
Using Specification-Based Intrusion Detection for
Automated Response

Ivan Balepin 1, Sergei Maltsev 2, Jeff Rowe 1, and Karl Levitt 1

1 Computer Security Laboratory, University of California, Davis
Davis, CA, 95616, USA

{Balepin, Rowe, Levitt }@cs.ucdavis.edu
2 IU8, Bauman Moscow State Technical University,

Moscow, 105005, Russia
SVMaltsev@iu8.bmstu.ru

Abstract. One of the most controversial issues in intrusion detection is
automating responses to intrusions, which can provide a more efficient, quicker,
and precise way to react to an attack in progress than a human. However, it
comes with several disadvantages that can lead to a waste of resources, which
has so far prevented wide acceptance of automated response-enabled systems.
We feel that a structured approach to the problem is needed that will account
for the above mentioned disadvantages. In this work, we briefly describe what
has been done in the area before. Then we start addressing the problem by
coupling automated response with specification-based, host-based intrusion
detection. We describe the system map, and the map-based action cost model
that give us the basis for deciding on response strategy. We also show the
process of suspending the attack, and designing the optimal response strategy,
even in the presence of uncertainty. Finally, we discuss the implementation
issues, our experience with the early automated response agent prototype, the
Automated Response Broker (ARB), and suggest topics for further research.

1 Introduction

Automated response to intrusions is an exciting area of research in intrusion detection.
Development of a system that resists attacks carried out or programmed by another
human being can be approached in many ways, including the one in which we teach
the machine to beat an attacker in the game of intrusion and response.

Let us begin by formulating the objectives of our work.

1.1 Objectives

With the growing speed and intensity of computer attacks [13] comes the need for
quick and well-planned responses. Currently, some of the most intense intrusions are
automated. A reliable automated response system, with the right approach, could
certainly provide an efficient protection, or a degree of tolerance for all kinds of

2 Ivan Balepin, Sergei Maltsev, Jeff Rowe, and Karl Levitt

attacks. However, automated response remains mostly an area of research due to the
following issues:

• Primitive response systems that ignore the cost of intrusion and response
apply response actions that cause more harm than the intrusion itself

• A large part of commercially available Intrusion Detection Systems (IDS)
produces an extensive number of false positive alerts, potentially causing
numerous, unnecessary, and costly response actions [12]

Both cases lead to a denial of service to legitimate users of the system.
The objective of this work is to develop a consistent, organized, cost-based

approach to automated response that would address these issues. An optimal response
would stop the progressing intrusion at early stages, and clean up after it as much as
feasible. The scheme described in this work is geared to produce such responses.

We start addressing the problem by considering host-based automated responses.
The key parts of our approach are the basis for response decisions (the system map
and the cost model), and the process (response selection even in the presence of
uncertainty).

Let us briefly summarize the work previously done in the area.

1.2 Related Work

Primitive automated response actions are implemented in some Intrusion Detection
Systems (IDS) commercially available today (i.e., re-setting suspicious network
connections or “shunning” a certain network address – not accepting any traffic to or
from it). [12] However, these actions are rather simple and reflexive by their nature.
Even with a limited response arsenal, many practitioners report that they disable the
systems’ intrusion prevention/response capabilities due to a high number of false
positives from IDS’s which give an incorrect basis for response, and also a denial of
service caused by non-sophisticated response strategies.

An interesting research work on Survivable Autonomic Response Architecture
(SARA) [8] uses the term autonomic response by drawing an analogy with the
autonomic nervous system, which automatically controls certain functions of an
organism without any conscious input. The authors propose having two separate
“loops” of response: a local autonomic response and a global response carried out by
the hosts in a system in co-operation. The primary focus of the work is a network with
multiple hosts.

Alphatech’s Light Autonomic Defense System (αLADS) relies on control theory
when selecting a response [1]. The authors describe it as a part of Autonomic
Computing, which, according to them, is an emerging area of study of design and
construction of self-managed computing systems with a minimum of human
interference.

Alphatech’s work is not applicable to general-purpose computer systems. The
work is focused on developing a full-scale solution that has its own profile-based
intrusion detection components and is intended to defend a very specific range of
systems. The issue of compatibility with existing intrusion detection systems has not
received much attention in published descriptions of αLADS. However, Alphatech’s

Using Specification-Based Intrusion Detection for Automated Response 3

work is of interest to further automated response research, since it is one of the early
organized approaches to the problem of quick automated responses.

Another study of network-oriented automated response that relies on Control
Theory is currently done at UC Davis [15].

A study by Toth, et.al., [16] proposes yet another promising model for automating
intrusion response. The authors suggest approaching the problem of response to
network intrusions by constructing dependency trees that model configuration of the
network, and they give an outline of a cost model for estimating the effect of a
response.

Other significant response works include a thorough consideration of some
intrusion detection and response cost modeling aspects by Lee, et.al. [7], a response
taxonomy by C. Carver and U. Pooch [3], and Fred Cohen’s work on deception [4],
which is another interesting perspective on countering malicious activity.

The analysis of related work leads us to the conclusion that the primary area of
interest so far has been a computer network that consists of multiple hosts. The idea
of responding at a level of a single host has received relatively little attention. Also,
we note that despite the efforts to produce a working cost model for a set of protected
resources, no well-developed and well-tested model currently exists that guarantees a
consistent and fair representation of protected resources, and their true value.

1.3 This Work

This paper has the following remaining sections: Section 2, in which we describe the
basis for constructing a response chain; Section 3, in which we discuss an
implementation of our model; Section 4, which lists possible directions for future
work; and, finally, conclusions in Section 5. The reason for separating the basis for
response decisions from implementation notes on our prototype is to attempt to
describe a model for host-based response in Section 2 that would not be tied to any
particular operating system, and, potentially, could be used for applications other than
host-based response.

2 Basis for Automated Response

Several pieces of information are necessary in order to plan a sequence of response
actions. For the system we are protecting, we need a clear representation of the most
valuable resources and also the underlying resources that provide the basic
functionality. The true value of some resources (for example, the TCP/IP network
service) is heavily influenced by other resources that depend on them (network is
needed by httpd, etc.), and we need a clear way to reflect these dependencies before
we can decide how to deal with a compromised entity. We also need an organized
way to store information about malicious and compromised entities, and to decide
how they relate to our key resources. Part of this representation will be highly
dynamic, since some entities reflected (processes, etc.) are dynamic; however, a large
part of it, such as file structure, program configuration (dependence on files, sockets,
etc.), and system configuration, can be determined statically.

4 Ivan Balepin, Sergei Maltsev, Jeff Rowe, and Karl Levitt

We narrow the scope of the problem by noting that transferring an entire computer
system to a safe state is a challenging task, and limiting the scope of the problem to
returning a set of critical system resources to a reasonably safe and working state.

Resources we will model are anything of value in our system — system subjects
and objects, files and running processes, sockets, file systems, etc. We arrange them
in two different ways – the resource type hierarchy and the system map.

2.1 Resource Type Hierarchy

It is convenient to group resources by their type, since every such group most likely
will have common response actions associated with it. Also, resource types can be
arranged in a hierarchy similar to the one on Fig. 2.

Fig. 2. An example of a response type hierarchy

On a Linux system, for instance, we can subdivide resources into files, sockets,
processes, etc., in advance. However, in certain situations a more specific category
would be appropriate. Consider a file that contains keys for automatic
encryption/decryption of emails using the GNU Privacy Guard software (GPG, [5]).
In addition to response action that applies to a more general node in the hierarchy
(configuration files, “restore the configuration file from backup and restart the
corresponding service”), we define a response action specific to this sub-category
(“also revoke and re-issue the keys”).

Since these more specific categories, and their corresponding response actions,
depend highly on the system configuration, we cannot define all of them in advance
for all systems. We should provide a way for the users of the response system to
define new custom categories with response actions tailored to specific resources on
the target systems.

2.2 System Map

Although the response type hierarchy is useful for storing general response actions
that might apply to a resource, it carries no information about the specific instances of
resources on a system, merely their types. Therefore, we need an additional data
structure to satisfy the requirements for a decision basis as mentioned above.

Resource

Socket Process

Service User program

GnuPG key file

Configuration file

File

Using Specification-Based Intrusion Detection for Automated Response 5

We suggest representing the necessary information as a directed graph, which we
will refer to as the system map. The vertices of the graph (which we will refer to as
map nodes) represent the resources in our system. Besides nodes, our map has node
templates and edges.

2.2.1 Map Nodes
The system map contains important nodes of all types — the system’s priorities.

By “important nodes” we mean “all nodes with a non-zero cost,” with cost assigned
according to our cost model described in the corresponding sub-section. In addition to
the priorities, our map also reflects the underlying basic resources that these priorities
need for proper operation. For example, most applications need a working mounted
file system with read/write access right in order to operate properly. Therefore, if we
have applications A, B, and C that are our priorities, we place them on the map along
with the node that represents the file system. We also note that the file system, as an
underlying basic resource, does not need to be explicitly specified as a priority itself,
since in this simple example it does not have any value of its own. It costs only as
much as the priority nodes that depend on it.

Each node holds information about the resource it represents. Namely, we need to
know the type of the resource according to our type hierarchy. We also need to know
some type-specific information such as path and filename for types and sub-types of
“file”; PID, name and owner for type and sub-types of “process”, etc. A node also has
a cost value associated with it.

Some static nodes might have several node templates associated with them in order
to later construct dynamic dependent nodes. Finally, every node has a list of
applicable response actions associated with it.

2.2.2 Node Responses
Every node has a list of basic response actions that restore its functionality. Currently,
we require that this list contain only the actions that completely restore the node to a
working state.

The node’s list of responses is constructed from response actions that are listed for
this type of node and its parent types in the type hierarchy. Each such response action
has an activation condition associated with it. Referring to the example we have used
before, type “configuration file” would inherit a response “restore from backup” from
the parent type “file”. The activation condition would be, “the node of this type was a
target of an illegal write system call” or “the node of this type was a target of an
illegal unlink system call.”

Another important property of a simple response action is what nodes it affects.
Currently, we assume that an action either damages several resources, or does not. If
the chosen intrusion detection technique relies on system calls, activation conditions
for each response action will be also expressed in terms of system calls. The number
of system calls is finite (approx. 200 in a Linux system), and the number of node
types is finite (6 in the prototype). Furthermore, there are only a few system calls that
are applicable to one type of a resource. Thus, it is feasible to pre-define response lists
for every valid combination.

6 Ivan Balepin, Sergei Maltsev, Jeff Rowe, and Karl Levitt

We also complement the node’s response list with a response “take no action”.
That is an essential response alternative that has a certain cost, just like other
responses, and by including it, we will ensure that any response action we take is not
more expensive than the intrusion itself.

Therefore, an entry in a node’s response list has three fields:
- the action itself (a Linux command, etc.)
- the activation criteria
- the list of nodes the action damages

2.2.3 Map Edges
Edges on our map represent dependencies between the resources. If an edge is
directed from node A to node B, it means that A provides some service to B, B
depends on A, and, most likely, A produces information that B consumes.

However, it does not seem feasible to attempt to trace information flow through
our map, since it contains nodes that are often times not comparable (for example, file
systems and sockets), and also nodes that obscure information flow (if node A reads
from node “file system”, node B writes to node “file system”, there is not necessarily
an information flow from B to A). Therefore, we do not use our map for intrusion
detection. For all information about the intrusion we rely on some detection
technique.

The true value of the map edges is that they allow us to properly carry out single
response actions that involve several nodes (“restart the service that corresponds to
this configuration file”, i.e., the service that consumes information from the file).
Also, the edges allow us to collect information about the nodes that depend on a
certain node, therefore allowing us to calculate the dynamic cost of the node in our
system.

Relationships between the nodes can be specified with greater detail, such as “node
A writes to node B that often”, or “node A writes to node B with probability N.”
However, for our purposes, it is sufficient to only reflect the fact that one node
provides services to another node, and therefore, the latter depends on the former.
Also, some authors model dependency alternatives (node A depends on node B or
node C) [16]. From a standpoint of resources of a single host, this is a relatively rare
situation, so we will not consider it here.

2.2.4 Constructing the Map
As we have mentioned before, the map will have a static part, which will consist of
nodes that can be produced by static analysis of our priority resources when no
processes are running. The static part of the map will have information about objects
of the system, but not subjects. Operation begins just with the static part of the map.
As the system runs, dynamic nodes are added.

In our design, there are five ways we can add a node to the map. Static nodes are
added to the map upon upgrades/reconfigurations of the protected system.

For the dynamic part, we propose to add new nodes for every subject or object
mentioned in the incident alert from the IDS that was not previously on the map. Such
nodes would be assigned cost 0, since they were not included in the list of priorities,
and they get assigned the most specific type from the type hierarchy that we are able

Using Specification-Based Intrusion Detection for Automated Response 7

to automatically determine. Consequently, the node will have a response list that
corresponds to its assigned type.

Also, as we will describe in later sections, sometimes we will be able to classify a
whole group of subjects as malicious, whereas only a few of them might have been
explicitly mentioned in alerts. Such situations can occur, for example, when a
malicious process caused an alert, and immediately produced a number of child
processes that have not yet done anything illegal themselves. We will put the whole
related group of subjects on the map and treat them just like the nodes mentioned in
the alerts, despite the fact that only a few were mentioned in the alert. Then the whole
group gets marked as suspicious, or “contaminated”.

Finally, we will have some dynamic nodes that will represent our priority
resources. Often times, a resource in general can be mapped to several nodes. For
example, a “web server” resource encompasses the executable file, a number of
running processes, and dependent resources (configuration files, sockets, etc.). At the
time of static analysis, we will not have a running instance of a web server; however,
we can get most of information about the web server process node at that time.
Therefore, with every important executable we create a set of templates that will
characterize the subjects and objects later to be produced by running the executable
file. A node template is a prototype for building nodes that has all the information in
place except for the type-specific information (like PID or filename) that gets filled in
upon use of the template.

2.2.5 Properties and Benefits of the Map
The map has only a few static and dynamic nodes that are critical to the system’s
operation. They are not updated periodically; rather, we update them only when
significant events happen (alerts for dynamic nodes and system re-configuration for
static ones). Therefore, if our system runs for a long time without getting attacked, the
map will not be updated in order to minimize the overhead.

The nodes on the map can be of very different nature, so they cannot always be
compared directly (for example, file systems and processes).

Let us illustrate some properties of the map with a small example. Suppose, we
have a Linux system equipped with System Health and Intrusion Monitoring IDS
(SHIM, [6]) that has been compromised, and now has an active malicious process A
that was produced by a program B which is not supposed to make system calls from
the exec family. Process A has its parent’s specifications imposed on it by SHIM.
Suppose then that process A produces process C, and process C writes to a file. Since
SHIM would promptly alert our response system about A, B and C being involved in
several illegal exec system calls, the whole family would appear on the map, and
would be marked as malicious. As far as the file that C has written to, if specifications
for A allowed such behavior, then we would not get an alert about the file write, and,
therefore, would not reflect that fact on the map. However, if it was not legal
according to A’s specifications and the system policy, we would get an alert about a
possibly contaminated file, place the corresponding node on the map, and plan our
response strategy with that alert in mind.

As we have shown above, our map contains all necessary information about our
priorities, and resources they need to operate. The map also will reflect information

8 Ivan Balepin, Sergei Maltsev, Jeff Rowe, and Karl Levitt

about malicious entities, and their relation to our priorities. The map, as we have
described it, gives us a solid basis for designing an intrusion response strategy.

2.3 Cost Model

In most cases, when deciding on response to a malicious action, there will be several
response actions with activation criteria matching the current situation. We solve the
problem of comparing these alternatives and selecting the optimal one by introducing
an action cost model. The cost model helps us pick the best response and also ensure
that we don’t cause denial of service to ourselves by performing responses that are
more harmful (i.e., more costly to us) than the intrusion itself.

Our cost model is based on numerical cost values associated with every map node.
Designing a cost model that allows us to quickly associate a number with a resource
and to precisely reflect the value of that resource is a difficult task. Most of the
attempts to produce such a model left it up to the system administrators to determine
cost values for their resources. Although it is true that only the system’s owner,
familiar with its configuration and primary functions, can point out the true value of
the resources, it is very hard to assign the cost values in a consistent manner that
would always guarantee optimal response without exhaustive testing of the system. In
our implementation, we rely on ordering the resources by their importance to help
produce a cost configuration that would yield an optimal response.

There are only a few priority nodes that have an actual cost value in our model. For
example, let us consider a system with only one such priority – the web server. In the
static part of the map it is represented with the executable file of the web server.
There will be a static node for the file itself, and it will have a cost of 0. The static
node for the executable file will, however, have a template for web server processes
to be created, and that template will have a cost value associated with it. In our model,
all process nodes that get created according to that template, will share an equal
fraction of the template’s cost with existing processes. For example, suppose the
system’s owner has estimated that the web server has cost x. When there is no web
server running, the executable file will have no cost value. If one instance of httpd
gets started, its node will get assigned a cost value x. If y nodes of httpd get created,
each will get a cost value of x/y.

A static node can also get an explicit cost value assigned to itself, and not to its
templates; or it might not even have any templates. For example, some files might be
indicated as a priority, even though they are not used by any subjects of that system.

Cost-wise, another category of nodes on our map is the underlying service nodes.
Most likely, these nodes will have a zero cost of their own. However, any harmful
action on these nodes will also affect the costly resources that rely on them, and by
reflecting these dependencies on the map we will take into account the true value of
the underlying services.

Finally, we have all the resources that were not put on our map as a priority
resource or its dependency. We assign all such resources cost 0; if they become
malicious or get involved in an incident, they are put on the map, and a response
action that affects these 0-cost nodes even in the most dramatic way will not be
harmful for the system in general.

Using Specification-Based Intrusion Detection for Automated Response 9

Once we determine the cost values for our map nodes based on these factors, we
then can associate a cost value with any action that an intruder or the response system
takes.

We define the cost of an intrusion action as the sum of costs of map nodes,
previously in a safe state, that get negatively affected by the action. We define the
benefit of a response action as the sum of costs of nodes, previously in the set of
affected nodes, that this response action restores to a working state. Finally, we define
the cost of a response action in terms of costs of the nodes that get negatively affected
by the response action (“lost to the intruder,” or not functioning properly). The goal of
a response system is to carry out the response sequence that yields the maximum
benefit at the minimum cost. We note that such an approach does not emphasize
transferring the system to the ultimate safe state, or completely recovering from an
intrusion, since there are situations in which these goals would be much more costly
than the intrusion itself. With our approach, we are, however, guaranteed to come up
with a response strategy that is optimal for the current situation.

2.4 Response Selection

Once we have the whole picture of the intrusion, our goal is then to "win" the
resources on the "contaminated" side back. We start by listing all response
alternatives at every contaminated node whose activation condition matches the
intrusion. The goal of response selection is to build a response action sequence that
will have one action out of a list of every contaminated node. That way, we ensure
that every contaminated node is addressed. As mentioned before, an optimal response
action is the one that yields the maximum benefit at the minimum cost. We then
assume that a response sequence (response strategy) is optimal if it consists of
response actions that are optimal for every node. Therefore, if we have the complete
picture of the intrusion, we can build the response chain from optimal responses at
every node, and then carry it out.

2.4.1 Managing Uncertainty
Sometimes we might encounter situations where we do not know for certain what the
intruder has exactly done. For example, suppose the capabilities allowed the intruder
to perform a write call on a file, which is illegal according to the current system
policy. The file could have been overwritten, appended to, or erased completely
(overwritten with an empty string). In certain situations, response actions, and their
cost, may vary depending on what has really happened. Then we turn to decision
theory, which provides well-defined ways to construct the response plan, for different
requirements in presence of uncertainty.

The possible results of a write call would be over-written data in the file, data
appended to the file, or data completely erased from the file (the latter being a special
case of the first one). This allows us to list the possible system states. Every one of
these states will have a potential damage value and a probability associated with it.
Now, using the decision theory convention [10], we can describe the situation with
the following “gain matrix”:

10 Ivan Balepin, Sergei Maltsev, Jeff Rowe, and Karl Levitt

 П1 П2 П3 П4 П5
А1 a11 a12 a13 a14 a15
... ...
АN aN1 aN2 aN3 aN4 aN5

Q q1 q2 q3 q4 q5
where Пi are the possible states, qi are the probabilities, and Ai represent the

response alternatives. aij in this matrix, again, represents the usefulness, or benefit, of
using the ith decision in case of a jth sub-state. This value can be estimated as:

() j
γ

ijiij Bεca −−−= . (1)

where Βj is the potential damage of a sub-state,
 ci – response cost,
 εij – efficiency(benefit) of response i in sub-state j, and
 γ is 0 if εij=0, 1 otherwise.
Considering the above parameters, we observe that the greater the value of aij, the

more useful the corresponding response alternative will be in the corresponding state.
We define the risk of losing in a particular game situation (rij) as the difference

between the player’s gain for strategy Ai for conditions of Πj, and the player’s gain for
the strategy he would have chosen, had he known the conditions of Πj. It is clear that
had the player known the system state and its conditions in advance, he would have
chosen the strategy that yields the maximum gain in its matrix column (mj).
According to our definition,

rij = mj-aij, where ijij amaxm = . (2)

Defined in this way, the concept of risk also reflects how favorable a given state is
to us. Consequently, a risk matrix constructed similarly to the gain matrix, gives us a
more complete picture than the gain matrix.

Relying on probability significantly simplifies the decision making process,
especially if we can produce relatively accurate probability estimates using the system
history, general knowledge, anomaly analysis tools, etc.

A promising way to eliminate the uncertainty, or, at least estimate the values of
probability of a certain intrusion sequence, is monitoring the system for a long period
of time and building a profile for important resources. For that, machine learning
techniques can be used; also, much can be drawn from the anomaly-based and
misuse-based intrusion detection techniques [2]. We discuss these suggestions in
more detail in Section 4.

Let us take mathematical expectation of probability-based gain ia to be the
effectiveness criterion W that we obviously would like to maximize.

inaq...aqaqa ni22i11i +++= . (3)

The optimal strategy is the one that yields the maximum ia in the gain matrix. It
would also yield a minimum average risk based on the risk matrix.

Special care must be taken to accurately estimate probability. Pure probability, as
a statistics-based value, might not always be available. In that case, it can be
subjectively estimated. Certain events might be more likely than others according to

Using Specification-Based Intrusion Detection for Automated Response 11

the system logs. There are several techniques available that help us quantify these
subjective estimates.

For cases in which we have no statistical information for the system states, we can
assign equal probabilities to each possible state, i.e.:

q1=q2=…=qn=1/n. (4)

This approach is called Laplace insufficient reason criterion ([10]).
For another approach, we assume that we can order possible system states by their

likeliness. In order to represent the probabilities in this case, we can use a converging
arithmetic series:

q1:q2:…:qn=n:(n-1):…:1. (5)

where:

1)n(n
1)i2(nqi +

+−
=

(6)

We can also rely on expert estimates.
If we manage to completely eliminate uncertainty in some situations, the

probability values for the determined system state becomes 1, probabilities of all other
states become 0, the matrix turns into a single column, and decision making becomes
trivial.

2.4.2 The Optimal Decision Criteria
There are several methods for selecting the decision criteria in the decision theory
([10]). In the Minimax risk criterion (Savage criterion) we select the strategy from the
risk matrix that provides us with the minimal risk value under the most unfavorable
conditions. The efficiency W is then estimated as ijji

rmaxminW = . The Minimax

risk approach allows us to avoid making the high-risk decisions. The Maximin
criterion favors strategies with the largest minimal gain (with W defined differently,
see [10]). The Hurwicz criterion is neither pessimistic nor optimistic. Risk-based
criterion is analogous to Hurwicz

Selection of criterion and its parameters is subjective. It is useful to analyze the
situation using various approaches. If majority of criterions indicate that a certain
strategy is optimal, it should certainly be selected. Should several different criterions
suggest different strategies, it is up to the system owner to select (or pre-select) the
right strategy based on the fact that some criterion might be preferred over the others.

3 Implementation

We have implemented several concepts mentioned in the previous section in a
prototype response system, the Automated Response Broker (ARB). ARB is
developed for Linux, and it relies on SHIM for detection. Let us briefly mention why
we chose SHIM for that role.

12 Ivan Balepin, Sergei Maltsev, Jeff Rowe, and Karl Levitt

3.1 Intrusion Detection: SHIM

SHIM is specification-based. It relies on the Generic Software Wrapper Toolkit
(GSWTK,[9]) for all information about the system calls. SHIM does not try to
recognize an attack as a whole. Instead, it relies on a set of specifications (for
programs, or protocols, etc.) that reflect the system policy.

SHIM addresses a large part of intrusions by enforcing specifications for privileged
Linux programs. System calls of interest are reported by the GSWTK, and then
classified as legal or illegal according to the specifications, with an alert being issued
for the latter.

SHIM is a great vehicle for testing our automated response scheme. Such a fine
event granularity allows us to catch the exact system call that started the intrusion.
Also, the fact that SHIM does not need the whole intrusion to recognize its signature,
allows it to catch unknown intrusions, and intrusions that are still in progress. The last
feature also gives us a chance to stop an intrusion in progress by responding to the
first few steps of it that have been detected.

The underlying assumption about SHIM that we make is that it always promptly
detects and reports all intrusions. Also, SHIM and GSWTK give us a capability to
check if a system call is legal before it is executed. However, such a mode of
operation causes a large overhead for every system call, and does not seem feasible.

3.2 Map Implementation

We build the map starting with a set of nodes we want to protect. It is the set of all
programs that are constrained by SHIM (regardless of whether they are among our
priorities; the cost will reflect that fact), and several nodes for resources that might not
be constrained by SHIM, but the system owner wants to protect as well.

The type hierarchy is constructed upon installation of a system. It does not have a
dynamic part and it does not change, since it simply contains information about the
types of nodes, not the nodes themselves.

In ARB, the type hierarchy is constructed in C++. While it might be sufficient for
experiments and testing, obviously a more convenient interface for configuring the
type hierarchy is needed. Currently, we experiment with XML for type hierarchy
definitions. XML so far has proved to be powerful enough to express all the
information necessary, and there is an abundance of tools for parsing the type
hierarchy defined in XML into our program.

Below is an example of a response list of a configuration file node. Event name
and target constitute the activation condition for the action. The victim tag marks the
damaged nodes.

<actions>

<event name=”chown” target=”self”>
<action>restore_attributes;</action>
<action>kill_offender;</action>
<victims>offender</victims>

</event>

Using Specification-Based Intrusion Detection for Automated Response 13

<event name=”chown” target=”self”>
<action>delete_self;</action>
<action>kill_offender;</action>
<victims>self</victims>
<victims>dependents</victims>
<victims>offender</victims>

</event>
<event name=”write” target=”self”>

<action>
restore_from_backup;
fire_event(“httpd”,”restart”,true);

</action>
</event>
…

</actions>

Should XML fail to be descriptive enough for the task, a new domain-specific

language (DSL) will be designed for describing the type hierarchy.
Similarly to the type hierarchy, the map itself is constructed manually as a

collection of C++ data structures. We are currently experimenting with more flexible
ways to define a map, such as, again, XML or a new DSL.

As mentioned above, all components of a system in our prototype are determined
manually. However, some of them can be pre-defined for most systems; some can be
determined by automated analysis upon installation or re-configuration. The ultimate
goal is to let the ARB user specify just the custom types, responses to custom types,
and the system’s priorities. The remainder of the map (such as the basic types,
underlying service nodes, all dependencies and templates) can be determined
automatically. We list the requirements for automating the map construction and
problems associated with it in the future work section.

Node response lists are constructed from the type hierarchy. The set of response
actions that are implemented, or will be implemented in the prototype include: delete
a file, restore a file from backup, restart a service, change permissions, kill
process(es), reboot the system, block a connection, re-configure a firewall rule,
unmount a file system, change the owner of the process(es), start checkpointing, slow
down the process(es), roll back to a checkpoint, return a random result, perform a
random action, operate on a fake file, tunnel the process(es) to a sandbox, operate on
a fake socket.

3.3 Node Costs

The most difficult task of any implementation of a response system is performing a
consistent cost assignment that reflects the true value of resources. This part of map
construction cannot be completed in advance, or even automated, since it needs input
from the owner of the system. Currently, we approach the problem by first manually
ordering the key resources of the system, so that the resources (Ri) are listed in the
following form:

14 Ivan Balepin, Sergei Maltsev, Jeff Rowe, and Karl Levitt

R0 < R1 = R2 = R3 … < Ri-1 < Ri (7)

The least important resource gets assigned priority 1, and the priorities of all other
(more important) resources are approximated as N times the priority of the next less
important one:

Priority(Rj) = N * Priority(Rj-1), (8)

where N is an approximate value and is determined experimentally. Finally, for
convenience, we obtain a cost value Ci for a resource Rj from priority values
according to the following formula:

Ci = 100*Priority(Ri)/ΣPriority(Ri), (9)

where ΣPriority(Ri) is a sum of the priorities of all resources.
Currently, the process of assignment is completely manual. The cost assignment

method described above is only an approximation of the real resource costs. Work is
being done on improving the method to ensure consistency of the cost assignment.

3.4 Damage Assessment and Response Selection

Let us say ARB received an alert about some malicious actions involving several
nodes on our map. Currently, ARB reads alerts from a socket that SHIM writes to. A
closer form of integration with SHIM is being developed, since the current
implementation is sufficient for evaluation of response, but is vulnerable to attacks.

First, we need to stop the intrusion, if it is still in progress. The map is partitioned
into a set of nodes that are affected (or might have been affected) by the incident, and
a set of nodes that are not dependent on any in the first set, and therefore, not affected
by the incident.

Upon an alert that, say, mentions only one subject, the damage assessment
procedure of ARB puts all ancestors and offspring this subject may have on the map
independent of further alerts. That allows us to freeze the intrusion in progress before
the children attempt to perform further malicious action, since having a suspicious
process as a parent already gives us a right to mark a child process as suspicious as
well, without waiting for further alerts. We freeze the intrusion by temporarily
suspending the contaminated processes (by sending them a kill -19 message).

ARB operates with a concept of an incident. Alerts are grouped to form a single
incident if they report subjects from the same family as suspicious. ARB considers the
damage assessment procedure completed when it constructed and froze the entire
family of suspicious processes. All new alerts are treated as parts of a new incident.
The testing of ARB that we have done so far indicates that such approach allows us to
clearly separate individual incidents, freeze an incident, assess the damage, and carry
out response actions.

Upon completion of the damage assessment procedure, we have the suspended
intrusion, the frozen suspicious processes, and the complete picture of an intrusion in
form of the partitioned map.

Finally, the response strategy is built and carried out, as described in the previous
sections.

Using Specification-Based Intrusion Detection for Automated Response 15

3.5 Example

Let us demonstrate how ARB carries out the entire process of response selection with
an actual example. We will consider a classic vulnerability in the RedHat Linux 6.2
dump utility [11], which examines the files on a file system, and determines the ones
that need to be backed up. These files are copied to a disk, tape, or other storage
medium. The dump utility depends on the environment variables TAPE and RSH.

The goal of the dump exploit is to set the RSH environment variable to an
executable file that will be executed with suid root privileges. File /bin/bash is copied
to /tmp/rootshell, and the root shell is executed.

Specifications for the dump utility are provided by SHIM. According to them,
dump is allowed to make few system calls: open and read certain files, fork, and
connect. Consequently, when this intrusion happens on a system that runs SHIM, but
is not protected with ARB, the system administrator will get several alerts. There will
be an alert about dump copying the shell executable to the /tmp directory. Another key
alert is issued when dump executes file /tmp/rootshell. The last alert will be issued
when the attacker uses the obtained root shell to issue the open and write system calls
to the target. The target in our example will be the file secring.gpg, which contains
the keys the GPG software uses for encryption/decryption.

Let us first show the relevant parts of the map before the intrusion begins (Fig. 3).

Fig. 3. The map of a part of a computer system before an intrusion. Only a few essential nodes

are shown.

The map was built according to the type hierarchy on Fig. 2. According to the map,
our only priority in the entire system is the gpg program that encrypts and decrypts
email messages. However, we also put dump node on the map, since it has SHIM
specifications.

owns

Type: Process
Name: gpg

Responses: …

Dynamic Node

Cost: 100

owns

…
templates

…
…

Type: Executable
Path: … gpg

Responses: …

Static Node

Cost: 0

Type: Key Conf File
Path:

Responses: …

Static Node

Cost: 0
Type: Socket

Desc: N

Responses: …

Template

Cost: 0

…
other

templates
…

owns

owns

require

requires

requires

Type: Process
Name: dump

Responses: …

Template

Cost: 0

Type: File System
Mount Point: …

Responses: …

Static Node

Cost: 0

requires

requires

requires

requires

Type: Executable
Path: /sbin/dump

Responses: …

Static Node

Cost: 0
requires

16 Ivan Balepin, Sergei Maltsev, Jeff Rowe, and Karl Levitt

Experiments with the ARB prototype showed that it takes a variable period of time
for SHIM to issue an alert, and for ARB to receive it and process it. For certain test
cases with favorable conditions, that period was short enough for ARB to freeze the
entire attack right after the first alert. For test cases under the least favorable
conditions, however, ARB completed the damage assessment procedure only after the
attacker already had access to the root shell.

Regardless of the current conditions, our goal is to stop the intrusion and clean up
after the actions that already happened. The system map for the worst case that has
been observed is shown in Fig. 4.

Fig. 4. The map of a part of a computer system after ARB has stopped an attack.

According to the new map, four nodes are contaminated as the result of the
intrusion. A node for /tmp/rootsh appeared on the map because the file was involved
in an illegal file copy by cp. However, the cp process itself is gone by the time ARB
completed damage assessment, so it is not reflected on the map.

ARB starts building the response sequence addressing node by node, in arbitrary
order. The dump process node is an issuer of an illegal exec system call, so ARB
chooses the most efficient response – killing the process – since the value of nodes
affected by the response is 0. The /tmp/rootsh node was created as a result of an
illegal creat system call, and it does not have any cost or dependencies. The matching
response would be to remove the file. Finally, the response for the secring.gpg file is
selected as follows. Several response alternatives apply to the file, including deleting
it or restoring it from the backup. Deleting the file would certainly damage it. By
using the map, we detect that the gpg process depends on the file; therefore, deleting
the key file would damage the file and the process, and the cost of such response
would equal to the sum of affected nodes – namely, 100 points. Another alternative
with an activation criterion that matches a write system call is restoring the file from
backup, with a cost of 0. We select the second alternative as the least expensive one.
Another matching response action is “restart the corresponding service(s),” and it was
inherited by the custom type “key configuration file” from general type

…
templates

…
…

Type: Process
Name: dump

Responses: …

Dynamic Node

Cost: 0
Type: Process
Name: gpg

Responses: …

Dynamic Node

Cost: 100

Type: Executable File
Path: … gpg

Responses: …

Static Node

Cost: 0

Type: Key Conf File
Path: ~/.gnupg/secring.gpg

Responses: …

Static Node

Cost: 0

Type: Process
Name: /tmp/rootsh

Responses: …

Dynamic Node

Cost: 0

Type: Executable File
Path: /sbin/dump

Responses: …

Static Node

Cost: 0

Type: File
Path: /tmp/rootsh

Responses: …

Dynamic Node

Cost: 0

…
templates

…
…

Using Specification-Based Intrusion Detection for Automated Response 17

“configuration file.” By using the map, we determine the corresponding service to be
the gpg in this case, and we restart it with a restored key file.

In this case, SHIM has not indicated that the content of the file has been read.
Therefore, the response alternative “reissue all keys” does not apply, and we do not
re-issue the keys.

3.6 Experience with ARB

The ARB prototype was tested for several well-known attack scripts. Work is in
progress to extend it and test it with the broadest range of other intrusions. ARB can
only be run on Linux kernel 2.2.14, since the current version of GSWTK relies on that
kernel version, and the current version of SHIM relies heavily on GSWTK. As we
mentioned before, the map in ARB is built manually for only a subset of all resources
that really should be on the map.

The current version of ARB does not handle uncertainty in intrusions. It does,
however, successfully freeze the set of test attacks, stop them, and respond to them.
The attacks we handle include the two examples from this paper.

The prototype so far has forced us to re-design our original approach to automated
response greatly, and posed several new problems, which were not obvious before.
One such problem was the fact that at first we did not define when the damage
assessment procedure is complete, and we can actually start deciding and carrying out
a response. In order to resolve the issue, the concept of an incident was introduced in
the prototype.

We currently continue to work on the prototype, and we expect promising results
from the future work with ARB.

4 Future Work

4.1 Automating the Map Construction

First, since with SHIM all malicious actions that involve a map node can be expressed
as Linux system calls, and the number of Linux system calls is relatively small, we
can partially automate the generation of nodes’ response lists. For a new type of a
node, we list all applicable system calls that this node can make as an activation
criteria. Then, we either borrow the corresponding response actions from the type
above in the hierarchy, or ask the system user to define a response action and the
damaged nodes. Then we construct a list of applicable system calls that target this
type of a node as activation criteria, and obtain the corresponding response and
damaged node information in a similar manner. Therefore, we can simplify the task of
constructing response lists by guiding the user through the process and producing the
output in some convenient format like XML.

Also, construction of the map itself and analysis of node dependencies can be
mostly done automatically. When constructing a map, we can rely, for example, on

18 Ivan Balepin, Sergei Maltsev, Jeff Rowe, and Karl Levitt

the program installation package (i.e., Linux RedHat Package Manager information);
the program’s source code (when available); documentation (man pages); etc., for
dependency information about opened files, sockets, pipes, inter-process
communication, etc. We are also currently working on learning program dependency
data from execution traces. Designing a tool that would assist a system’s user with
map construction presents an interesting implementation task.

4.2 Learning the Configuration

The problem of assigning the true costs, determining the actual relationships between
the nodes, and testing the efficiency of ARB can be determined experimentally. As
the next step of this work, the following experiment will be carried out.

One Linux system (defender) will be equipped with SHIM, ARB and several
protected valuable services. Another system (attacker) will continuously generate
attacks targeting every node of the defender. A third system (referee) will record the
outcomes and help restoring the defender after successful attacks.

At first, the attacks will be run under supervision. As a measure of efficiency,
uptime and performance of a certain service under attack will be measured with ARB
protection, and compared to its uptime and performance under the same attack
without the protection.

Once such a setup is implemented, it can be used to analyze the flaws in ARB
response strategies to determine the “blame” for successful attacks. Furthermore,
node costs and degrees/probabilities of relationships can be represented as weights in
a neural network, and some machine learning algorithm (backpropagation, other
gradient descent methods, etc.) can be applied to continuously improve the ARB
setup, possibly with much of the supervision done by the referee system.

4.3 Other Directions

Introducing nodes of type CPU, or memory, or user may allow us to model and
respond to denial-of-service attacks. We did not consider the topic in this work, but it
seems promising; especially when the intrusion detection technology will provide us
with ways to clearly identify denial-of-service attacks.

Storing information about past intrusions and incorporating that knowledge in
response is also promising. For example, a large number of attacks in a small period
of time might cause the system to take extra response measures targeted at preventing
future intrusions rather than responding to ones already in effect. Also, we might
design a set of more strict specifications for the privileged programs that would reflect
a stricter system policy in response to a large number of intrusions. Another option
would be to implement a “pre-emptive” mode as a wrapper in GSWTK: all system
calls would be checked in advance, and not carried out if illegal. This mode of
operation would cause a large overhead for every single system call; however, it
might be useful when trying to counter particularly severe types of intrusions. Again,
the cost of switching to such mode has to be carefully weighed.

Using Specification-Based Intrusion Detection for Automated Response 19

Currently, our response model does not consider actions that partially restore a
node, and it assumes that an action either damages resources, or does not. Considering
actions that only partially restore resources and introducing a degree of damage also
deserve consideration for further work.

Another interesting research direction would be to attempt to combine our host-
based approach and network-oriented response mentioned in Section 1, to design a
network-wide response system that possibly might be based on single host
components, such as ARB, cooperating with each other to protect the entire network.

Finally, in our opinion, the most exciting future work option is combining a
specification-based IDS, features of anomaly- and misuse-based IDS’s and the
requires/provides model of intrusions [14] to form basis for response decisions. With
SHIM being a "low-level", system-call oriented IDS that ignores the intrusion as a
whole, and focuses on individual constraint violations instead, it is able to catch
violations that have never been seen before, and cannot be detected with signature-
based detection systems; whereas signature-based systems can see farther ahead than
SHIM, since they have a signature of the entire intrusion.

In a situation where we receive several SHIM alerts (which represent the first few
steps of an intrusion), we can use our system map to calculate the capabilities of the
attacker, describing them in JIGSAW [14], and also browse the signature database for
all signatures that, at least partially, match the current intrusion. By using some
historical data from an anomaly-based system we can determine probability of each
intrusion path (signature), and initiate a game with the intruder. By winning such a
game, we will be able to prevent complex intrusions instead of responding to the ones
that are already in full progress.

5 Conclusion

In this work, we stated the problems associated with automated intrusion response,
and began addressing them.

The system map and the resource hierarchy provide a basis for response. The
damage assessment procedure and response selection that accounts for uncertainty
produce the optimal response strategy.

The current implementation of these ideas – ARB – successfully responded to
several host attacks. Work is being done to improve ARB and measure its efficiency
and performance.

References

1. Alphatech: ALPHATECH Light Autonomic Defense System,
http://www.alphatech.com/secondary/techpro/alads.html (last accessed June 30,
2003)

2. Amoroso, E: Intrusion Detection: an introduction to Internet surveillance, correlation,
trace back, traps, and response, Intrusion.net Books, New Jersey. (1999)

20 Ivan Balepin, Sergei Maltsev, Jeff Rowe, and Karl Levitt

3. Carver, C.A, Jr. and Pooch, U.W.: An Intrusion Response Taxonomy and its Role in
Automatic Intrusion Response, Proceedings of the 2000 IEEE Workshop on
Information Assurance and Security, United States Military Academy, West Point,
NY. (6-7 June, 2000)

4. Fred Cohen & Associates, Deception for Protection,
http://all.net/journal/deception/index.html (last accessed June 30, 2003)

5. Free Software Foundation, Inc., The GNU Privacy Guard, http://www.gnupg.org (last
accessed June 30, 2003)

6. Ko, C.C.W.: Execution Monitoring of Security-Critical Programs in a Distributed
System: A Specification-Based Approach, Ph.D. Thesis, Davis, CA. (August 1996)

7. Lee, W., Fan, W., Miller, M., Stolfo, S., Zadok, E.:Toward Cost-Sensitive Modeling
for Intrusion Detection and Response, Journal of Computer Security, Vol. 10,
Numbers 1,2 (2002)

8. Lewandowski, S., Van Hook, D., O'Leary, G., Haines, J., Rosse, L., SARA:
Survivable Autonomic Response Architecture, DISCEX II'01, Anaheim, CA. (June
2001)

9. Network Associates Laboratories: Secure Execution Environments/Generic Software
Wrappers for Security and Reliability,
http://www.networkassociates.com/us/nailabs/research_projects/secure_execution/wr
appers.asp (last accessed June 30, 2003)

10. Raiffa, H.: Decision Analysis: Introductory Lectures on Choices under Uncertainty,
Addison-Wesley, Reading, MA. (1968)

11. RedHat, Inc.: Red Hat Security Advisory RHSA-2000:100-02,
http://rhn.redhat.com/errata/RHSA-2000-100.html (last accessed June 30, 2003)

12. SecurityFocus, Mailing List: FOCUS-IDS,
http://www.securityfocus.com/archive/96/310579/2003-02-03/2003-02-09/1 (last
accessed June 30, 2003)

13. Staniford, S., Paxson, V., Weaver, N.: How to 0wn the Internet in Your Spare Time,
Proceedings of the 11th USENIX Security Symposium (2002)

14. Templeton, S., Levitt, K.: A requires/provides model for computer attacks. In
Proceedings of the New Security Paradigms Workshop, Cork, Ireland. (September
2000)

15. Tylutki, M.: Optimal Intrusion Recovery and Response Through Resource and Attack
Modeling, Ph.D. Thesis, Davis, CA. (September 2003)

16. Toth, T., Kruegel, C.: Evaluating the impact of automated intrusion response
mechanisms, 18th Annual Computer Security Applications Conference, Las Vegas,
Nevada. (December 9-13, 2002)

