
Computing Locally Coherent Discourses

Alexander Koller
Saarland University

joint work with
Ernst Althaus and Nikiforos Karamanis

PARC
19 October 2004

Overview

u Local coherence and the
Discourse Ordering Problem

u Some examples for local coherence measures

u Equivalence of Discourse Ordering and TSP

u Computing discourse orderings

u Evaluation

Local coherence

u Human-written text is not a random ordering
of discourse units.

u Discourse units are ordered to maximise
coherence.

u Local coherence: Coherence is measured in
terms of unit-to-unit transition costs.

Local coherence

Discourse ordering problem:
Find best ordering
according to local coherence

many, many
other orderings

Local coherence: Our definition (2-place)

initial cost cI:discourse starts
with this unit

transition costs cT:costs of unit-to-unit
transitions

1.

2.

3.

Local coherence: Our definition (3-place)

initial cost cI:discourse starts
with these two units

1.

2.

3.

transition costs cT:depend on two
preceding units

The Discourse Ordering Problem

u d-place Discourse Ordering Problem

u Input:

– discourse units u1,...,un

– d-place transition costs cT

– (d-1)-place initial costs cI

u Output:

– a permutation π of {1,...,n} such that

is minimal.

Some cost functions from the literature

u Based on Centering Theory:

– coherence of a transition is defined in

terms of entity coherence

– Karamanis & Manurung 02, Karamanis et

al. 04 compare such cost functions

u Based on statistical models:

– Lapata 03 gives cost function based on
various features of adjacent sentences

– d = 2, cT(u2 | u1) = - log P(u2 | u1)

Centering Theory

u The entities referred to in a discourse unit are
called the forward-looking centers.

u Cf(u) is the list of entities in unit u, ranked by
salience.

u Cp(u) -- the preferred center -- is the highest-
ranked member of Cf(u).

u Cb(ui) -- the backward-looking center -- is the
highest-ranked member of Cf(ui) that also

appears in Cf(ui-1).

CT-based transitions and cost functions

Computational issues

u Number of permutations is too big for
generate-and-test. Need 77 years for

discourse of length 20.

u How hard is the problem really?

u If it is hard, can we solve it anyway?

– Mellish et al. 98: Genetic Programming

– Lapata 03: Approximative graph algorithm

– No guarantees for quality of found solution

Discourse ordering as a graph problem

• each edge has a cost
• find cheapest path that visits all nodes

new start node

cI

cT

cT

cT

The Discourse Ordering Problem (with graphs)

u Input:

– Graph G = (V,E)

– start node s ∈ V

– d-place cost function c : Vd
→ R

u Output:

– a simple directed path P = (s = v0, v1, ..., vn)
that visits all vertices, such that

is minimal.

Travelling Salesman Problem

u Find cheapest round trip in a graph that visits
every node exactly once.

u Classical NP-complete problem.

u Cannot be approximated: There is no general

polynomial algorithm that guarantees good
solutions (unless P = NP).

u Generalised asymmetric TSP (GATSP):
Partition nodes into disjoint sets, tour must

visit each set exactly once.

d-PDOP is equivalent to TSP

u Can reduce TSP to 2-PDOP:

– hence NP-hard,

no approximation algorithms

u Can reduce d-PDOP to GATSP:

– hence, can apply algorithms for TSP

– need GATSP to encode d-place cost

function for d > 2.

Reduction of TSP to 2-PDOP

TSP 2-PDOP

Reduction of d-PDOP to GATSP

GATSP:
Visit every column exactly once

3-PDOP

Solving GATSP by Linear Programming

u A standard method for solving TSP and other
combinatorial problems:

Integer Linear Programming (ILP).

u Write problem as set of linear equations and

inequalities.

u Find integer numbers that satisfy all

(in)equations.

A Linear Program for GATSP

Solving the Linear Program

u Branch-and-cut technique

u Solve linear (in)equations for arbitrary (not
necessarily integer) values.

u Pick variable x with fractional value and solve
subproblems with x = 1 and x = 0.

u Continue until all variables have integer
values.

u Use heuristics to pick good variable and keep
search space small.

Further Optimisations

u Exponential number of inequalities of Type 3:

– start with a small subset of inequalities

– check preliminary solutions for violations of
Type 3 inequalities

– add violated inequalities by need

u Add redundant inequalities that can be

violated by non-integer solutions.

Evaluation

u Four cost functions:

– M.LAPATA: d = 2, statistics-based

(evaluated on discourses from BLLIP corpus)

– Three centering-based cost functions

(evaluated on discourses from GNOME corpus)

u Random graphs of different sizes

u Two ILP solvers:

– CPLEX 9.0 (commercial)

– SCIP 0.6.3 / SOPLEX 1.2.2a (free)

Evaluation: d = 2

(seconds CPU time, Pentium 4 at 3 GHz)

Evaluation: d = 3

(seconds CPU time, Pentium 4 at 3 GHz)

An example output

Both cabinets probably entered England in the early nineteenth century / after the
French Revolution caused the dispersal of so many French collections. / The pair to
[this monumental cabinet] still exists in Scotland. / The fleurs-de-lis on the top two
drawers indicate that [the cabinet] was made for the French King Louis XIV. / [It]
may have served as a royal gift, / as [it] does not appear in inventories of [his]
possessions. / Another medallion inside shows [him] a few years later. / The bronze
medallion above [the central door] was cast from a medal struck in 1661 which
shows [the king] at the age of twenty-one. / A panel of marquetry showing the
cockerel of [France] standing triumphant over both the eagle of the Holy Roman
Empire and the lion of Spain and the Spanish Netherlands decorates [the central
door]. / In [the Dutch Wars] of 1672 - 1678, [France] fought simultaneously against
the Dutch, Spanish, and Imperial armies, defeating them all. / [The cabinet]
celebrates the Treaty of Nijmegen, which concluded [the war]. / The Sun King’s
portrait appears twice on [this work]. / Two large figures from Greek mythology,
Hercules and Hippolyta, Queen of the Amazons, representatives of strength and
bravery in war appear to support [the cabinet]. / The decoration on [the cabinet]
refers to [Louis XIV’s] military victories. / On the drawer above the door, gilt-bronze
military trophies flank a medallion portrait of [the king].

(cabinet1, M.NOCB; cost = 2)

Evaluation: Interpretation

u Runtimes for d = 2 are fast.

u For d = 3, still quite fast for real-life examples.

u Coherence measures seem to be easier than

random graphs.

Conclusion

u Discourse Ordering problem is equivalent to
Travelling Salesman.

u Can use heuristics to compute optimal
solution very efficiently (up to 50 discourse

units per second).

u Applications:

– real systems
(generation and summarisation)

– experimentation

Future Work

u Optimise GATSP algorithm.

u What makes real-life instances easier than

random graphs?

u Global coherence measures (i.e., arrange

units in discourse tree structure)?

