
Internet Engineering Task Force IPTEL WG
INTERNET-DRAFT Lennox/Schulzrinne
draft-ietf-iptel-cpl-01.ps Columbia University

March 10, 2000
Expires: September 2000

CPL: A Language for User Control of Internet Telephony Services

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its

working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced,

or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

To view the list Internet-Draft Shadow Directories, seehttp://www.ietf.org/shadow.html.

Copyright Notice

Copyright (c) The Internet Society (2000). All Rights Reserved.

Abstract

The Call Processing Language (CPL) is a language that can be used to describe and control Internet
telephony services. It is designed to be implementable on either network servers or user agent servers. It
is meant to be simple, extensible, easily edited by graphical clients, and independent of operating system
or signalling protocol. It is suitable for running on a server where users may not be allowed to execute
arbitrary programs, as it has no variables, loops, or ability to run external programs.

This document is a product of the IP Telephony (IPTEL) working group of the Internet Engineering
Task Force. Comments are solicited and should be addressed to the working group’s mailing list at
iptel@lists.research.bell-labs.com and/or the authors.

Contents

1 Introduction 3
1.1 Conventions of this document . 3

2 Structure of CPL scripts 3
2.1 High-level structure . 3
2.2 Abstract structure of a call processing action . 4
2.3 Location model . 5
2.4 XML structure . 5

3 Script structure: overview 5

4 Switches 5
4.1 Address switches . 7

4.1.1 Address switch mapping for SIP . 8
4.1.2 Address switch mapping for H.323 . 9

4.2 String switches . 9

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

4.3 Time switches . 10
4.4 Priority switches . 11

5 Location modifiers 12
5.1 Explicit location . 12
5.2 Location lookup. 12
5.3 Location filtering . 14

6 Signalling actions 14
6.1 Proxy . 14
6.2 Redirect . 15
6.3 Reject . 16

7 Other actions 16
7.1 Mail . 16
7.2 Log . 17

8 Subactions 17

9 Ancillary information 18

10 Default actions 19

11 Examples 20
11.1 Example: Call Redirect Unconditional . 20
11.2 Example: Call Forward Busy/No Answer . 20
11.3 Example: Call Screening . 21
11.4 Example: Time-of-day Routing . 21
11.5 Example: Non-call Actions . 21
11.6 Example: A Complex Example . 21

12 Security considerations 26

13 Acknowledgments 26

A The XML DTD for CPL 26

B TODO 31

C Changes from earlier versions 32
C.1 Changes from draft -00 . 32

D Authors’ Addresses 33

Lennox/Schulzrinne Expires September 2000 [Page 2]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

1 Introduction

The Call Processing Language (CPL) is a language that can be used to describe and control Internet tele-
phony services. It is not tied to any particular signalling architecture or protocol; it is anticipated that it will
be used with both SIP [1] and H.323 [2].

The CPL is powerful enough to describe a large number of services and features, but it is limited in
power so that it can run safely in Internet telephony servers. The intention is to make it impossible for users
to do anything more complex (and dangerous) than describing Internet telephony services. The language is
not Turing-complete, and provides no way to write loops or recursion.

The CPL is also designed to be easily created and edited by graphical tools. It is based on XML [3], so
parsing it is easy and many parsers for it are publicly available. The structure of the language maps closely
to its behavior, so an editor can understand any valid script, even ones written by hand. The language is also
designed so that a server can easily confirm scripts’ validity at the time they are delivered to it, rather that
discovering them while a call is being processed.

Implementations of the CPL are expected to take place both in Internet telephony servers and in advanced
clients; both can usefully process and direct users’ calls. In the former case, a mechanism will be needed to
transport scripts between clients and servers; this document does not describe such a mechanism, but related
documents will.

The framework and requirements for the CPL architecture are described in the document “Call Process-
ing Language Framework and Requirements,” which will be an Informational RFC; it is currently available
as the Internet-Draftdraft-ietf-iptel-cpl-framework-02 [4].

1.1 Conventions of this document

In this document, the key words “MUST”, “ MUST NOT”, “ REQUIRED”, “ SHALL”, “ SHALL NOT”, “ SHOULD”,
“ SHOULD NOT”, “ RECOMMENDED”, “ MAY ”, and “OPTIONAL” are to be interpreted as described in RFC
2119 [5] and indicate requirement levels for compliant CPL implementations.

In examples, non-XML strings such as-action1- , -action2- , and so forth, are sometimes used.
These represent further parts of the script which are not relevant to the example in question.

Some paragraphs are indented, like this; they give motivations of design choices, or questions for future discus-
sion in the development of the CPL, and are not essential to the specification of the language.

2 Structure of CPL scripts

2.1 High-level structure

A CPL script consists of two types of information:ancillary informationabout the script, andcall processing
actions.

A call processing action is a structured tree that describes the decisions and actions a telephony signalling
server performs on a call set-up event. There are two types of call processing actions:top-level actionsare
actions that are triggered by signalling events that arrive at the server. Two top-level action names are
defined: incoming, the action performed when a call arrives whose destination is the owner of the script;
andoutgoing, the action performed when a call arrives whose originator is the owner of the script.Sub-
actionsare actions which can be called from other actions. The CPL forbids sub-actions from being called
recursively: see section 8.

Lennox/Schulzrinne Expires September 2000 [Page 3]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

Note: The names “action,” “sub-action,” and “top-level action” are probably not ideal. Suggestions for better
names for these concepts are welcomed.

Ancillary information is information which is necessary for a server to correctly process a script, but
which does not directly describe any actions. Currently, the only type of ancillary information defined is
timezone definitions; see section 9.

2.2 Abstract structure of a call processing action

Abstractly, a call processing actionis described by a collection of nodes, which describe actions that can be
performed or choices which can be made. A node may have several parameters, which specify the precise
behavior of the node; they usually also have outputs, which depend on the result of the condition or action.

For a graphical representation of a CPL action, see figure 1. Nodes and outputs can be thought of
informally as boxes and arrows; the CPL is designed so that actions can be conveniently edited graphically
using this representation. Nodes are arranged in a tree,starting at a single root node; outputs of nodes are
connected to additional nodes. When an action is run,the action or condition described by the top-level
node is performed; based on the result of that node, the server follows one of the node’s outputs, and that
action or condition is performed; this process continues until a node with no specified outputs is reached.
Because the graph is acyclic, this will occur after a bounded and predictable number of nodes are visited.

If an output to a node is not specified, it indicates that the CPL server should perform a node- or protocol-
specific action. Some nodes have specific default actions associated with them; for others, the default action
is implicit in the underlying signalling protocol, or can be configured by the administrator of the server. For
further details on this, see section 10.

Address-switch
field: from
subfield: host

subaddress-of:
example.com

otherwise

location

example.com

url: sip:jones@
location

example.com
voicemail.

proxy
timeout: 10s

redirect

Call failure

timeout
busy

url: sip:jones@

Voicemail

Figure 1: Sample CPL Action: Graphical Version

Lennox/Schulzrinne Expires September 2000 [Page 4]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

2.3 Location model

For flexibility, one piece of information necessary for the function of a CPL is not given as node parameters:
the set of locations to which a call is to be directed. Instead, this set of locations is stored as an implicit
global variable throughout the execution of a processing action (and its sub-actions). This allows locations
to be retrieved from external sources, filtered, and so forth, without requiring general language support for
such actions (which could harm the simplicity and tractability of understanding the language). The specific
actions which add, retrieve, or filter location sets are given in section 5.

For the incoming top-level processing action, the location set is initialized to the empty set. For the
outgoing action, it is initialized to the destination address of the call.

2.4 XML structure

Syntactically, CPL scripts are represented by XML documents. XML is thoroughly specified by [3], and
implementors of this specification should be familiar with that document, but as a brief overview, XML
consists of a hierarchical structure of tags; each tag can have a number of attributes. It is visually and
structurally very similar to HTML [6], as both languages are simplifications of the earlier and larger standard
SGML [7].

See figure 2 for the XML document corresponding to the graphical representation of the CPL script in
figure 1. Both nodes and outputs in the CPL are represented by XML tags; parameters are represented by
XML tag attributes. Typically, node tags contain output tags, and vice-versa (with one exception; see section
2.3).

The connection between the output of a node and another node is represented by enclosing the tag
representing the pointed-to node inside the tag for the outer node’s output. Convergence (several outputs
pointing to a single node) is represented by sub-actions, discussed further in section 8.

The higher-level structure of a CPL script is represented by tags corresponding to each piece of meta-
information, sub-actions, and top-level actions, in order. This higher-level information is all enclosed in a
special tagcpl, the outermost tag of the XML document.

A complete Document Type Declaration for the CPL is provided in Appendix A. The remainder of the
main sections of this document describe the semantics of the CPL, while giving its syntax informally.For
the formal syntax, please see the appendix.

3 Script structure: overview

As mentioned, a CPL script consists of ancillary information, subactions, and top-level actions. The full
syntax of thecpl node is given in figure 3.

Call processing actions, both top-level actions and sub-actions, consist of nodes and outputs. Nodes
and outputs are both described by XML tags. There are four categories of CPL nodes:switches, location
modifiers, signalling actions, andnon-signalling actions.

4 Switches

Switches represent choices a CPL script can make, based on either attributes of the original call request or
items independent of the call.

Lennox/Schulzrinne Expires September 2000 [Page 5]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">

<cpl>
<subaction id="voicemail">

<location url="sip:jones@voicemail.example.com">
<redirect />

</location>
</subaction>

<incoming>
<address-switch field="origin" subfield="host">

<address subdomain-of="example.com">
<location url="sip:jones@example.com">

<proxy>
<busy> <sub ref="voicemail" /> </busy>
<noanswer> <sub ref="voicemail" /> </noanswer>
<failure> <sub ref="voicemail" /> </failure>

</proxy>
</location>

</address>
<otherwise>

<sub ref="voicemail" />
</otherwise>

</address-switch>
</incoming>

</cpl>

Figure 2: Sample CPL Script: XML Version

Node: cpl
Parameters: none

Outputs: timezone See section 9
subaction See section 8
outgoing Top-level actions to take on this user’s outgoing calls
incoming Top-level actions to take on this user’s incoming calls

Output: outgoing
Parameters: none

Output: incoming
Parameters: none

Figure 3: Syntax of the top-levelcpl tag

Lennox/Schulzrinne Expires September 2000 [Page 6]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

All switches are arranged as a list of conditions that can match a variable. Each condition corresponds
to a node output; the output points to the next node to execute if the condition was true. The conditions are
tried in the order they are presented in the script; the output corresponding to the first node to match is taken.

There are two special switch outputs that apply to every switch type. The outputnot-present is true
if the variable the switch was to match was not present in the original call. The outputotherwise, which
MUST be the last output specified, matches if no other condition matched.

If no condition matches and nootherwise output was present in the script, the default script action is
taken. See section 10 for more information on this.

4.1 Address switches

Address switches allow a CPL script to make decisions based on one of the addresses present in the original
call request. They are summarized in figure 4.

Node: address-switch
Outputs: address Specific addresses to match

Parameters: field origin, destination, or original-destination
subfield address-type, user, host, port, tel, display,

password, or asn1

Output: address
Parameters: is exact match

contains substring match (fordisplay only)
subdomain-of sub-domain match (forhost, tel only)

Figure 4: Syntax of theaddress-switch node

Address switches have two node parameters:field, andsubfield. The mandatoryfield parameter allows
the script to specify which address is to be considered for the switch: either the call’s origin address (field
“origin”), its current destination address (field “destination”), or its original destination (field “original-
destination”), the destination the call had before any earlier forwarding was invoked. ServersMAY define
additional subfield values.

The optionalsubfield specifies what part of the address is to be considered. The possible subfield values
are:address-type, user, host, port, tel, anddisplay. Additional subfield valuesMAY be defined: two ad-
ditional ones,password andasn1 are defined specifically for SIP and H.323 respectively, in sections 4.1.1
and 4.1.2 below. If no subfield is specified, the “entire” address is matched; the precise meaning of this is
defined for each underlying signalling protocol.

The subfields are defined as follows:

address-type This indicates the type of the underlying address; i.e., the URI scheme, if the address can be
represented by the URI. The types specifically discussed by this document aresip, tel, andh323. The
address type is not case-sensitive; it is always present if the address is present.

user This subfield of the address indicates, for e-mail style addresses, the user part of the address. For
telephone number style address, it includes the subscriber number. This subfield is case-sensitive; it
may be not present.

Lennox/Schulzrinne Expires September 2000 [Page 7]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

host This subfield of the address indicates the Internet host name or IP address corresponding to the address,
in host name, IPv4, or IPv6 format. For host names only, subdomain matching is supported with the
subdomain-of match operator. It is not case sensitive, and may be not present.

port This subfield indicates the TCP or UDP port number of the address, numerically in decimal format.
It is not case sensitive, as itMUST only contain decimal digits. It may be not present; however, for
address types with default ports, an absent port matches the default port number.

tel This subfield indicates a telephone subscriber number, if the address contains such a number. It is not
case sensitive (the telephone numbers may contain the symbols ‘A’ ‘B’ ‘C’ and ‘D’), and may be
not present. It may be matched using thesubdomain-of match operator. Punctuation and separator
characters in telephone numbers are discarded.

display This subfield indicates a “display name” or user-visible name corresponding to an address. It is
a Unicode string, and is matched using the case-insensitive algorithm described in section 4.2. The
contains operator may be applied to it. It may be not present.

For any completely unknown subfield, the serverMAY reject the script at the time it is submitted with
an indication of the problem; if a script with an unknown subfield is executed, the serverMUST consider the
not-present output to be the valid one.

Theaddress output tag may take exactly one of three possible parameters, indicating the kind of match-
ing allowed.

is An output with this match operator is followed if the subfield being matched in theaddress-switch
exactly matches the argument of the operator. It may be used for any subfield, or for the entire address
if no subfield was specified.

subdomain-of This match operator applies only for the subfieldshost and tel. In the former case, it
matches if the hostname being matched is a subdomain of the domain given in the argument of the
match operator; thus,match="example.com" would match the hostnames “example.com”, “re-
search.example.com”, and “zaphod.sales.internal.example.com”. IP addresses may be given as argu-
ments to this operator; however, they only match exactly. In the case of thetel subfield, the output
matches if the telephone number being matched has a prefix that matches the argument of the match
operator; match=“1212555” would match the telephone number “1 212 555 1212.”

contains This match operator applies only for the subfielddisplay. The output matches if the display name
being matched contains the argument of the match as a substring.

4.1.1 Address switch mapping for SIP

For SIP, theorigin address corresponds to the address in theFrom header;destination corresponds to the
Request-URI; andoriginal-destination corresponds to theTo header.

Thedisplay subfield of an address is the display-name part of the address, if it is present. Because of
SIP’s syntax, thedestination address field will never have adisplay subfield.

Theaddress-type subfield of an address is the URI scheme of that address. Other address fields depend
on thataddress-type.

For sip URLs, theuser, host, andport subfields correspond to the “user,” “host,” and “port” elements
of the URI syntax. Thetel subfield is defined to be the “user” part of the URI if and only if the “user=phone”

Lennox/Schulzrinne Expires September 2000 [Page 8]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

parameter is given to the URI. An additional subfield,password is defined to correspond to the “password”
element of the SIP URI; however, use of this field isNOT RECOMMENDEDfor general security reasons.

For tel URLs, thetel anduser subfields are the subscriber name; in the former case, “noise” characters
are stripped. thehost andport subfields are both not present.

For other URI schemes, only theaddress-type subfield is defined by this specification; serversMAY

set others of the pre-defined subfields, orMAY support additional subfields.
If no subfield is specified for addresses in SIP messages, the string matched is the URI part of the

address, with all parameters stripped.

4.1.2 Address switch mapping for H.323

For H.323, theorigin address corresponds to the address in thesourceAddress field; bothdestination and
original-destination correspond to thedestinationAddress field, as H.323 has no indication of original
destination.

For all addresses in H.323 messages, the value of theaddress-type field is h323. The
tel tag is set to the AliasAddress, if its type is e164. Theuser tag is set to h323-ID;host
is set to transportID/TransportAddress/ipAddress, translated to a dotted-quad;port is set to trans-
portID/TransportAddress/ipAddress/port. Thedisplay tag is not present. An additional subfield,asn1, is
defined as the textually-encoded ASN.1 of the address. The matching if no subfield is specified is undefined
at this time.

TODO: Have this looked over by an H.323 expert for accuracy/completeness. Once anh323 URL scheme is
defined, it should be used for the whole-address matching.

4.2 String switches

String switches allow a CPL script to make decisions based on free-form Unicode strings present in a call
request. They are summarized in figure 5.

Node: string-switch
Outputs: string Specific string to match

Parameters: field subject, organization, or user-agent

Output: string
Parameters: is exact match

contains substring match

Figure 5: Syntax of thestring-switch node

String switches have one node parameter:field. The mandatoryfield parameter specifies which string is
to be matched. Currently three fields are defined:subject, indicating the subject of the call;organization,
indicating the originator’s organization; anduser-agent, indicating the program or device with which the
call request was made. All these fields correspond to SIP strings.

TODO: Need H.323 free-form strings. “Data”?

Lennox/Schulzrinne Expires September 2000 [Page 9]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

Strings are matched as case-insensitive Unicode strings, in the following manner. First, strings are
canonicalized to the “Compatibility Composition” (KC) form, as specified in Unicode Technical Report 15
[8]. Then, strings are compared using locale-insensitive caseless mapping, as specified in Unicode Technical
Report 21 [9].

Code to perform the first step, in Java and Perl, is available; see the links from Annex E of UTR 15 [8]. The case-
insensitive string comparison in the Java standard class libraries already performs the second step; other Unicode-
aware libraries should be similar.

The output tags of string matching are namedstring, and have a mandatory argument, one ofis or
contains, indicating whole-string match or substring match, respectively.

4.3 Time switches

Time switches allow a CPL script to make decisions based the time and/or date the script is being executed.
They are summarized in figure 6.

Node: time-switch
Outputs: time Specific time to match

Parameters: timezone local, utc, or other (see section 9)

Output: time
Parameters: year Years to match

month Months to match
date Days of month to match
weekday Days of week to match
timeofday Times of day to match

Figure 6: Syntax of thetime-switch node

Time switches take one optional parameter,timezone, which specifies the time zone in which matching
is to take place. Two values of this are predefined:local indicates the time zone in which the server is
located, andutc indicates Universal Coordinated Time. Timezones may also be specified in the ancillary
information; see section 9.

Thetime outputs can take the following optional parameters:year, month, date, day, andtimeofday.
Each argument is syntactically expressed as a list of numeric ranges. Ranges are delimited as value-value;
lists elements are separated by commas. Months are specified in the range 1-12; date as 1-31, day as 0-6
(where 0 is Sunday), and times of day as 24-hour times in the range 0000-2359; years are unlimited in range,
though only positive values are allowed.

An output node matches if the time the triggering call was placed falls within one of specified the ranges
in each of the specified parameters.

The following examples show sampletime nodes, and descriptions of the corresponding time periods
they indicate:

<time month="12" date="25" year="1999">
December 25th, 1999, all day

Lennox/Schulzrinne Expires September 2000 [Page 10]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

<time month="5" date="4">
May 4th, every year, all day

<time day="1-5" timeofday="0900-1700">
9 AM – 5 PM, Monday through Friday, every week

<time timeofday="1310-1425,1440-1555,1610-1725" day="2,4">
1:10 – 2:25 PM, 2:40 – 3:55 PM, and 4:10 – 5:25 PM, Tuesdays and Thursdays, every week

<time date="1-7" day="1">
The first Monday of every month, all day

If more complicated time ranges need to be specified, theySHOULD be broken down into component
ranges specifiable in this syntax, and their outputs connected the outputs to the same subsequent node with
subactions (see section 8).

Thenot-present output is never true for a time switch.

Note: XML schemas [10] define their own “time instant” and “time duration” syntax. Would it be better to base
this syntax on that? It doesn’t seem to be quite as powerful.

Note: the question of whether the week should start at Sunday or Monday, and of whether numbering starts
at 0 or 1, was a matter of some dispute. In the absence of any convincing argument in favor of any one proposal,
the current choice (Sunday is 0) was chosen semi-arbitrarily, because it corresponds to thetm wday field of C’s
struct tm .

Note: the way of specifying “first Monday of month” and “last Monday of month” is awfully hackish. Would it
be worthwhile to add aweek parameter, which could optionally be negative to count from the end of the month?

4.4 Priority switches

Priority switches allow a CPL script to make decisions based on the priority specified for the original call.
They are summarized in figure 7.

Node: priority-switch
Outputs: priority Specific priority to match

Parameters: none

Output: priority
Parameters: less Match if priority is less than specified

greater Match if priority is greater than specified
equal Match if priority is equal to specified

Figure 7: Syntax of thepriority-switch node

Priority switches take no parameters.
Thepriority tags take one of the three parametersgreater, less, andequal. The values of these tags

are the priorities specified in SIP [1]: in decreasing order,emergency, urgent, normal, andnon-urgent.
These values are matched in a case-insensitive manner. Outputs with theless parameter are taken if the
priority of the message is less than the priority given in the argument; and so forth.

Lennox/Schulzrinne Expires September 2000 [Page 11]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

If no priority header is specified in a message, the priority is considered to benormal. If an unknown
priority is given, the priority is considered to be equivalent tonormal for the purposes ofgreater andless
comparisons, but it is compared literally forequal comparisons.

Since every message has a priority, thenot-present output is never true for a priority switch.

5 Location modifiers

The abstract location model of the CPL is described in section 2.3. The behavior of several of the signalling
actions (defined in section 6) is dependent on the current location set specified. Location nodes add to or
remove locations from the location set.

There are three types of location nodes defined.Explicit locationsadd literally-specified locations to the
current location set;location lookupsobtain locations from some outside source; andlocation filtersremove
locations from the set, based on some specified criteria.

5.1 Explicit location

Explicit location nodes specify a location literally. Their syntax is described in figure 8.

Node: location
Outputs: any node

Parameters: url URL of address to add to location set

Figure 8: Syntax of thelocation node

Explicit location nodes have one node parameter:url, whose value is the URL of the address to add to
the location set. Only one address may be specified per location node; multiple locations may be specified
by cascading these nodes.

Basic location nodes have only one possible output, since there is no way that they can fail. (If a basic
location node specifies a location which isn’t supported by the underlying signalling protocol, the script
serverSHOULD detect this and report it to the user at the time the script is submitted.) Therefore, its XML
representation does not have explicit output nodes; the<location> tag directly contains another node
tag.

5.2 Location lookup

Locations can also be specified up through external means, through the use of location lookups. The syntax
of these tags is given in figure 9.

Location lookup nodes have one mandatory parameter, and three optional parameters. The mandatory
parameter issource, the source of the lookup. This can either be a URL, or a non-URL value. If the value
of source is a URL, it indicates a location which returns theapplication/url media type. The server
adds the locations returned by the URL to the location set.

Non-URL sources indicate a source not specified by a URL which the server can query for addresses to
add to the location set. The only non-URL sourcecurrently defined isregistration, which specifies all the
locations currently registered with the server, using SIPREGISTER or H.323RAS messages.

Lennox/Schulzrinne Expires September 2000 [Page 12]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

Node: lookup
Outputs: success Action if lookup was successful

notfound Action if lookup found no addresses
failure Action if lookup failed

Parameters: source Source of the lookup
timeout Time to try before giving up on the lookup
use Caller preferences fields to use
ignore Caller preferences fields to ignore

Output: success
Parameters: none

Output: notfound
Parameters: none

Output: failure
Parameters: none

Figure 9: Syntax of thelookup node

The lookup node also has an three optional parameters. Thetimeout parameter which specifies the
time, in seconds, the script is willing to wait for the lookup to be performed. If this is not specified, its
default value is 30.

The other two optional parameters affect the interworking of the CPL script with caller preferences and
caller capabilities. These are defined in the Internet-Draft “SIP Caller Preferences and Callee Capabilities”
[11]. By default, a CPL serverSHOULD invoke caller preferences filtering when performing alookup action.
The two parametersuse and ignore allow the script to modify how the script applies caller preferences
filtering. Theuse and ignore parameters both take as their arguments comma-separated lists of caller
preferences parameters. Ifuse is given, the server applies the caller preferences resolution algorithm only
to those preference parameters given in theuse parameter, and ignores all others; if theignore parameter is
given, the server ignores the specified parameters, and uses all the others. Only one ofuse andignore can
be specified. The addr-spec part of the caller preferences is always applied, and the script cannot modify it.

Note: this is very SIP-specific. Does H.323 have a similar endpoint-capabilities and requested-capabilities
mechanism?

TODO: Add examples. This is confusing.

Lookup has three outputs:success, notfound, and failure. Notfound is taken if the lookup process
succeeded but did not find any locations; failure is taken if the lookup failed for some reason, including that
specified timeout was exceeded. If failure is not specified, the action corresponding to notfound is taken;
if notfound is not specified, the success output is taken, but the current location set is not modified. The
success outputMUST be included.

ClientsSHOULD specify the three outputssuccess, notfound, andfailure in that order, so their script
complies with the DTD given in Appendix A, but serversSHOULD accept them in any order.

Lennox/Schulzrinne Expires September 2000 [Page 13]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

5.3 Location filtering

A CPL script can also filter addresses out of the address set, through the use of a mechanism very similar to
caller preferences: theremove-location node. The syntax of these nodes is defined in figure 10.

Node: remove-location
Outputs: any node

Parameters: param Caller preference parameter to apply
value Value of caller preference parameter
location Caller preference location to apply

Figure 10: Syntax of theremove-location node

A remove-location node has the same effect on the location set as aReject-Contact header in caller
preferences [11]. The value of thelocation parameter is treated as though it were the addr-spec field of
a Reject-Contact header; an absent header is equivalent to an addr-spec of “*” in that specification. If
param and value are present, their values are comma-separated lists of caller preferences parameters and
corresponding values, respectively. ThereMUST be the same number of parameters as values specified.
These are treated, for location filtering purposes, as though they appeared in the params field of a Reject-
Location header, as “; param=value” for each one.

Note: do we want to be able to switch based on whether there are any locations left in the set after a lookup?

Note: this is also very SIP-specific. Does H.323 have a similar endpoint-capabilities mechanism?

TODO: Add examples. This is also confusing.

6 Signalling actions

Signalling action nodes cause signalling events in the underlying signalling protocol. Three signalling ac-
tions are defined: “proxy,” “redirect,” and “reject.”

6.1 Proxy

Proxy causes the triggering call to be forwarded on to the currently specified set of locations. The syntax of
the proxy node is given in figure 11.

After a proxy action has completed, the CPL server chooses the “best” response to the call attempt, as
defined by the signalling protocol or the server’s administrative configuration rules.

If the call attempt was successful, or if a redirection response was the “best” response andrecurse was
not specified, CPL execution terminates and the best response is forwarded back upstream to the originator.
Otherwise, one of the three outputsbusy, noanswer, or failure is taken.

Note: future extension of the CPL to allow in-call or end-of-call actions will requiresuccess outputs to be
added.

Question: should an explicitredirection output be added for the case whenrecurse was false? How should it
interact with the location set?

Lennox/Schulzrinne Expires September 2000 [Page 14]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

Node: lookup
Outputs: busy Action if call attempt returned “busy”

noanswer Action if call attempt was not answered before timeout
failure Action if call attempt failed

Parameters: timeout Time to try before giving up on the call attempt
recurse Whether to recursively look up redirections
ordering What order to try the location set in.

Output: busy
Parameters: none

Output: noanswer
Parameters: none

Output: failure
Parameters: none

Figure 11: Syntax of theproxy node

Proxy has three optional parameters. Thetimeout parameter specifies the time, in seconds, to wait
for the call to be completed or rejected; after this time has elapsed, the call attempt is terminated and the
noanswer branch is taken. If this parameter is not specified, the default value is 20 seconds if theproxy
node has ano-answer output specified; otherwise the serverSHOULD allow the call to ring for an arbitrarily
long period of time.

Question: is 20 seconds a good value? How should such a value be chosen?

The second optional parameter isrecurse, which can take two values,yes or no. This specifies whether
the server should automatically attempt to place further call attempts to telephony addresses in redirection
responses that were returned from the initial server.

The third optional parameter isordering. This can have three possible values:parallel, sequential, and
first-only. This parameter specifies in what order the locations of the location set should be tried. Parallel
asks that they all be tried simultaneously; sequential asks that the first one be tried first, the second second,
and so forth, until one succeeds or the set is exhausted; first-only instructs the server to try only the first
address in the set, and then follow one of the outputs. The default value of this parameter isparallel.

Once a proxy action completes, if control is passed on to other actions, all locations which have been
used are cleared from the location set. That is, the location set is emptied ifordering wasparallel or
sequential; the first item in the set is removed from the set ifordering wasfirst-only.

For the proper actions when outputs are unspecified, see section 10.

6.2 Redirect

Redirect causes the server to direct the calling party to attempt to place its call to the currently specified set
of locations. The syntax of this node is specified in figure 12.

Redirect immediately terminates execution of the CPL script, so this node has no outputs. It also takes
no arguments.

Lennox/Schulzrinne Expires September 2000 [Page 15]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

Node: redirect
Outputs: none

Parameters: none

Figure 12: Syntax of theredirect node

Question: should there be some way of distinguishing between “moved temporarily” and “moved permanently”
(SIP 301 and 302) redirections?

6.3 Reject

Reject nodes cause the server to reject the call attempt. Their syntax is given in figure 13.

Node: reject
Outputs: none

Parameters: status Status code to return
reason Reason phrase to return

Figure 13: Syntax of thereject node

This immediately terminates execution of the CPL script, so this node has no outputs.
This node has two arguments:status andreason. Thestatus argument is required, and can take one

of the valuesbusy, notfound, reject, anderror. Servers which implement SIPMAY also allow a numeric
argument corresponding to a SIP status in the 4xx, 5xx, or 6xx range, but scriptsSHOULD NOT use them if
they wish to be portable.

The reason argument optionally allows the script to specify a reason for the rejection. CPL servers
MAY ignore the reason, but ones that implement SIPSHOULD send them in the SIP reason phrase.

7 Other actions

In addition to the signalling actions, the CPL defines several actions which do not affect the telephony
signalling protocol.

7.1 Mail

The mail node causes the server to notify a user of the status of the CPL script through electronic mail. Its
syntax is given in figure 14.

Node: mail
Outputs: any node

Parameters: url Mailto url to which the mail should be sent

Figure 14: Syntax of themail node

Lennox/Schulzrinne Expires September 2000 [Page 16]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

The mail node takes one argument: amailto URL giving the address, and any additional desired
parameters, of the mail to be sent.The server sends the message containing the content to the given url; it
SHOULD also include other status information about the state of the call and the CPL script at the time of
the notification.

Mail nodes have only one output, since failure of e-mail delivery cannot reliably be known in real-time.
Therefore, its XML representation does not have explicit output nodes: the<mail> tag directly contains
another node tag.

Using a full mailto URL rather than just an e-mail address allows additional e-mail headers to be specified,
such as<mail url="mailto:jones@example.com;subject=lookup%20failed" /> .

7.2 Log

The Log node causes the server to log information about the call to non-volatile storage. Its syntax is
specified in figure 15.

Node: log
Outputs: any node

Parameters: name Name of the log file to use
comment Comment to be placed in log file

Figure 15: Syntax of thelog node

Log takes two arguments, both optional:name, which specifies the name of the log, andcomment,
which gives a comment about the information being logged. ServersSHOULD also include other information
in the log, such as the time of the logged event, information that triggered the call to be logged, and so forth.
Logs are specific to the owner of the script which log event. If thename parameter is not given, the event
is logged to a standard, server-defined logfile for the script owner.This specification does not define how
users may retrieve their logs from the server.

A correctly operating CPL serverSHOULD NOT ever allow thelog event to fail. As such, log nodes
have only one output, and their XML representation does not have explicit output nodes. A CPL<log> tag
directly contains another node tag.

8 Subactions

XML syntax defines a tree. To allow more general call flow diagrams, and to allow script re-use and
modularity, we define subactions.

Two tags are defined for subactions: subaction definitions and subaction references. Their syntax is
given in figure 16.

Subactions are defined throughsubaction tags. These tags are placed in the CPL after any ancillary
information (see section 9) but before any top-level tags. They take one argument:id, a token indicating a
script-chosen name for the subaction.

Subactions are called fromsub tags. Thesub tag is a “pseudo-node”: it can be used anyplace in a CPL
action that a true node could be used. It takes one parameter,ref, the name of the subaction to be called.
Thesub tag contains no outputs of its own; control instead passes to the subaction.

Lennox/Schulzrinne Expires September 2000 [Page 17]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

Tag: subaction
Subtags: any node

Parameters: id Name of this subaction

Pseudo-node: sub
Outputs: none in XML tree

Parameters: ref Name of subaction to execute

Figure 16: Syntax of subactions andsub pseudo-nodes

References to subactionsMUST refer to subactions defined before the current action. Asub tagMUST

NOT refer to the action which it appears in, or to any action defined later in the CPL script. Top-level actions
cannot be called fromsub tags, or through any other means. Script serversMUST verify at the time the
script is submitted that nosub node refers to any sub-action which is not its proper predecessor.

Allowing only back-references of subs forbids any sort of recursion. Recursion would introduce the possibility
of non-terminating or non-decidable CPL scripts, a possibility our requirements specifically excluded.

Every subMUST refer to a subaction ID defined within the same CPL script. No external links are
permitted.

If any subsequent version ever defines external linkages, it will use a different tag, perhaps XLink [12]. Ensuring
termination in the presence of external links is a difficult problem.

9 Ancillary information

Only one sort of ancillary information is currently defined for CPL scripts: timezone information. The
syntax of timezone specifications is given in figure 17.

Timezone specifications consist, conceptually, of three parts: the name of the timezone, as used by time
switches in the script; the GMT offset and abbreviation of each offset used in the timezone; and the instants
at which each offset takes effect.

The name of the timezone is given by thename parameter to thetimezone tag. This is the name which
time-switch tags can specify in theirtimezone parameter.

The timezone tag must contain at least one instance of thestandard tag, which has mandatory argu-
mentsoffset, giving the zone’s offset in minutes from UTC, andabbr, giving the standard abbreviation of
the timezone. If more than one time offset is in use in a timezone during a year, thetimezone tag contains
another tag,daylight, which takes the same parameters asstandard; and each of standard and daylight has
parameters, using the same syntax astime-switch tags (section 4.3, specifying a set of instants when the
time zone rule takes effect, in the local time of the other offset.

Currently only two classes of offsets are supported. A timezone ruleMAY contain several definitions
each ofstandard anddaylight if, for instance, different rules are in effect for different years.

Figure 18 shows the timezone specification for most of the eastern United States.
Figure 19 shows a simpler timezone rule for the state of Arizona, United States; most of Arizona does

not observe daylight savings time.

Note: the syntax for specifying the first or last weekday of a month is very clumsy. A properweek parameter
might be a good thing to add.

Lennox/Schulzrinne Expires September 2000 [Page 18]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

Tag: timezone
Parameters: name Name of this timezone

Outputs: standard Specification of standard time
daylight Specification of daylight (summer) time

Tag: standard
Parameters: offset UTC offset during standard time

abbr abbreviation of this timezone
year year that this timezone transition occurs
month month that this timezone transition occurs
date day of month that this timezone transition occurs
weekday weekday that this timezone transition occurs
timeofday time of day that this timezone transition occurs

Tag: daylight
Parameters: . . . same as forstandard

Figure 17: Syntax of thetimezone tag

<timezone name="US/Eastern">
<standard offset="-0500" abbr="EST" month="10" date="25-31"

day="0" timeofday="0200" />
<!-- 2 AM, last Sunday in October -->
<daylight offset="-0400" abbr="EDT" month="4" date="1-7"

day="0" timeofday="0200" />
<!-- 2 AM, first Sunday in April -->

</timezone>

Figure 18: Timezone rule for the eastern United States.

10 Default actions

When a CPL action reaches an unspecified output, the action it takes is dependent on the current state of
script execution. This section gives the actions that should be taken in each case.

no location or signalling actions performed, location set empty:Look up the user’s location through
whatever mechanism the server would use if no CPL script were in effect. Proxy, redirect, or send a

<timezone name="US/Arizona">
<standard offset="-0700" abbr="MST" />

</timezone>

Figure 19: Timezone rule for Arizona, United States.

Lennox/Schulzrinne Expires September 2000 [Page 19]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

rejection message, using whatever policy the server would use in the absence of a CPL script.

no location or signalling actions performed, location set non-empty:(This can only happen for outgo-
ing calls.) Proxy the call to the addresses in the location set.

location actions performed, no signalling actions:Proxy or redirect the call, whichever is the server’s
standard policy, to the addresses in the current location set. If the location set is empty, returnnot-
found rejection.

noanswer output of proxy, no timeout given: (This is a special case.) If thenoanswer output of a proxy
node is unspecified, and no timeout parameter was given to the proxy node, the call should be allowed
to ring for the maximum length of time allowed by the server (or the request, if the request specified
a timeout).

proxy action previously taken: Return whatever the “best” response is of all accumulated responses to the
call to this point, according to the rules of the underlying signalling protocol.

11 Examples

TODO: these examples don’tillustrate many of the new features added to the CPL in draft -01. Add these.

11.1 Example: Call Redirect Unconditional

The script in figure 20 is a simple script which redirects all calls to a single fixed location.

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">

<cpl>
<incoming>

<location url="sip:smith@phone.example.com">
<redirect />

</location>
</incoming>

</cpl>

Figure 20: Example Script: Call Redirect Unconditional

11.2 Example: Call Forward Busy/No Answer

The script in figure 21 illustrates some more complex behavior. We see an initial proxy attempt to one
address, with further actions if that fails. We also see how several outputs take the same action, through the
use of subactions.

Lennox/Schulzrinne Expires September 2000 [Page 20]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">

<cpl>
<subaction id="voicemail">

<location url="sip:jones@voicemail.example.com" >
<proxy />

</location>
</subaction>

<incoming>
<location url="sip:jones@jonespc.example.com">

<proxy timeout="8s">
<busy>
</busy>
<noanswer>

<sub ref="voicemail" />
</noanswer>

</proxy>
</location>

</incoming>
</cpl>

Figure 21: Example Script: Call Forward Busy/No Answer

11.3 Example: Call Screening

The script in figure 22 illustrates address switches and call rejection, in the form of a call screening script.
Note also that because the address-switch lacks anotherwise clause, if the initial pattern did not match,
the script does not define any action. The server therefore proceeds with its default action, which would
presumably be to contact the user.

11.4 Example: Time-of-day Routing

Figure 23 illustrates time-based conditions and timezones.

11.5 Example: Non-call Actions

Figure 24 illustrates non-call actions; in particular, alerting a user by electronic mail if the lookup server
failed. The primary reason for themail node is to allow this sort of out-of-band notification of error condi-
tions, as the user might otherwise be unaware of any problem.

11.6 Example: A Complex Example

Finally, figure 25 is a complex example which shows the sort of sophisticated behavior which can be
achieved by combining CPL nodes. In this case, the user attempts to have his calls reach his desk; if he

Lennox/Schulzrinne Expires September 2000 [Page 21]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">

<cpl>
<incoming>

<address-switch field="origin" subfield="user">
<address is="anonymous">

<reject status="reject"
reason="I don’t accept anonymous calls" />

</address>
</address-switch>

</incoming>
</cpl>

Figure 22: Example Script: Call Screening

does not answer within a small amount of time, calls from his boss are forwarded to his celphone, and all
other calls are directed to voicemail.

Lennox/Schulzrinne Expires September 2000 [Page 22]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">

<cpl>
<timezone name="US/Eastern">

<standard offset="-0500" abbr="EST" month="10" date="25-31"
day="0" timeofday="0200" />

<!-- 2 AM, last Sunday in October -->
<daylight offset="-0400" abbr="EDT" month="4" date="1-7"

day="0" timeofday="0200" />
<!-- 2 AM, first Sunday in April -->

</timezone>

<incoming>
<time-switch timezone="US/Eastern">

<time day="1-5" timeofday="0900-1700">
<lookup source="registration">

<success>
<proxy />

</success>
</lookup>

</time>
<otherwise>

<location url="sip:jones@voicemail.example.com">
<proxy />

</location>
</otherwise>

</time-switch>
</incoming>

</cpl>

Figure 23: Example Script: Time-of-day Routing

Lennox/Schulzrinne Expires September 2000 [Page 23]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">

<cpl>
<incoming>

<lookup source="http://www.example.com/cgi-bin/locate.cgi?user=jones"
timeout="8">

<success>
<proxy />

</success>
<failure>

<mail url="mailto:jones@example.com;subject=lookup%20failed" />
</failure>

</lookup>
</incoming>

</cpl>

Figure 24: Example Script: Non-call Actions

Lennox/Schulzrinne Expires September 2000 [Page 24]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">

<cpl>
<subaction id="voicemail">

<location url="sip:jones@voicemail.example.com">
<redirect />

</location>
</subaction>

<incoming>
<location url="sip:jones@phone.example.com">

<proxy timeout="8s">
<busy>

<sub ref="voicemail" />
</busy>
<noanswer>

<address-switch field="origin">
<address contains="boss@example.com">

<location url="tel:+19175551212">
<proxy />

</location>
</address>
<otherwise>

<sub ref="voicemail" />
</otherwise>

</address-switch>
</noanswer>

</proxy>
</location>

</incoming>
</cpl>

Figure 25: Example Script: A Complex Example

Lennox/Schulzrinne Expires September 2000 [Page 25]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

12 Security considerations

The CPL is designed to allow services to be specified in a manner which prevents potentially hostile or
mis-configured scripts from launching security attacks, including denial-of-service attacks. Because script
runtime is strictly bounded by acyclicity, and because the number of possible script actions are strictly
limited, scripts should not be able to inflict damage upon a CPL server.

Because scripts can direct users’ telephone calls, the method by which scripts are transmitted from a
client to a serverMUST be strongly authenticated. Such a method is not specified in this document.

Script serversSHOULD allow server administrators to control the details of what CPL actions are per-
mitted.

13 Acknowledgments

We would like to thank Tom La Porta and Jonathan Rosenberg for their contributions and suggestions.
We drew a good deal of inspiration, notably the language’s lack of Turing-completeness and the syntax

of string matching, from the specification of Sieve [13], a language for user filtering of electronic mail
messages.

A The XML DTD for CPL

This section includes a full DTD describing the XML syntax of the CPL. Every script submitted to a CPL
serverSHOULD comply with this DTD; however, CPL serversSHOULD allow minor variations from it,
particularly in the ordering of output branches of nodes. Note that compliance with this DTD is not a
sufficient condition for correctness of a CPL script, as many of the conditions described above are not
expressible in DTD syntax.

<?xml version="1.0" encoding="US-ASCII" ?>

<!--
Draft DTD for CPL, corresponding to
draft-ietf-iptel-cpl-01.

-->

<!-- Top-level tags of the CPL -->
<!-- Ancillary information -->
<!ENTITY % Ancillary ’timezone’ >

<!-- Subactions -->
<!ENTITY % Subactions ’subaction’ >

<!-- Top-level actions -->
<!ENTITY % TopLevelAction ’incoming|outgoing’ >

<!-- Nodes. -->

Lennox/Schulzrinne Expires September 2000 [Page 26]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

<!-- Switch nodes -->
<!ENTITY % Switch ’address-switch|string-switch|time-switch|

priority-switch’ >

<!-- Location nodes -->
<!ENTITY % Location ’location|lookup|remove-location’ >

<!-- Signalling action nodes -->
<!ENTITY % SignallingAction ’proxy|redirect|reject’ >

<!-- Other actions -->
<!ENTITY % OtherAction ’mail|log’ >

<!-- Links to subactions -->
<!ENTITY % Sub ’sub’ >

<!-- Nodes are one of the above four categories, or a subaction.
This entity (macro) describes the contents of an output.
Note that a node can be empty, implying default action. -->

<!ENTITY % Node ’(%Location;|%Switch;|%SignallingAction;|
%OtherAction;|%Sub;)?’ >

<!-- Switches: choices a CPL script can make. -->

<!-- All switches can have an ’otherwise’ output. -->
<!ELEMENT otherwise (%Node;) >

<!-- All switches can have a ’not-present’ output. -->
<!ELEMENT not-present (%Node;) >

<!-- Address-switch makes choices based on addresses. -->
<!ELEMENT address-switch ((address|not-present)+, otherwise?) >
<!ATTLIST address-switch

field CDATA #REQUIRED
subfield CDATA #IMPLIED

>

<!ELEMENT address (%Node;) >
<!ATTLIST address

is CDATA #IMPLIED
contains CDATA #IMPLIED
subdomain-of CDATA #IMPLIED

>

Lennox/Schulzrinne Expires September 2000 [Page 27]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

<!-- String-switch makes choices based on strings. -->

<!ELEMENT string-switch ((string|not-present)+, otherwise?) >
<!ATTLIST string-switch

field CDATA #REQUIRED
>

<!ELEMENT string (%Node;) >
<!ATTLIST string

is CDATA #IMPLIED
contains CDATA #IMPLIED

>

<!-- Time-switch makes choices based on the current time. -->

<!ELEMENT time-switch ((time|not-present)+, otherwise?) >
<!ATTLIST time-switch

timezone CDATA #IMPLIED
>

<!ELEMENT time (%Node;) >
<!ATTLIST time

year CDATA #IMPLIED
month CDATA #IMPLIED
date CDATA #IMPLIED
day CDATA #IMPLIED
timeofday CDATA #IMPLIED

>

<!-- Priority-switch makes choices based on message priority. -->

<!ELEMENT priority-switch ((priority|not-present)+, otherwise?) >

<!ENTITY % PriorityVal ’(emergency|urgent|normal|non-urgent)’ >

<!ELEMENT priority (%Node;) >
<!ATTLIST priority

less %PriorityVal; #IMPLIED
greater %PriorityVal; #IMPLIED
equal CDATA #IMPLIED

>

Lennox/Schulzrinne Expires September 2000 [Page 28]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

<!-- Locations: ways to specify the location a subsequent action
(proxy, redirect) will attempt to contact. -->

<!ENTITY % Clear ’clear (yes|no) "no"’ >

<!ELEMENT location (%Node;) >
<!ATTLIST location

url CDATA #REQUIRED
%Clear;

>

<!ELEMENT lookup (success,notfound?,failure?) >
<!ATTLIST lookup

source CDATA #REQUIRED
timeout CDATA "30"
use CDATA #IMPLIED
ignore CDATA #IMPLIED
%Clear;

>

<!ELEMENT success (%Node;) >
<!ELEMENT notfound (%Node;) >
<!ELEMENT failure (%Node;) >

<!ELEMENT remove-location (%Node;) >
<!ATTLIST remove-location

param CDATA #IMPLIED
value CDATA #IMPLIED
location CDATA #IMPLIED

>

<!-- Signalling Actions: call-signalling actions the script can
take. -->

<!ELEMENT proxy (busy?,noanswer?,failure?) >
<!ATTLIST proxy

timeout CDATA "20"
recurse (yes|no) "yes"
ordering CDATA "parallel"

>

<!ELEMENT busy (%Node;) >
<!ELEMENT noanswer (%Node;) >
<!-- "failure" repeats from lookup above. XXX? -->

Lennox/Schulzrinne Expires September 2000 [Page 29]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

<!ELEMENT redirect EMPTY >

<!-- Statuses we can return -->

<!ELEMENT reject EMPTY >
<!ATTLIST reject

status CDATA #REQUIRED
reason CDATA #IMPLIED

>

<!-- Non-signalling actions: actions that don’t affect the call -->

<!ELEMENT mail (%Node;) >
<!ATTLIST mail

url CDATA #REQUIRED
>

<!ELEMENT log (success,failure?) >
<!ATTLIST log

name CDATA #IMPLIED
comment CDATA #IMPLIED

>

<!-- Calls to subactions. -->

<!ELEMENT sub EMPTY >
<!ATTLIST sub

ref IDREF #REQUIRED
>

<!-- Ancillary data -->
<!-- Timezone information -->
<!ELEMENT timezone (standard,daylight?) >
<!ATTLIST timezone

name CDATA #REQUIRED
>

<!ENTITY % ZoneParams
’ offset CDATA #REQUIRED

abbr CDATA #REQUIRED
year CDATA #IMPLIED

Lennox/Schulzrinne Expires September 2000 [Page 30]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

month CDATA #IMPLIED
date CDATA #IMPLIED
day CDATA #IMPLIED
timeofday CDATA #IMPLIED’ >

<!ELEMENT standard EMPTY>
<!ATTLIST standard

%ZoneParams;
>

<!ELEMENT daylight EMPTY>
<!ATTLIST daylight

%ZoneParams;
>

<!-- Top-level action nodes -->
<!ELEMENT subaction (%Node;)>
<!ATTLIST subaction

id ID #REQUIRED
>

<!ELEMENT outgoing (%Node;)>

<!ELEMENT incoming (%Node;)>

<!-- The top-level element of the script. -->

<!ELEMENT cpl (timezone*,subaction*,outgoing?,incoming?) >

B TODO

See also the TODO notes in in motivation comments scattered throughout the document.

� Investigate XML Schemas as an alternative to DTDs: they may be more flexible and/or powerful.

� Determine proper system and public identifiers for the DTD.

� Registerapplication/cpl as a MIME media type.

Lennox/Schulzrinne Expires September 2000 [Page 31]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

C Changes from earlier versions

C.1 Changes from draft -00

The changebars in the Postscript and PDF versions of this document indicate significant changes from this
version.

� Added high-level structure; script doesn’t just start at a first action.

� Added a section giving a high-level explanation of the location model.

� Added informal syntax specifications for each tag so people don’t have to try to understand a DTD to
figure out the syntax.

� Added subactions, replacing the oldlink tags. Links were far too reminiscent of gotos for everyone’s
taste.

� Added ancillary information section, and timezone support.

� Added not-present switch output.

� Added address switches.

� Made case-insensitive string matching locale-independent.

� Added priority switch.

� Deleted “Other switches” section. None seem to be needed.

� Unifiedurl andsource parameters oflookup.

� Added caller prefs tolookup.

� Added location filtering.

� Eliminated “clear” parameter of location setting. Instead,proxy “eats” locations it has used.

� Addedrecurse andordering parameters toproxy.

� Added default value oftimeout for proxy.

� Renamedresponse to reject.

� Changednotify to mail, and simplified it.

� Simplifiedlog, eliminating itsfailure output.

� Added description of default actions at various times during script processing.

� Updated examples for these changes.

� Updated DTD to reflect new syntax.

Lennox/Schulzrinne Expires September 2000 [Page 32]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

D Authors’ Addresses

Jonathan Lennox
Dept. of Computer Science
Columbia University
1214 Amsterdam Avenue, MC 0401
New York, NY 10027
USA
electronic mail:lennox@cs.columbia.edu

Henning Schulzrinne
Dept. of Computer Science
Columbia University
1214 Amsterdam Avenue, MC 0401
New York, NY 10027
USA
electronic mail:schulzrinne@cs.columbia.edu

References

[1] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP: session initiation protocol,” Request
for Comments (Proposed Standard) 2543, Internet Engineering Task Force, Mar. 1999.

[2] International Telecommunication Union, “Packet based multimedia communication systems,” Rec-
ommendation H.323, Telecommunication Standardization Sector of ITU, Geneva, Switzerland, Feb.
1998.

[3] T. Bray, J. Paoli, and C. M. Sperberg-McQueen, “Extensible markup language (XML) 1.0,” W3C
Recommendation REC-xml-19980210, World Wide Web Consortium (W3C), Feb. 1998. Available at
http://www.w3.org/TR/REC-xml.

[4] J. Lennox and H. Schulzrinne, “Call processing language framework and requirements,” Internet Draft,
Internet Engineering Task Force, July 1999. Work in progress.

[5] S. Bradner, “Key words for use in RFCs to indicate requirement levels,” Request for Comments (Best
Current Practice) 2119, Internet Engineering Task Force, Mar. 1997.

[6] D. Raggett, A. L. Hors, and I. Jacobs, “HTML 4.0 specification,” W3C Recommendation REC-html40-
19980424, World Wide Web Consortium (W3C), Apr. 1998. Available at http://www.w3.org/TR/REC-
html40/.

[7] ISO (International Organization for Standardization), “Information processing — text and office sys-
tems — standard generalized markup language (SGML),” ISO Standard ISO 8879:1986(E), Interna-
tional Organization for Standardization, Geneva, Switzerland, Oct. 1986.

[8] M. Davis and M. Dürst, “Unicode normalization forms,” Unicode Technical Report 15, Unicode Con-
sortium, Nov. 1999. Revision 18.0. Available at http://www.unicode.org/unicode/reports/tr15/.

Lennox/Schulzrinne Expires September 2000 [Page 33]

INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

[9] M. Davis, “Case mapping,” Unicode Technical Report 21, Unicode Consortium, Nov. 1999. Revision
3.0. Available at http://www.unicode.org/unicode/reports/tr21/.

[10] D. C. Fallside, “XML schema part 0: Primer,” Working Draft WD-xmlschema-0-20000225, World
Wide Web Consortium (W3C), Feb. 2000. Available at http://www.w3.org/TR/xmlschema-0/.

[11] H. Schulzrinne and J. Rosenberg, “SIP caller preferences and callee capabilities,” Internet Draft, Inter-
net Engineering Task Force, Mar. 2000. Work in progress.

[12] S. DeRose, E. Maler, D. Orchard, and B. Trafford, “XML linking language (XLink),” Work-
ing Draft WD-xlink-20000221, World Wide Web Consortium (W3C), Feb. 2000. Available at
http://www.w3.org/TR/xlink/.

[13] T. Showalter, “Sieve: A mail filtering language,” Internet Draft, Internet Engineering Task Force, Mar.
1999. Work in progress.

Full Copyright Statement

Copyright (c) The Internet Society (2000). All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that

comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to the Internet Society or
other Internet organizations, except as needed for the purpose of developing Internet standards in which case
the procedures for copyrights defined in the Internet Standards process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or
its successors or assigns.

This document and the information contained herein is provided on an ”AS IS” basis and THE IN-
TERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Lennox/Schulzrinne Expires September 2000 [Page 34]

