
Ray Tracing Depth Maps Using Precomputed Edge Tables

Kevin Egan Ivan Neulander
Rhythm and Hues Studios

Introduction

We present a new data structure and algorithm for parallelizing the
ray tracing of depth maps to accurately render soft shadows. Instead
of caching shadow rays or optimizing intersection computations for
a single ray [Agrawala et al. 2000], we instead trace many shadow
rays to the light in parallel by using a lookup table at each filter
pixel edge.

Implementation

We introduce theedge table maskto accelerate shadow ray inter-
sections within a perspective depth map. The novel property of an
edge table mask is that, given a planar light source perpendicular
to the depth map’s axis of projection, the z-distances stored in the
edge table mask can be used for any pixel in the depth map (due to
the z-distances being unaffected by shearing in thexy plane of the
depth map). To create a new mask for a shading position, we inter-
sect each shadow ray with the neighboring pixel frusta, marching
along an epipolar ray through the depth map. At each intersec-
tion we record the z-distance between the intersection point and the
shading position. We call this z-distanceζ as shown in Figure 1. If
the intersection point is closer to the light than any occluder in the
depth map, we record the intersection and stop ray marching.

depth map
projection point

area light
rays

shadow

pixel
frustum ζ ζ

shading position
precomputed different position with same

depth map sub−pixel offset

Figure 1: Left: For each depth map pixel frustum we store the z-
distance for all ray intersections. Right: A new shading sample with
the same depth map sub-pixel offset will have the sameζ values for
neighboring pixel frusta.

For each pixel frustum side that has an intersection we create an
edge tableto efficiently query intersection information. The edge
table stores a list of intersections sorted in increasingζ order (non-
intersecting rays haveζ = ∞). For each intersection depthd, the
edge table also stores a bitmask where all rays withζ ≤ d have a
corresponding 0 bit and all others have 1 bits. Given a query dis-
tanceq, a binary search is all that is necessary to efficiently return
the appropriate bitmask that stores all rays withζ ≤ q. To query for
rays withζ > q we simply invert the bitmask.

Each edge table mask is specific to the set of sample positions on
the area light surface, the shading sample’s z-depth, and the shading
sample’s sub-pixel offset within the depth map. We uniformly sam-
ple in the three dimensions ofxy sub-pixel offset and zDepth, and
compute a new mask for each sample. We stochastically resample
the light surface for each mask.

At render time we match a new shading sample with the closest
edge table mask based on depth map sub-pixel offset and zDepth,

(multiple masks can be used for trilinear interpolation). Using
the simplifiedwall andfloor representation of depth map geome-
try [Agrawala et al. 2000], the edge table mask data structure can
efficiently process all depth map pixels and pixel edges in the fil-
ter region using theIntersectFloor() andIntersectWall()
methods shown below (0 bits represent occluded rays). Each filter
pixel edge is classified as being an “in” or “out” edge for an adja-
cent pixel based on whether the epipolar shadow rays enter or exit
through the edge. We bitwise AND all intermediate results from
walls and floors to get the final set of occluded rays.

INTERSECTFLOOR(zeta, inEdges, outEdges)
1 inMask← (anyInEdges) ? FULLMASK : EMPTY MASK
2 outMask← FULL MASK
3 foreache∈ inEdges
4 inMask← inMask AND e.Below(zeta)
5 foreache∈ outEdges
6 outMask← outMask AND e.Below(zeta)
7 return (inMask OR (NOT outMask))

INTERSECTWALL (zetaMin, zetaMax, edge)
1 return ((NOT edge.Below(zetaMin)) OR edge.Below(zetaMax))

We are currently investigating a variety of methods to improve
efficiency, including grouping nearby rays so that edge tables can
store partial bitmasks, storing fewer masks for lights with 8-way
symmetry, and using a hierarchical depth map.

Results

The image in Figure 2A took 76 seconds to render on an Athlon
2133MHz, using a 256x256 depth map with 16 edge table masks
(sampled 4x4x1 in depth map sub-pixel space). Each edge table
mask stored 1024 rays and used an average filter region of 394
depth map lookups. The reference ray traced image took 1211 sec-
onds to render using 1024 rays per pixel. Most of the error in Figure
2A comes from the discretization of silhouettes in the depth map
and the relatively small number of edge table masks.

Figure 2: A: Soft shadow rendered using edge table masks.
B: Closeup from left image. C: Closeup from ray traced image.
D: Error in left image (brightness multiplied by 4).

References

AGRAWALA , M., RAMAMOORTHI , R., HEIRICH, A., AND
MOLL , L. 2000. Efficient image-based methods for render-
ing soft shadows. InProceedings of ACM SIGGRAPH 2000,
375–384.


