a quorum of the servers request to
read it, Note that the system automatically provides refresh
and recovery of shares for this type of data,

• Secret read/write Is "~d~strlbuted wnter/dJsmbuted reader".
It requires a quorum of the servers to change ~ts value, hence
it is applicable only in the distributed scenario

An additional interesting secure storage serwce is StoreUntd
(DatalD, Data Value, Date) This Js a special interesting serwee
that is derived from the "'single water/distributed reader" or
"'distributed wr~ter/dlsmbuted reader" variant The data ~s kept

secret until the specified date

I Same as wri te-once, but the
secret value may be changed I N.A.

24

Write Once Data

store/retrieve from a quorum
of servers

accepts request for
store/retrieve from one
server

Public (not secret)

Table 4: Data

5.3 Service API's

The following services are readily available from the proactive
network.
• G e n e r a t e D S S K e y (p a r a m s) - Pservers engage in the

generation of a distributed DSS key
• G e n e r a t e D S A S t g n a t u r e (m e s s a g e , D S S K e y) - Pservers engage

in the generation of a distributed signature, using the
algorithm of [13].

• G e t T ~ m e O - returns a vector with the local time at each
proactive server.

• G e t R a n d o m O - every Pserver generates and sends a random
number, return XOR on them.

• G e n e r a t e J o m t S e c r e t O - engage in the protocol that generates
a joint secret. Secret value can be either specified or a
random value.

5.4 Communication API's

The proactive toolkit can supply means for proactwely secure
communication between two nodes, either by supplying proactwe
keys, or by supplying proactive communication-links
Proactive Keys - Communication applications often require
generation of session keys, and these keys need to be refreshed
from time to time Such refreshed keys can be generated by the
proachve toolkit and supplied to the apphcatlon, together with
certificate (signed by the proactwe key of the Pservers) which
certifies the public key of period t (K_t)
Proactively secure communication links - Since the Pservers
already maintain proactively secured communication among
themselves, this mechanism can be prowded as a serwce to an
external application To achieve that, an apphcation first needs to
register as a client on both servers (using the same name) and then
use the send/receive API's between the client and the Pservers.

6. Implementation

The Proactive Security Toolkit has been prototyped m Java i 1 A
beta version of the toolkit will be available by YE 99 for pubhc
experimentation, and a running demo is in our web site
Performance: The toolkJt's current implementation serves
mainly as a feaslbihty study for the proactlve model As such, it
does not constder performance as Its primary goal, and indeed was
developed in Java for fast prototypmg rather than to achieve good
performance Moreover, since proactive algorithms typically have

if requested by a quorum of [
] servers

"single writer/distributed
reader".
Receive secret shares that
are computed elsewhere (by
the app).
Perform periodical refi'esh
and share recovery when
needed
distributed

Secret
Storgae API

"single writer/reader"
Secret sharing w/dealer. [

Only owner may
reconstruct.
Can not be modified
Perform periodical refresh
and share recovery when
needed.
private

Data

a bursty commumcation pattern, the commumcation bottleneck
constitutes the performance barrier Therefore~ ttme performance
is basically a function of two parameters" d - the maximum delay
on a point-to-point commumcation that the system expects, and t -
the maximum number of bad servers, t directly affects the
complexity of the step which broadcasts a message to all servers, a
fundamental step in all protocols proactwe

Rough estimations show that with current implementatton the
toolk~t's heavy tasks are performed off-line (during refYesh) and
reqmre the order of 10 minutes for a complete periodical refresh
(for n=5). An important on-line task is the generation of a
signature. This task requires the order of 4 b r o a d c a s t steps, where
a single broadcast takes about td time

6.1 Java Related Implementation Issues

The proactwe environment architecture and its algorithms
consutute qu~te a complex system to implement and test As such,
the Java language was a natural choice for implementation since it
prowdes a fast and simple prototypmg environment. Moreover, Its
ponabdlty across platforms was an important feature, since
different nodes m the proactive network may have to run the
toolkit on entirely different platforms (for example, our demo runs
on a network of five nodes, some of which are UNIX based and
others are Windows based). Yet, besides its poor performance,
this choice of programming lagnguage had a number of
implications
i. Erasing reformation from memory, which is an absolutely

necessity for the correct implementation of secrets refresh, is
an issue in all environments (due to virtual memory) and. in
particular, m a garbage collected environment hke Java,
since garbage collectors typically copy memory as part of the
collection proccess.

2 The proactwe model assumes that after the adversary has lost
control on a machine the code of the proact~ve server
program is valid, so tt is either protected by some
tampered-proof memory device or can be safely loaded by
the operating system (see the API section). The code for a
Java program includes the code for the JVM (Java Virtual
Machine), as well as the byte-code of all classes loaded
(dynamically) by the machine in the course of ~ts execution
Therefore. satisfying the code-vahdation assumption for Java
programs may require assistance not only from the Operating
System, but also from the JVM, possibly by using

25

mechamsms like signed classes or by writing a customized
class loader.

3 We were able to use some of the more advanced features of
Java to simplify both the protocols and communication (by
using serialization), and the API (by using dynamic class
loading and reflection). All protocols and messages are
implemented as subclasses of an abstract superclass. In this
way all protocols are treated in a uniform way, which
simplifies both the dispatch of messages to protocols and the
addition of new protocols. In addition, we didn't have to
define 'protocol messages' in a strict, well structured, way
and parse them. Instead, all messages are sent as serialization
of some object.

6.2 Signing an agreed-upon object

The following lmplementatmn issue, not necessarily exclusive to
Java, is relevant in order to jointly sign and vahdate an
agreed-upon object An oblect is signed by first converting it to a
number, but a conventional conversion may not guarantee that
identical objects will be converted identically. For example, if two
identical sets are implemented via hnked lists then the
representations may be d~fferent due to distinct orders within the
hsts.

In our Implementation, it is often desirable that all "'good" servers
sign an identical object which they all posses For that, the
following protocol has been used:
• Each server broadcasts a byte array which is a serialization

of the object
• A server accepts the byte array which is the seriahzation of

an identical object to its own, and comes from the lowest
indexed server

6.3 API Implementation

Using the Java language enabled us to implement the API
between the server and its clients in a convenient and simple way,
similar to the API for writing applets. To wrtte a proactwe
application the client must write a class which is a subclass of the
class PruaetiveApplet which ~s part of the toolkit This
superclass provides its subclass with methods to request services
from the server, send messages to chents running on the other
machines, and load new classes to the proactive server. In
addition, this class defines abstract methods which the subclass
must implement and which the server uses to notify the client
about the status of request and about incoming messages from
other clients. The class also defines an interface which the client
implements to allow its data to be saved and restored from the
server In short, a large part of the API specifications outlined in
Section 5 ~s already provided, either as methods, abstract methods
or interfaces, of the ProactiveApplet superclass

As a result, executing a "chent" application is essentially reduced
to loading a class which is a subclass of ProactweApplet into the
JVM executing the Pserver class, and the issue of registering the
client application is now reduced to an authorization/policy
mechanism to allow the loading of this class. To this end, we
suggest that the code for some predefined list of classes is part of
the initmi constants C of the server, and, as mentioned above,
these classes can invoke methods to load new classes (in the same

package or subpackages - to avoid namespace conflicts). A class is
loaded at the next permdic refresh if a majority of the servers
received a request from a client to load ~t The code for all loaded
classes is also validated at each refresh. Therefore, the server
trusts classes that have been loaded to it, and the classes that are
loaded initially are responsible for implementing the pohcy of
which new client classes to load

One natural policy that can be employed is via "'signed code"
mechamsms provided by the Java language We intend to supply
standard initial classes which provide a GUI interface to request

loading of new classes, and which wall only load classes that are
signed by a predetermined certificate authorHy However,
different inmal classes can implement different policies such as a
"class that will delay requests for loading new classes for a week,
while notifying managers and requesting their authorization".
Some initial classes may decided not to load classes at all, but
listen for requests through a TCP socket and decide whether to
accept them on a per request basis (such a class can act as a proxy
for a non-Java or a non-local client application)

Since there are no inter-process or inter-computer commumcation
between the client and the server, the ~ssue of authentication is
much simplified A misbehaving chents can bring down the server
by exhausting resources but can not (modulo Java security) learn
of other clients' data.

The ServerGui component: It is desirable to provide the abdity
to remotely inspect the proactive network, or any specific node
within this network To achieve this, we created the ServerGui
component. This component is not part of the Pserver, but rather
an independent program whose purpose is to send requests to a
Pserver and to display the server's responses. It is written as a
Java applet and can be downloaded throught the browser The
main request it supports is the "View PServer's Status and
information.

7 R e f e r e n c e s

[!] H. Attiya, and J. Welch, Dlstrtbuted Computing"
fundamentals, simulations and advanced topics
Me.Grow-Hill, 1998

[2] G.R. Blakley, Safeguarding cryptographic keys. In
Proc. AFIPS 1979 National Computer Conference, pp.
313-317. AFIPS, 1979.

[3] D. Boneh and M. Franklin. Efficient generation of
shared RSA keys. In Proc. Crypto '97, pp. 425-539.

[4] R. Canetti, R. Gennaro, A. Herzberg and D. Naor,
Proactive Securtty: Long-term protection against
break-ins. CryptoBytes: the technical newsletter of
RSA Labs, Vol. 3, number I - Spring, 1997.

[5] R. Canetti, S. Halevi, and A. Herzberg. "Maintaining
authenticated communication in the presence of
break-ins". To be published in Journal of
Cryptography, 1999. An extended abstract of this
paper appeared in the Proceedings of the 16th ACM
Syrup. on Principles of Distributed Computation. 1997.

26

[6] R. Canetti and A. Herzberg. Maintaining security m
the presence of transient faults In Crypto' 94, pp.
425-438, August, 1994.

[7] CertCo, Root Authority, http://www.certco.com
[8] C.S. Chow and A. Herzberg. Network randomizatton

protocol: A proactive pseudo-random generator.
Appears in Proc. 5th USENIX UNIX Security
Symposium, Salt Lake City, Utah, June 1995, pp.
55-63.

[9] P. Feldman. A Practical Scheme for non-interactive
verifiable secret sharing. In Proc.28th Annual Symp.
on Foundations of Computer Science, pp. 427-437.
IEEE, 1987.

[10] Y. Frankel, P. Gemmell, P. Mackenzie, and M. Yung.
Optimal resilience proactive public-key cryptosystems.
In Proc. 38th Annual Symp. on Foundations of
Computer Science. IEEE, 1997.

[I I] Y. Frankel, P. Gemmell, P. Mackenzie, and M. Yung.
Proactive RSA. In Proc. of Crypto '97.

[12] P. Gemmell. An introduction to threshold
cryptography. In Cryptobytes, Winter 97, pp. 7-12,
1997.

[13] R. Gennaro, S. Jarecki, H Krawczyk and T. Rabin,
Robust threshold DSS signature. In Ueli Maurer,
editor, Advances in Cryptology - Eurocrypt '96, pp.
354-371, 1996. Springer-Verlag Lecture Notes in
Computer Science No. 1070.

[14] V. Hamilton, G. lstrail - Sandia National Labs.
Implementation of proactive threshold public-key
protocols, Proceedings of the 1998 RSA Data Security
Conference.

[15] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk
and M. Yung. Proaetive pubhc key and signature
systems, ACM Security '97.

[16] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung,
Proactlve secret sharing, or: How to cope with
perpetual leakage. In D. Coopersmith, editor,
Advances in Cryptology - Crypto '95, pp. 339-352,
1995. Lecture Notes in Computer Science No. 963.

[I 7] ITTC http://www.stanford.edu/-dabo/ITTC
[18] A. Iyengar, R. Cahn, C. Jutla and J.A. Garay, Design

and tmplementatlon of a secure distrtbuted data
repository, in IFIP 1998.

[19] M. Malkin, T. Wu and D. Boneh, Experimenting with
shared generatlon of RSA keys, in proceedings of the
lnternet Society's 1999 Symposium on Network and
Distributed System Security (SNDSS), pp. 43-56.

[20] M. Naor, B. Pinkas and O. Reingold, Distributed
pseudo-random functions and KDCs, to appear in Proc.
of Eurocrypt '99.

[2 !] R. Ostrovsky and M. Yung, How to withstand mobile
virus attacks, PODC 1991, pp.51-61.

[22] T. Pedersen. Non-interactive and information theorettc
secure verifiable secret sharing. In D. Davies, editor,

Advances in Cryptology- Eurocrypto '91, pp. 522-526,
199 I. Lecture Notes in Computer Science No. 547.

[23] T. Pedersen. A threshold cryptosystem wtthout a
trusted party in J. Feigenbaum, editor, Advances in
Cryptology - Crypto '91, pp. 129-140, 199 i. Lecture
Notes in Computer Science No. 576

[24] T. Rabin, A simphfied approach to threshold and
proactive RSA, Proc. of Crypto '98.

[25] M. K. Reiter, The Rampart toolkit for butldmg
high-mtegrtty services. In K. P. Birman, F. Mattern and
A. Schiper, editors, Theory and Practice in Distributed
Systems (LNCS 938), 99-110, Springer-Verlag, 1995.

[26] M. K. Reiter, Secure agreement protocols Reliable
and atomic group multicast in Rampart Proc. 2nd
ACM Conference on Computer and Communication
Security, 1994.

[27] M. Reiter, M. Franklin, J. Lacy and R. Wright, The f2
Key Management Service, Proc. of the 3rd ACM
Conference on Computer and Communication Security,
1996.

[28] A. Shamir. How to Share a Secret. Communications of
the ACM, 22:612-613, 1979.

[29] T. Wu, M. Malkin and D. Boneh, Building intrusion
tolerant applications, submitted to 8th USENIX
Security Symposium.

27

