
Fast Video Retrieval Under Sparse Training Data 

Yan Liu and John R. Kender 

 450 Computer Science Building, 1214 Amsterdam Avenue, New York, NY, 10027, U.S.A 
{liuyan, jrk}@cs.columbia.edu 

Abstract. Feature selection for video retrieval applications is impractical with 
existing techniques, because of their high time complexity and their failure on 
the relatively sparse training data that is available given video data size. In this 
paper we present a novel heuristic method for selecting image features for 
video, called the Complement Sort-Merge Tree (CSMT).  It combines the 
virtues of a wrapper model approach for better accuracy with those of a filter 
method approach for incrementally deriving the appropriate features quickly. A 
novel combination of Fastmap for dimensionality reduction and Mahalanobis 
distance for likelihood determination is used as the induction algorithm. The 
time cost of CSMT is linear in the number of features and in the size of the 
training set, which is very reasonable. We apply CSMT to the domain of fast 
video retrieval of extended (75 minutes) instructional videos, and demonstrate 
its high accuracy in classifying frames. 

1   Introduction 

The rapid growth and wide application of digital video has led to a significant need 
for efficient video data set management. The problem of efficient retrieval and 
manipulation of semantically labelled video segments is an important issue. 
 
One typical approach is to use existing image retrieval algorithms, starting from a 
good segmentation of the video into shots and then selecting certain images of the 
shots as key-frames [1]. But as Lew et al mentioned in [3], the gap between the high 
level query from the human and the low-level features persists because of a lack of a 
good understanding of the "meanings" of the video, of the "meaning" of a query, and 
of the way a result can incorporate the user's knowledge, personal preferences, and 
emotional tone. Machine learning methods such as classification [4] and boosting [5] 
are introduced to help retrieve matching video sequences semantically, and some 
methods use audio information analysis and text extraction and recognition as well.  
But there appears to be little work that supports efficient feature selection for video 
retrieval, due to the huge volume of data.  
 
Researchers therefore work on speeding up their algorithms; one way is by seeking 
efficient ways of reducing the dimensionality of the data prior to classification and 
retrieval. Vailaya et al [6] and Smeulders et al [7] discuss this problem from the view 
of image processing and computer vision. They assume that some features, such as 
color histograms or texture energies, are more sensitive than others, based on the 



researchers’ intuition. They provide theoretical analyses and empirical validations for 
their choices, but this approach is difficult to extend to other domains where the 
relationships between features and categories are unclear and changeable. 
 
The heart of this paper is a novel feature selection algorithm, which focuses on 
selecting representative features in the massive and complex dataset automatically; no 
manual definition or construction of features is required [8]. This form of learning has 
received significant attention in the AI literature recently and has been applied to 
moderately large data sets in applications like text categorization [8] and genomic 
microarray [9] analysis. Another emphasis of this paper is that our novel selection 
algorithm also addresses the problem of sparse and noisy training data. The training 
sets available for the learning of  semantic labels is a very small fraction of the total in 
video retrieval. Classification using sparse training data is a classical problem of 
machine learning and few papers [9] support feature selection under these 
circumstances. 
 
This paper is organized as follows. Section 2 introduces some related work in feature 
selection. Section 3 proposes the feature selection algorithm, CSMT, and provides a 
framework for video retrieval using this algorithm.  Section 4 presents empirical 
validation of the accuracy of algorithm when applied to the particular genre of 
instructional videos, and validates the algorithm in a generic data.  We close the paper 
with discussion and planned future work in section 5. 

2   Related work of feature selection 

There appears to be two major approaches to the feature selection problem. The first 
emphasizes the discovery of any relevant relationship between the features and the 
concept, whereas the second explicitly seeks a feature subset that minimizes 
prediction error of the concept. The first is referred to as a filter method, and the 
second approach is referred to as a wrapper method. In general, wrapper methods 
attempt to optimize directly the classifier performance so that they can perform better 
than filter algorithms, but they require more computation time.  Seen in this context, 
this paper proposes a wrapper feature selection method with time cost considerably 
less than that of filter methods. For an alternative viewpoint, see [13].  
 
Feature selection methods are typically designed and evaluated with respect to the 
accuracy and cost of their three components: their search algorithm, their statistical 
relationship method (in the case of filter methods) or their induction algorithm (in the 
case of wrapper methods), and their evaluation metric (which is simply prediction 
error in the case of wrapper methods).  The dominating cost of any method, however, 
is that of the search algorithm, since feature selection is fundamentally a question of 
choosing one specific subset of features from the power set of features.  So far, three 
general kinds of heuristic search algorithms have been used: forward selection, 
backward elimination, and genetic algorithms. 
 



Sparse training data is a hard problem in machine learning. As Xing et al mentioned 
in [9], the number of replicates in some experiments is often severely limited; he 
gives a real world problem in which only 38 observation vectors exist, each one 
encoding the expression levels of 7130 features. Feature selection when there are so 
few observations on so many features is very different from the more general cases 
typical in the learning literature; it even renders some powerful algorithms ineffective. 
This is easy to see in Xing’s case:  since there are only 38 observations, no matter 
what feature set has been chosen the prediction error is severely quantized to one of 
39 levels.  With 7130 features, on average we could expect about 183 features to 
produce each of these error levels; either a forward or backward wrapper method will 
be forced to choose randomly over this large set at each iteration.  If ultimately we 
wish only a small set of about. 50 features to avoid overleaning as in [9], too much 
randomness is introduced by these methods. Moreover, randomness accumulates, 
with the chose of each feature heavily influencing the choice of its successors.  
 
The alternatives to wrapper methods are filter methods, which select feature subset 
independently of the actual induction algorithm. Koller and Sahami in [2] employ a 
cross-entropy measure, designed to find Markov blankets of features using a 
backward greedy algorithm. In theory going backward from the full set of features 
may capture interesting features more easily [12], especially under sparse training 
data. However, in Xing’s case this means that if we want a target feature space with 
50 features, we have to remove 7080. To avoid this expensive time cost, Xing 
proposes to sort the 7130 features based on their individual information gain in 
classification (a wrapper method), but then abandons the wrapper approach, and uses 
only the best N features in a series of filter methods.  Additionally, he selects N=360 
manually. It is not clear how well such a technique generalizes or how effective it is, 
given its mixture of models.  

3   Feature Selection for Video Retrieval 

This section presents a method of efficient semantic video retrieval, based on 
automatically learned feature selection. This novel feature selection algorithm, called 
CSMT combines the strengths of both filter and wrapper models, and exploits several 
properties unique to video data. 

3.1   Complement Sort-Merge Tree 

Our overall approach is to use an outer wrapper model for high accuracy, and an inner 
filter method for resolving the problem of random selection when the training set is 
relatively small and errors are quantized (as they inevitably are for video data).   
 
This Complement Sort-Merge Tree (CSMT) algorithm combines the features of 
forward selection, backward elimination, and genetic algorithms. To avoid 
irrevocable adding or subtracting, it always operates on some representation of the 
original feature space, so that at each step every feature has an opportunity to impact 



the selection.  To avoid heuristic randomness, at each step a complement test is used 
to govern subset formation. The tree structure of the CSMT leads to low time cost. 
Further, the recursive nature of the method enables the straightforward creation of a 
hierarchical family of feature subsets with little additional work. The entire CSMT of 
progressively more accurate feature subsets can be stored in space O(N), to be 
accessed when needed at a later time. 
  
The CSMT algorithm can be divided into two parts: the creation of  the full tree of 
feature subsets, and subsequent  manipulation of the tree (if necessary) to create a 
feature subset of desired cardinality or accuracy. Each part uses a different heuristic 
greedy method. 
 
Table 1 shows the CSMT basic algorithm.  Initially, there are N singleton feature 
subsets.  Using a wrapper method, their performance is evaluated on training data, 
and they are sorted in order of performance. Features are then paired into N/2 subsets 
of cardinality 2, by merging them according to the complement requirement. After 
another round of training, sorting, and pair-wise merging according to complement 
requirement, a third level of N/4 subsets of cardinality 4 are formed.  The process 
continues until it attains a level or condition prespecified by the user, or until the 
entire tree is constructed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 illustrates the algorithm with an initial set of features with cardinality N = 
256. Table 2 shows the related algorithm that further manipulates the full CSMT tree 

Table 1. Complement Sort-Merge Tree 

Initialize level = 0 
Create N singleton feature subsets. 

While level <  log2 N 
Induce on every feature subset. 
Sort subsets based on their classification accuracy. 
Choose pairs of feature subsets based on the complement requirement. 
Merge to new feature subsets. 

Table 2. Algorithm to select exactly r features from the tree of feature subsets. 

Select the leftmost branch of size 2  log2r . 
Initialize cutout = 2 log2 r  - r. 
While cutout >0 
 Let branch-size = 2 log2 cutout. 

For all remaining branches of this size, evaluate the induction result of 
removing those branches individually. 

Remove the branch with best result.  
Let cutout = cutout – branch-size. 

   



if it is necessary to select exactly r features (r not a power of 2) from the hierarchy of 
feature subsets. It is not hard to show that the time cost of the search algorithm of 
CSMT is linear in the number of nodes in the Sort-Merge tree, i.e., T ~ O(N*Tm), 
where Tm is the induction time complexity using m training data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 illustrates the complement test, which uses a filter method to inform the 
otherwise random selection of feature subsets.  It employs a heuristic approximation 
to a markov blanket that attempts to maximize classification performance on the m 
training samples. An m-length performance vector records for each feature subset 
correct classifications with a 1 and failures with a 0. Any feature subset seeking a 
complementary feature subset will examine all unpaired feature subsets sharing 
identical error rates with it.  It then selects from these that feature subset which 
maximizes the number of 1s in the OR of their two performance vectors.  These 
complementary feature subsets are then merged.  This step of the CSMT method is a 
greedy algorithm, but one that is more informed than random choice.  

3.2   Induction Algorithm for Feature Selection 

The performance of a wrapper feature selection algorithm not only depends on the 
search method, but also on the induction algorithm. For our induction method during 
the course of the learning we use a novel, low-cost, and scalable combination of 
Fastmap for dimensionality reduction with Mahalanobis maximum likelihood for 
classification.  We refer readers to the literature for a detailed explanation of these 
two component methods, but summarize their significance here. 
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Fig. 1. CSMT for N=256. Leaves correspond to singleton feature subsets. White nodes are 
unsorted feature subsets and gray nodes are the white nodes rank-ordered by performance. 
Black nodes are the pairwise mergers of gray nodes, with pairs formed under the complement 
requirement.  
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The fastmap method proposed in [10] approximates Principal Component Analysis 
(PCA), with only linear cost in the number of reduced dimensions sought, c, and in 
the number of features, N.  The method heuristically replaces the computation of the 
PCA eigenvector of greatest eigenvalue, which represents the direction in the full 
feature space that has maximum variation, with a (linear) search for the two data 
elements that are maximally separated in the space.  The vector between these two 
elements is taken as a substitute for the eigenvector of greatest eigenvalue, and the 
full space is then projected onto the subspace orthogonal to this substitute vector for 
the first eigen dimension. The process then repeats for a desired and usually small 
number of times.  By the use of clever bookkeeping techniques, each additional new 
dimension and projection takes time approximately linear in the number of features. 
 
In brief, as defined in statistical texts Duda et al. [11], or in the documentation of 
Matlab, the Mahalanobis distance computes the likelihood that a point belongs to a 
distribution that is modeled as a multidimensional Gaussian with arbitrary covariance.  
During training, each image frame in a training set for a video category is first 
mapped to a point in the space of reduced dimension c. Then the distribution of these 

m 

Fig. 2. The complement requirement, illustrated for the A level of Figure 1.  The sorted 
singletons A1’ and A3’ have already been paired to form pair B1.  To find the best 
complementary feature subset for A2’, examine all sorted subsets (A4,’ A5’, A6’) with the 
same error rate on the m training samples.  The bitwise OR of performance vectors of A2’ and 
A5’ maximizes performance coverage; A5’ complements A2’ for B2. 

A1          A2          A3          A4          A5          A6          A7

                                

Sort 
 
Induce 

 
Complement 

B1            B2      B3 

                                

A1’’       A2’’        A3’’          A4’’     A5’’      A6’’        A7’’
                                

A1’         A2’        A3’         A4’         A5’       A6’         A7’                               

0

0

0

. 

. 

. 

1

1

1

1

0

0

1

. 

. 

. 

0

1

1

1

0

1

1

. 

. 

. 

0

0

1

1

0

0

0

. 

. 

. 

1

1

1

1

0

0

0

. 

. 

. 

0

1

1

1



mapped points is approximated by a c-dimensional Gaussian with a non-diagonal 
covariance matrix.  Multiple categories and training sets are represented each with 
their own Gaussian distribution. The classification of a test image frame is obtained 
by mapping it, too, into the reduced c-dimensional space, and then calculating the 
most likely distribution to which it belongs. The time cost is also linear with the 
number of features N. 

3.3 Framework of Video Retrieval Using CSMT 

The linear time cost and the increased accuracy of the complement requirement allow 
an efficient and effective implementation of video retrieval under sparse training data. 
In this section, we demonstrate the CSMT on two retrieval tasks on MPEG1-encoded 
instructional videos.  
 
First, in our application and in general, the video may be down-sampled temporally, 
spatially, and/or spectrally.  We temporally subsample by using only every other I 
frame (that is, one I frame per second).  We spatially subsample by a factor of 16 in 
each direction by using only using the DC terms of each macro-block of the I frame 
(consisting of six terms, one from each block: four luminance DC terms and two 
chrominance DC terms); this subsampling is very popular in video retrieval [1]. This 
gives us, for each second of video, 300 macroblocks (15 by 20) of 6 bytes (4 plus 2) 
of data: 1800 initial features.  For convenience of decoding, we consider the 6 DC 
terms from the same macro-block to be an un-decomposable vector, so our initial data 
consists more accurately of 300 six-dimensional features per second of video. Each of 
these 300 features is placed into its own subset to initialize the CSMT algorithm. 
 
Second, using Fastmap, the dimensionality of each feature subset is reduced to a pre-
specified small number, c, of dimensions.  (This makes more sense after the first 
several steps.)  Third, for each feature subset at this level, using the reduced 
dimensionality representation, the training sets of the video train the induction 
algorithm to classify the test sets of the video. Fourth, the feature subsets are sorted by 
accuracy. Pair-wise feature subsets are then merged, based on complement 
requirement. Fifth, the process repeats again, starting at the Fastmap step.  It is clear 
that at most O(log N) iterations of this CSMT algorithm are necessary. Sixth, if 
needed, exactly r features are extracted from the tree of the feature subsets. Seventh, 
the frames of the learned category are retrieved from the video only using these r 
features. 

4   Experiment  

The extended instructional video mentioned above is of 75 minutes duration, which 
has approximately 4500 frames of data, with 300 six-dimensional features for each 
frame. Existing feature selection methods, which typically have been reported to run 
for several days on features sets of cardinality at least one decimal order of magnitude 
smaller, are intractable on video data; see Koller and Sahami [2]. Therefore, we 



compared the retrieval accuracy of our novel method against an imperfect but feasible 
method, random feature selection; see the work of Xing et al who were similarly 
forced into such benchmarks [9]. These experiments use the same data and same 
classifiers; the only difference is how the feature subset was chosen. 

 
In the first experiment, we attempt to retrieve about 200 “announcement” frames from 
the 4500 frames, without any prior temporal segmentation or other pre-processing. 
“announcement” frames look like Figure 3 (a); other video frames look like Figure 4 
(b).  Although it should not be difficult to find a very small set of features to make 
these distinctions, we want to do so rapidly and accurately. Only 80 training frames 
are provided (40 “announcement” and 40 others), and as shown in Figure 4, they 
include considerable noise.    
 

       
 
 
 
 
 

               
 
 
 
 

 
 

 
 

Normal data  Noise data 

       Fig. 4. Training data also includes noise. 

           (a)                 (b) 

Fig. 3. Task: Retrieve “announcements”(a) from an entire video with competing image types (b). 

Fig. 5. Error rate of CSMT vs. random for retrieval of “announcements” with 
features r = 4 and Fastmap dimension c = 2.  



Figure 5 compares the retrieval results using only 4 features, when Fastmap 
dimension c is equal to 2. Points show the error rate of 100 experiments that select the 
features randomly. As expected, the rate of error is highly variable, with the standard 
deviation being larger than the mean. The error rate using features selected by CSMT, 
as a solid line, is clearly better.  None of the results of random feature selection is 
better than CSMT. Figure 6 (a) compares the performance of different Fastmap 
dimensions from 1 to 10 using the same number of features. Figure 6 (b) fixes the 
Fastmap dimension c=4 and compares the classification error rate of different 
numbers. The performance of CSMT is much better than that of random selection in 
all cases. 
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In the second experiment not related to video retrieval, we tested the generality of the 
CSMT method on Xing’s original data. Using his data, his definitions, and his 
evaluation method, CSMT obtains the same error rate compared with his 5.9%. but 
with much lower time complexity. 

5   Conclusion 

We have presented a low-cost feature selection algorithm CSMT that is well-suited 
for large data sets with sparse training data. It relies on the three algorithms working 
together in linear time of the features: Fastmap for dimensionality reduction, 
Mahalanobis distance for classification likelihood, and a sort-complement-merge 
sequence for combining relevant and non-redundant feature subsets into more 
accurate ones. CSMT combines the performance guarantees of a wrapper method 
with the speed and logical organization of a filter method.  It therefore leads to new 
feasible approaches for rapid video retrieval.  We have demonstrated some of its 
results on an extended video. We intend to investigate its utility both across a library 

 (a) Fix r = 8 and c from 1 to 10     (b) Fix c = 4 and r = 2, 4, 8, 16 

Fig. 6. Error rate of CSMT vs. random for retrieval of “announcements”, with r features and 
c Fastmap dimensions. 



of videos of this kind, and also on other genres such as situation comedies which 
share a similar categorization structure. 
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