Internet Engineering Task Force IPTEL WG
INTERNET-DRAFT Lennox/Schulzrinne
draft-ietf-iptel-cpl-01.ps Columbia University
March 10, 2000

Expires: September 2000

CPL: A Language for User Control of Internet Telephony Services

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its
working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced,
or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”
To view the list Internet-Draft Shadow Directories, $d#p://www.ietf.org/shadow.html.

Copyright Notice
Copyright (c) The Internet Society (2000). All Rights Reserved.

Abstract

The Call Processing Language (CPL) is a language that can be used to describe and control Internet
telephony services. Itis designed to be implementable on either network servers or user agent servers. It
is meant to be simple, extensible, easily edited by graphical clients, and independent of operating system
or signalling protocol. It is suitable for running on a server where users may not be allowed to execute
arbitrary programs, as it has no variables, loops, or ability to run external programs.

This document is a product of the IP TelephonyT(#) working group of the Internet Engineering
Task Force. Comments are solicited and should be addressed to the working group’s mailing list at
iptel@lists.research.bell-labs.com and/or the authors.

Contents
1 Introduction 3
1.1 Conventionsofthisdocument . . . . . . .. .. ... ... . . .. .. 3
2 Structure of CPL scripts 3
2.1 High-levelstructure . . . . . . . . . 3
2.2 Abstract structure of a call processingaction . . . . .. ... .. ... ... ... 4
2.3 Locationmodel . . . . .. e 5
2.4 XMLSIUCIUIE . . . . . e e e e 5
3 Script structure: overview 5
4 Switches 5
4.1 Addressswitches . . . . . . . . . . e e e 7
4.1.1 AddressswitchmappingforSIP . . . . . ... .. ... ... ... 8
4.1.2 AddressswitchmappingforH.323 . . . . . . ... ... ... . ... 9

4.2 StringSWItChes . . . . . . . . 9



INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000
4.3 Timeswitches . . . . . . . . e e, 10
4.4 Priority SWitChes . . . . . . . 11

5 Location modifiers 12
5.1 Explicitlocation . . . . . . . . . 12
5.2 Locationlookup . . . . . . . 12
5.3 Locationfiltering . . . . . . . .. 14

6 Signalling actions 14
6.1 ProxXy . . . . o 14
6.2 Redirect . . . . . . . s 15
6.3 ReJeCt . . . . . 16

7 Other actions 16
7.1 Mail . . e 16
7.2 LOQ . . o 17

8 Subactions 17

9 Ancillary information 18

10 Default actions 19

11 Examples 20
11.1 Example: Call Redirect Unconditional . . . . . . ... ... ... ... ... ........ 20
11.2 Example: Call Forward Busy/NOAnNSWer . . . . . . . . . . . ittt 20
11.3 Example: Call Screening . . . . . . . . . . . e 21
11.4 Example: Time-of-day Routing . . . . . . . . . . . . . . . . . 21
11.5 Example: Non-call Actions . . . . . . . . . . . . e 21
11.6 Example: AComplex Example . . . . . . . . . . e 21

12 Security considerations 26

13 Acknowledgments 26

A The XML DTD for CPL 26

B TODO 31

C Changes from earlier versions 32
C.1 Changesfromdraft-00 . . . . . . . . . . . . . . . 32

D Authors’ Addresses 33

Lennox/Schulzrinne Expires September 2000 [Page 2]



INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

1 Introduction

The Call Processing Language (CPL) is a language that can be used to describe and control Internet tele-
phony services. Itis not tied to any particular signalling architecture or protocol; it is anticipated that it will
be used with both SIP [1] and H.323 [2].

The CPL is powerful enough to describe a large number of services and features, but it is limited in
power so that it can run safely in Internet telephony servers. The intention is to make it impossible for users
to do anything more complex (and dangerous) than describing Internet telephony services. The language is
not Turing-complete, and provides no way to write loops or recursion.

The CPL is also designed to be easily created and edited by graphical tools. It is based on XML [3], so
parsing it is easy and many parsers for it are publicly available. The structure of the language maps closely
to its behavior, so an editor can understand any valid script, even ones written by hand. The language is also
designed so that a server can easily confirm scripts’ validity at the time they are delivered to it, rather that
discovering them while a call is being processed.

Implementations of the CPL are expected to take place both in Internet telephony servers and in advanced
clients; both can usefully process and direct users’ calls. In the former case, a mechanism will be needed to
transport scripts between clients and servers; this document does not describe such a mechanism, but related
documents will.

The framework and requirements for the CPL architecture are described in the document “Call Procegs-
ing Language Framework and Requirements,” which will be an Informational RFC; it is currently available
as the Internet-Draffraft-ietf-iptel-cpl-framework-02 [4].

1.1 Conventions of this document

In this document, the key words1tusT”, “ MUST NOT”, “ REQUIRED’, “ SHALL”", “ SHALL NOT”, “ SHOULD",
“SHOULD NOT’, “RECOMMENDED, “MAY”, and “OPTIONAL” are to be interpreted as described in RFC
2119 [5] and indicate requirement levels for compliant CPL implementations.

In examples, non-XML strings such aactionl- , -action2- , and so forth, are sometimes used.
These represent further parts of the script which are not relevant to the example in question.

Some paragraphs are indented, like this; they give motivations of design choices, or questions for future discus-
sion in the development of the CPL, and are not essential to the specification of the language.

2 Structure of CPL scripts

2.1 High-level structure

A CPL script consists of two types of informatioancillary informationabout the script, ancall processing
actions.

A call processing action is a structured tree that describes the decisions and actions a telephony signalling
server performs on a call set-up event. There are two types of call processing acdjplevel actiongare
actions that are triggered by signalling events that arrive at the server. Two top-level action names are
defined:incoming, the action performed when a call arrives whose destination is the owner of the script;
andoutgoing, the action performed when a call arrives whose originator is the owner of the s8tipt.
actionsare actions which can be called from other actions. The CPL forbids sub-actions from being called
recursively: see section 8.

Lennox/Schulzrinne Expires September 2000 [Page 3]



INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

Note: The names “action,” “sub-action,” and “top-level action” are probably not ideal. Suggestions for better
names for these concepts are welcomed.

Ancillary information is information which is @cessary for a server to correctly process a script, but
which does not directly describe any actions. Currently, the only type of ancillary information defined i$
timezone definitions; see section 9.

2.2 Abstract structure of a call processing action

Abstractly, a call processing actias described by a collection of nodes, which describe actions that can be
performed or choices which can be made. A node may have several parameters, which specify the precise
behavior of the node; they usually also have outputs, which depend on the result of the condition or action.

For a graphical representation of a CPL action, see figure 1. Nodes and outputs can be thought of
informally as boxes and arrows; the CPL is designed so that actions can be conveniently edited graphically
using this representation. Nodes are arranged in a s&gting at a single root node; outputs of nodes are
connected to additional nodes. When an action is rilng action or condition described by the top-level
node is performed; based on the result of that node, the server follows one of the node’s outputs, and that
action or condition is performed; this process continues until a node with no specified outmashed.
Because the graph is acyclic, this will occur after a bounded and predictable number of nodes are visited.

If an output to a node is not specified, it indicates that the CPL server should perform a node- or protocol-
specific action. Some nodes have specific default actions associated with them; for others, the default action
is implicit in the underlying signalling protocol, or can be configured by the administrator of the server. For
further details on this, see section 10.

busy
location proxy timeout

url: sip:jones@ —» timeout: 10s
example.com

Address-switch
Call—» field: from

subfield: host

subaddress-of:
example.com

otherwise rooTmo R s
oicemail

failure

<

| location
4 Url: sip:;jones@

- ' »- redirect
voicemail.

example.com

Figure 1: Sample CPL Action: Graphical Version

Lennox/Schulzrinne Expires September 2000 [Page 4]



INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

2.3 Location model

For flexibility, one piece of informationatessary for the function of a CPL is not given as node parameters:
the set of locations to which a call is to be directed. Instead, this set of locations is stored as an implicit
global variable throughout the execution of a processing action (and its sub-actions). This allows locations
to be retrieved from external sources, filtered, and so forth, without requiring general language support for
such actions (which could harm the simplicity and tractability of understanding the language). The specilic
actions which add, retrieve, or filter location sets are given in section 5.

For the incoming top-level processing action, the location set is initialized to the empty set. For th=
outgoing action, it is initialized to the destination address of the call.

2.4 XML structure

Syntactically, CPL scripts are represented by XML documents. XML is thoroughly specified by [3], and
implementors of this specification should be familiar with that document, but as a brief overview, XML
consists of a hierarchical structure of tags; each tag can have a number of attributes. It is visually and
structurally very similarto HTML [6], as both languages are simplifications of the earlier and larger standard
SGML [7].

See figure 2 for the XML document corresponding to the graphical representation of the CPL script in
figure 1. Both nodes and outputs in the CPL are represented by XML tags; parameters are represented by
XML tag attributes. Typically, node tags contain output tags, and vice-versa (with one exception; see section
2.3).

The connection between the output of a node and another node is represented by enclosing the tag
representing the pointed-to node inside the tag for the outer node’s output. Convergence (several outputs
pointing to a single node) is represented by sub-actions, discussed further in section 8.

The higher-level structure of a CPL script is represented by tags corresponding to each piece of meta-
information, sub-actions, and top-level actions, in order. This higher-level information is all enclosed in a
special tagpl, the outermost tag of the XML document.

A complete Document Type Declaration for the CPL is provided in Appendix A. The remainder of the
main sections of this document describe the semantics of the CPL, while giving its syntax inforiradly.
the formal syntax, please see the appendix.

3 Script structure: overview

As mentioned, a CPL script consists of ancillary information, subactions, and top-level actions. The full
syntax of thecpl node is given in figure 3.

Call processing actions, both top-level actions and sub-actions, consist of nodes and outputs. Nodes
and outputs are both described by XML tags. There are four categories of CPL sedities location
modifiers signalling actionsandnon-signalling actions.

4 Switches

Switches represent choices a CPL script can make, based on either attributes of the original call request or
items independent of the call.

Lennox/Schulzrinne Expires September 2000 [Page 5]



INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

<?xml version="1.0" ?>
<IDOCTYPE cpl SYSTEM "cpl.dtd">

<cpl>
<subaction id="voicemail">
<location url="sip:jones@voicemail.example.com">
<redirect />
</location>
</subaction>

<incoming>
<address-switch field="origin" subfield="host">
<address subdomain-of="example.com">
<location url="sip:jones@example.com">
<proxy>
<busy> <sub ref="voicemail" /> </busy>
<noanswer> <sub ref="voicemail" /> </noanswer>
<failure> <sub ref="voicemail" /> </failure>
</proxy>
</location>
</address>
<otherwise>
<sub ref="voicemail" />
</otherwise>
</address-switch>
</incoming>
</cpl>

Figure 2: Sample CPL Script: XML Version

Node: cpl
Parameters: none
Outputs: timezone See section 9
subaction See section 8
outgoing  Top-level actions to take on this user’s outgoing calls
incoming  Top-level actions to take on this user’s incoming calls

Output: outgoing
Parameters: none

Output: incoming
Parameters: none

Figure 3: Syntax of the top-levepl tag

Lennox/Schulzrinne Expires September 2000 [Page 6]



INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

All switches are arranged as a list of conditions that can match a variable. Each condition corresponds
to a node output; the output points to the next node to execute if the condition was true. The conditions are
tried in the order they are presented in the script; the output corresponding to the first node to match is taken.

There are two special switch outputs that apply to every switch type. The cutpptresent is true
if the variable the switch was to match was not present in the original call. The aitprivise, which
MUST be the last output specified, matches if no other condition matched.

If no condition matches and natherwise output was present in the script, the default script action is
taken. See section 10 for more information on this.

4.1 Address switches

Address switches allow a CPL script to make decisions based on one of the addresses present in the origcinal
call request. They are summarized in figure 4.

Node: address-switch

Outputs: address Specific addresses to match
Parameters: field origin, destination, or original-destination
subfield address-type, user, host, port, tel, display,

password, orasnl

Output: address
Parameters: is exact match
contains substring match (fodisplay only)
subdomain-of  sub-domain match (fdnost, tel only)

Figure 4: Syntax of thaddress-switch node

Address switches have two node parametiesd, andsubfield. The mandatoryield parameter allows
the script to specify which address is to be considered for the switch: either the call’'s origin address (field
“origin”), its current destination address (fieldéstination”), or its original destination (field driginal-
destination”), the destination the call had before any earlier forwarding was invoked. Senersiefine
additional subfield values.

The optionakubfield specifies what part of the address is to be considered. The possible subfield values
are: address-type, user, host, port, tel, anddisplay. Additional subfield valuesiAy be defined: two ad-
ditional onespassword andasnl are defined specifically for SIP and H.323 respectively, in sections 4.1.1
and 4.1.2 below. If no subfield is specified, the “entire” address is matched; the precise meaning of this is
defined for each underlying sigifiag protocol.

The subfields are defined as follows:

address-type This indicates the type of the underlying address; i.e., the URI scheme, if the address can be
represented by the URI. The types specifically discussed by this documeip,det, andh323. The
address type is not case-sensitive; it is always present if the address is present.

user This subfield of the address indicates, for e-mail style addresses, the user part of the address. ~or
telephone number style address, it includes the subscriber number. This subfield is case-sensitive; it
may be not present.

Lennox/Schulzrinne Expires September 2000 [Page 7]



INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

host This subfield of the address indicates the Internet host name or IP address corresponding to the addrzss,
in host name, IPv4, or IPv6 format. For host names only, subdomain matching is supported with the
subdomain-of match operator. It is not case sensitive, and may be not present.

port This subfield indicates the TCP or UDP port number of the address, numerically in decimal formay.
It is not case sensitive, asNMuST only contain decimal digits. It may be not present; however, for
address types with default ports, an absent port matches the default port number.

tel This subfield indicates a telephone subscriber number, if the address contains such a number. It is hot
case sensitive (the telephone numbers may contain the symbols ‘A’ ‘B’ ‘C’ and ‘D’), and may be
not present. It may be matched using sfubdomain-of match operator. Punctuation and separator
characters in telephone numbers are discarded.

display This subfield indicates a “display name” or user-visible name corresponding to an address. It s
a Unicode string, and is matched using the case-insensitive algorithm described in section 4.2. The
contains operator may be applied to it. It may be not present.

For any completely unknown subfield, the sermaty reject the script at the time it is submitted with
an indication of the problem; if a script with an unknown subfield is executed, the sewgar consider the
not-present output to be the valid one.

Theaddress output tag may take exactly one of three possible parameters, indicating the kind of match-
ing allowed.

is An output with this match operator is followed if the subfield being matched iratiteess-switch
exactly matches the argument of the operator. It may be used for any subfield, or for the entire address
if no subfield was specified.

subdomain-of This match operator applies only for the subfiehist andtel. In the former case, it
matches if the hostname being matched is a subdomain of the domain given in the argument of the
match operator; thuspatch="example.com"  would match the hostnames “example.com”, “re-
search.example.com”, and “zaphod.sales.internal.example.com”. IP addresses may be given as argu-
ments to this operator; however, they only match exactly. In the case ¢éltbabfield, the output
matches if the telephone number being matched has a prefix that matches the argument of the métch
operator; match="1212555" would match the telephone number “1 212 555 1212."

contains This match operator applies only for the subfidisplay. The output matches if the display name
being matched contains the argument of the match as a substring.

4.1.1 Address switch mapping for SIP

For SIP, theorigin address corresponds to the address irFtioen headerdestination corresponds to the
Request-URI; andoriginal-destination corresponds to th& header.

Thedisplay subfield of an address is the display-name part of the address, if it is present. Because [of
SIP’s syntax, thelestination address field will never havedisplay subfield.

Theaddress-type subfield of an address is the URI scheme of that address. Other address fields depend
on thataddress-type.

For sip URLs, thauser, host, andport subfields correspond to the “user,” “host,” and “port” elements
of the URI syntax. Theel subfield is defined to be the “user” part of the URI if and only if the “user=phone”

Lennox/Schulzrinne Expires September 2000 [Page 8]



INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

parameter is given to the URI. An additional subfigddssword is defined to correspond to the “password”
element of the SIP URI; however, use of this fielohisT RECOMMENDEDfor general security reasons.

For tel URLSs, theel anduser subfields are the subscriber name; in the former case, “noise” characters
are stripped. thbost andport subfields are both not present.

For other URI schemes, only tleeldress-type subfield is defined by this specification; servewsy
set others of the pre-defined subfieldsvaly support additional subfields.

If no subfield is specified for addresses in SIP messages, the string matched is the URI part of the
address, with all parameters stripped.

4.1.2 Address switch mapping for H.323

For H.323, theorigin address corresponds to the address istheceAddress field; bothdestination and
original-destination correspond to theestinationAddress field, as H.323 has no indication of original
destination.

For all addresses in H.323 messages, the value of athdress-type field is h323. The
tel tag is set to the AliasAddress, if its type is el64. Thger tag is set to h323-ID;host
is set to transportID/TransportAddress/ipAddress, translated to a dotted-qoad;is set to trans-
portID/TransportAddress/ipAddress/port. Ttlisplay tag is not present. An additional subfiesnl, is
defined as the textually-encoded ASN.1 of the address. The matching if no subfield is specified is undefiried
at this time.

TODO: Have this looked over by an H.323 expert for accuracy/completeness. Oh82&rJRL scheme is
defined, it should be used for the whole-address matching.

4.2 String switches

String switches allow a CPL script to make decisions based on free-form Unicode strings present in a call
request. They are summarized in figure 5.

Node: string-switch
Outputs: string Specific string to match
Parameters: field subject, organization, or user-agent

Output: string
Parameters: is exact match
contains substring match

Figure 5: Syntax of thetring-switch node

String switches have one node paramefiefd. The mandatoryield parameter specifies which string is
to be matched. Currently three fields are defirmdbject, indicating the subject of the calbrganization,
indicating the originator’s organization; ander-agent, indicating the program or device with which the
call request was made. All these fields correspond to SIP strings.

TODO: Need H.323 free-form strings. “Data”?

Lennox/Schulzrinne Expires September 2000 [Page 9]



INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

Strings are matched as case-insensitive Unicode strings, in the following manner. First, strings gre
canonicalized to the “Compatibility Composition” (KC) form, as specified in Unicode Technical Report 15
[8]. Then, strings are compared using locale-insensitive caseless mapping, as specified in Unicode Technical
Report 21 [9].

Code to perform the first step, in Java and Perl, is available; see the links from Annex E of UTR 15 [8]. The case-

insensitive string comparison in the Java standard class libraries already performs the second step; other Unicode-
aware libraries should be similar.

The output tags of string matching are nangtdng, and have a mandatory argument, ondsobr
contains, indicating whole-string match or substring match, respectively.
4.3 Time switches

Time switches allow a CPL script to make decisions based the time and/or date the script is being executed.
They are summarized in figure 6.

Node: time-switch

Outputs: time Specific time to match
Parameters: timezone local, utc, or other (see section 9)
Output: time
Parameters: year Years to match
month Months to match
date Days of month to match

weekday Days of week to match
timeofday  Times of day to match

Figure 6: Syntax of théme-switch node

Time switches take one optional parametienezone, which specifies the time zone in which matching
is to take place. Two values of this are predefinkmtal indicates the time zone in which the server is
located, anditc indicates Universal Coordinated Time. Timezones may also be specified in the ancillary
information; see section 9.

Thetime outputs can take the following optional parametgesar, month, date, day, andtimeofday.
Each argument is syntactically expressed as a list of numeric ranges. Ranges are delimited as value-value;
lists elements are separated by commas. Months are specified in the range 1-12; date as 1-31, day as 0-6
(where 0 is Sunday), and times of day as 24-hour times in the range 0000-2359; years are unlimited in range,
though only positive values are allowed.

An output node matches if the time the triggering call was placed falls within one of specified the ranges
in each of the specified parameters.

The following examples show sampiene nodes, and descriptions of the corresponding time periods
they indicate:

<time month="12" date="25" year="1999">
December 25th, 1999, all day

Lennox/Schulzrinne Expires September 2000 [Page 10]



INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

<time month="5" date="4">
May 4th, every year, all day

<time day="1-5" timeofday="0900-1700">
9 AM -5 PM, Monday through Friday, every week

<time timeofday="1310-1425,1440-1555,1610-1725" day="2,4">
1:10 - 2:25 PM, 2:40 — 3:55 PM, and 4:10 — 5:25 PM, Tuesdays and Thursdays, every week

<time date="1-7" day="1">
The first Monday of every month, all day

If more complicated time ranges need to be specified, greyuLD be broken down into component
ranges specifiable in this syntax, and their outputs connected the outputs to the same subsequent node with
subactions (see section 8).

Thenot-present output is never true for a time switch.

Note: XML schemas [10] define their own “time instant” and “time duration” syntax. Would it be better to base
this syntax on that? It doesn’t seem to be quite as powerful.

Note: the question of whether the week should start at Sunday or Monday, and of whether numbering starts
at 0 or 1, was a matter of some dispute. In the absence of any convincing argument in favor of any one proposal,
the current choice (Sunday is 0) was chosen semi-arbitrarily, because it correspondsrtonttiay field of C’s
struct tm

Note: the way of specifying “first Monday of month” and “last Monday of month” is awfully hackish. Would it
be worthwhile to add aveek parameter, which could optionally be negative to count from the end of the month?

4.4 Priority switches

Priority switches allow a CPL script to make decisions based on the priority specified for the original call.
They are summarized in figure 7.

Node: priority-switch
Outputs: priority Specific priority to match
Parameters: none

Output: priority

Parameters: less Match if priority is less than specified
greater Match if priority is greater than specified
equal Match if priority is equal to specified

Figure 7: Syntax of theriority-switch node

Priority switches take no parameters.

The priority tags take one of the three parametgmsater, less, andequal. The values of these tags
are the priorities specified in SIP [1]: in decreasing orderergency, urgent, normal, andnon-urgent.
These values are matched in a case-insensitive manner. Outputs witisgtparameter are taken if the
priority of the message is less than the priority given in the argument; and so forth.

Lennox/Schulzrinne Expires September 2000 [Page 11]



INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

If no priority header is specified in a message, the priority is considerednorpeal. If an unknown
priority is given, the priority is considered to be equivalenhéwmal for the purposes ajreater andless
comparisons, but it is compared literally fequal comparisons.

Since every message has a priority, tloé-present output is never true for a priority switch.

5 Location modifiers

The abstract location model of the CPL is described in section 2.3. The behavior of several of the signallihg
actions (defined in section 6) is dependent on the current location set specified. Location nodes add tc or
remove locations from the location set.

There are three types of location nodes defirtedglicit locationsadd literally-specified locations to the
current location setpcation lookup®btain locations from some outside source; bxwétion filtersremove
locations from the set, based on some specified criteria.

5.1 Explicit location

Explicit location nodes specify a location literally. Their syntax is described in figure 8.

Node: location
Outputs: any node
Parameters: url URL of address to add to location set

Figure 8: Syntax of thiocation node

Explicit location nodes have one node parametel;; whose value is the URL of the address to add to
the location set. Only one address may be specified per location node; multiple locations may be specified
by cascading these nodes.

Basic location nodes have only one possible output, since there is no way that they can fail. (If a basic
location node specifies a location which isn't supported by the underlying signalling protocol, the script
serversHoOULD detect this and report it to the user at the time the script is submitted.) Therefore, its XML
representation does not have explicit output nodes<tbeation>  tag directly contains another node
tag.

5.2 Location lookup

Locations can also be specified up through external means, through the use of location lookups. The syntax
of these tags is given in figure 9.

Location lookup nodes have one mandatory parameter, and three optional parameters. The mandaory
parameter isource, the source of the lookup. This can either be a URL, or a non-URL value. If the value
of source is a URL, it indicates a location which returns tapplication/url media type. The server
adds the locations returned by the URL to the location set.

Non-URL sources indicate a source not specified by a URL which the server can query for addresses to
add to the location set. The only non-URL souroarently defined isegistration, which specifies all the
locations currently registered with the server, using BEGISTER or H.323RAS messages.

Lennox/Schulzrinne Expires September 2000 [Page 12]



INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

Node: lookup
Outputs: success Action if lookup was successful

notfound Action if lookup found no addresses
failure Action if lookup failed

Parameters: source Source of the lookup
timeout  Time to try before giving up on the lookup
use Caller preferences fields to use
ignore Caller preferences fields to ignore

Output: success
Parameters: none

Output: notfound
Parameters: none

Output: failure
Parameters: none

Figure 9: Syntax of thiookup node

Thelookup node also has an three optional parameters. tifheout parameter which specifies the
time, in seconds, the script is willing to wait for the lookup to be performed. If this is not specified, its
default value is 30.

The other two optional parameters affect the interworking of the CPL script with caller preferences and
caller capabilities. These are defined in the Internet-Draft “SIP Caller Preferences and Callee Capabilitie's”
[11]. By default, a CPL servesHouULD invoke caller preferences filtering when performirigekup action.

The two parameterase andignore allow the script to modify how the script applies caller preferences
filtering. Theuse andignore parameters both take as their arguments comma-separated lists of caller
preferences parameters.ue is given, the server applies the caller preferences resolution algorithm only
to those preference parameters given inube parameter, and ignores all others; if igaore parameter is

given, the server ignores the specified parameters, and uses all the others. Onlysmarmdignore can

be specified. The addr-spec part of the caller preferences is always applied, and the script cannot modify it.

Note: this is very SIP-specific. Does H.323 have a similar endpoint-daaband requested-capabilities
mechanism?

TODO: Add examples. This is confusing.

Lookup has three outputsuccess, notfound, andfailure. Notfound is taken if the lookup process
succeeded but did not find any locations; failure is taken if the lookup failed for some reason, including that
specified timeout was exceeded. If failure is not specified, the action corresponding to notfound is taken;
if notfound is not specified, the success output is taken, but the current location set is not modified. The
success outpwusT be included.

ClientssHouLD specify the three outputiccess, notfound, andfailure in that order, so their script
complies with the DTD given in Appendix A, but servessouLD accept them in any order.

Lennox/Schulzrinne Expires September 2000 [Page 13]



INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

5.3 Location filtering

A CPL script can also filter addresses out of the address set, through the use of a mechanism very similar to
caller preferences: thremove-location node. The syntax of these nodes is defined in figure 10.

Node: remove-location
Outputs: any node

Parameters: param Caller preference parameter to apply
value Value of caller preference parameter
location Caller preference location to apply

Figure 10: Syntax of theemove-location node

A remove-location node has the same effect on the location set Rsjact-Contact header in caller
preferences [11]. The value of thecation parameter is treated as though it were the addr-spec field of
a Reject-Contact header; an absent header is equivalent to an addr-spec of “*” in that specification. | If
param and value are present, their values are comma-separated lists of caller preferences parameters and
corresponding values, respectively. TheresT be the same number of parameters as values specified.
These are treated, for location filtering purposes, as though they appeared in the params field of a Rejeéct-
Location header, as “; param=value” for each one.

Note: do we want to be able to switch based on whether there are any locations left in the set after a lookup?
Note: this is also very SIP-specific. Does H.323 have a similar endpointtiiealmechanism?

TODO: Add examples. This is also confusing.

6 Signalling actions

Signalling action nodes cause signalling events in the underlying signalling protocol. Three signalling ac-
tions are defined: “proxy,” “redirect,” and “reject.”

6.1 Proxy

Proxy causes the triggering call to be forwarded on to the currently specified set of locations. The syntax of
the proxy node is given in figure 11.

After a proxy action has completed, the CPL server chooses the “best” response to the call attempt, as
defined by the signalling protocol or the server’'s administrative configuration rules.

If the call attempt was successful, or if a redirection response was the “best” responeelasd was
not specified, CPL execution terminates and the best response is forwarded back upstream to the originator.
Otherwise, one of the three outpliissy, noanswer, or failure is taken.

Note: future extension of the CPL to allow in-call or end-of-call actions will regsirecess outputs to be
added.

Question: should an expliciedirection output be added for the case whecurse was false? How should it
interact with the location set?

Lennox/Schulzrinne Expires September 2000 [Page 14]



INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

Node: lookup
Outputs: busy Action if call attempt returned “busy”
noanswer Action if call attempt was not answered before timeout
failure Action if call attempt failed

Parameters: timeout Time to try before giving up on the call attempt
recurse Whether to recursively look up redirections
ordering  What order to try the location set in.

Output: busy
Parameters: none

Output: noanswer
Parameters: none

Output: failure
Parameters: none

Figure 11: Syntax of thproxy node

Proxy has three optional parameters. Timeeout parameter specifies the time, in seconds, to wait
for the call to be completed or rejected; after this time has elapsed, the call attempt is terminated and the
noanswer branch is taken. If this parameter is not specified, the default value is 20 secondgpribxige
node has ao-answer output specified; otherwise the sergerouLD allow the call to ring for an arbitrarily
long period of time.

Question: is 20 seconds a good value? How should such a value be chosen?

The second optional parameterésurse, which can take two valueges or no. This specifies whether
the server should automatically attempt to place further call attempts to telephony addresses in redirect/on
responses that were returned from the initial server.

The third optional parameter @dering. This can have three possible valuparallel, sequential, and
first-only. This parameter specifies in what order the locations of the location set should be tried. ParallzI
asks that they all be tried simultaneously; sequential asks that the first one be tried first, the second second,
and so forth, until one succeeds or the set is exhausted,; first-only instructs the server to try only the fifst
address in the set, and then follow one of the outputs. The default value of this pararpateti.

Once a proxy action completes, if control is passed on to other actions, all locations which have been
used are cleared from the location set. That is, the location set is emptedeifing was parallel or
sequential; the first item in the set is removed from the satrflering wasfirst-only.

For the proper actions when outputs are unspecified, see section 10.

6.2 Redirect

Redirect causes the server to direct the calling party to attempt to place its call to the currently specified set
of locations. The syntax of this node is specified in figure 12.

Redirect immediately terminates execution of the CPL script, so this node has no outputs. It also takes
no arguments.

Lennox/Schulzrinne Expires September 2000 [Page 15]



INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

Node: redirect
Outputs: none
Parameters: none

Figure 12: Syntax of theedirect node

Question: should there be some way of distinguishing between “moved temporarily” and “moved permanently”
(SIP 301 and 302) redirections?

6.3 Reject

Reject nodes cause the server to reject the call attempt. Their syntax is given in figure 13.

Node: reject
Outputs: none
Parameters: status  Status code to return
reason Reason phrase to return

Figure 13: Syntax of theeject node

This immediately terminates execution of the CPL script, so this nhode has no outputs.

This node has two argumentstatus andreason. Thestatus argument is required, and can take one
of the valuesbusy, notfound, reject, anderror. Servers which implement SIRAy also allow a numeric
argument corresponding to a SIP status in the 4xx, 5xx, or 6xx range, but SHipPta.D NOT use them if
they wish to be portable.

Thereason argument optionally allows the script to specify a reason for the rejection. CPL servers
MAY ignore the reason, but ones that implement Si®uLD send them in the SIP reason phrase.

7 Other actions

In addition to the signalling actions, the CPL defines several actions which do not affect the telephony
signalling protocol.

7.1 Mall

The mail node causes the server to notify a user of the status of the CPL script through electronic mail. |ts
syntax is given in figure 14.

Node: mail
Outputs: any node
Parameters: url Mailto url to which the mail should be sent

Figure 14: Syntax of themail node

Lennox/Schulzrinne Expires September 2000 [Page 16]



INTERNET-DRAFT draft-ietf-iptel-cpl-01.ps March 10, 2000

The mail node takes one argument:nzilto URL giving the address, and any additional desired
parameters, of the mail to be senthe server sends the message containing the content to the given url; it
SHOULD also include other status information about the state of the call and the CPL script at the time of
the notification.

Mail nodes have only one output, since failure of e-mail delivery cannot reliably be known in real-time
Therefore, its XML representation does not have explicit output nodes:rttaél> tag directly contains
another node tag.

Using a fullmailto  URL rather than just an e-mail address allows additional e-mail headers to be 