
An Improved Redundancy Elimination Algorithm
for Underspecified Representations

Alexander Koller and Stefan Thater
Dept. of Computational Linguistics

Universität des Saarlandes, Saarbrücken, Germany
{koller,stth}@coli.uni-sb.de

Abstract

We present an efficient algorithm for the
redundancy eliminationproblem: Given
an underspecified semantic representation
(USR) of a scope ambiguity, compute an
USR with fewer mutually equivalent read-
ings. The algorithm operates on under-
specified chart representations which are
derived from dominance graphs; it can be
applied to the USRs computed by large-
scale grammars. We evaluate the algo-
rithm on a corpus, and show that it reduces
the degree of ambiguity significantly while
taking negligible runtime.

1 Introduction

Underspecification is nowadays the standard ap-
proach to dealing with scope ambiguities in com-
putational semantics (van Deemter and Peters,
1996; Copestake et al., 2004; Egg et al., 2001;
Blackburn and Bos, 2005). The basic idea behind
it is to not enumerate all possible semantic repre-
sentations for each syntactic analysis, but to de-
rive a single compactunderspecified representa-
tion (USR). This simplifies semantics construc-
tion, and current algorithms support the efficient
enumeration of the individual semantic represen-
tations from an USR (Koller and Thater, 2005b).

A major promise of underspecification is that
it makes it possible, in principle, to rule out en-
tire subsets of readings that we are not interested
in wholesale, without even enumerating them. For
instance, real-world sentences with scope ambigu-
ities often have many readings that are semanti-
cally equivalent. Subsequent modules (e.g. for do-
ing inference) will typically only be interested in
one reading from each equivalence class, and all
others could be deleted. This situation is illustrated
by the following two (out of many) sentences from
the Rondane treebank, which is distributed with

the English Resource Grammar (ERG; Flickinger
(2002)), a large-scale HPSG grammar of English.

(1) For travellers going to Finnmark there is a bus
service from Oslo to Alta through Sweden.
(Rondane 1262)

(2) We quickly put up the tents in the lee of a
small hillside and cook for the first time in
the open. (Rondane 892)

For the annotated syntactic analysis of (1), the
ERG derives an USR with eight scope bearing op-
erators, which results in a total of 3960 readings.
These readings are all semantically equivalent to
each other. On the other hand, the USR for (2) has
480 readings, which fall into two classes of mutu-
ally equivalent readings, characterised by the rela-
tive scope of “the lee of” and “a small hillside.”

In this paper, we present an algorithm for the
redundancy eliminationproblem: Given an USR,
compute an USR which has fewer readings, but
still describes at least one representative of each
equivalence class – without enumerating any read-
ings. This algorithm makes it possible to com-
pute the one or two representatives of the seman-
tic equivalence classes in the examples, so subse-
quent modules don’t have to deal with all the other
equivalent readings. It also closes the gap between
the large number of readings predicted by the
grammar and the intuitively perceived much lower
degree of ambiguity of these sentences. Finally, it
can be helpful for a grammar designer because it
is much more feasible to check whether two read-
ings are linguistically reasonable than 480. Our al-
gorithm is applicable to arbitrary USRs (not just
those computed by the ERG). While its effect is
particularly significant on the ERG, which uni-
formly treats all kinds of noun phrases, including
proper names and pronouns, as generalised quanti-
fiers, it will generally help deal with spurious am-
biguities (such as scope ambiguities between in-
definites), which have been a ubiquitous problem

in most theories of scope since Montague Gram-
mar.

We model equivalence in terms of rewrite rules
that permute quantifiers without changing the se-
mantics of the readings. The particular USRs we
work with are underspecified chart representa-
tions, which can be computed from dominance
graphs (or USRs in some other underspecifica-
tion formalisms) efficiently (Koller and Thater,
2005b). We evaluate the performance of the algo-
rithm on the Rondane treebank and show that it
reduces the median number of readings from 56
to 4, by up to a factor of 666.240 for individual
USRs, while running in negligible time.

To our knowledge, our algorithm and its less
powerful predecessor (Koller and Thater, 2006)
are the first redundancy elimination algorithms in
the literature that operate on the level of USRs.
There has been previous research onenumerating
only some representatives of each equivalence
class (Vestre, 1991; Chaves, 2003), but these
approaches don’t maintain underspecification:
After running their algorithms, they are left with
a set of readings rather than an underspecified
representation, i.e. we could no longer run other
algorithms on an USR.

The paper is structured as follows. We will first
define dominance graphs and review the necessary
background theory in Section 2. We will then in-
troduce our notion of equivalence in Section 3, and
present the redundancy elimination algorithm in
Section 4. In Section 5, we describe the evaluation
of the algorithm on the Rondane corpus. Finally,
Section 6 concludes and points to further work.

2 Dominance graphs

The basic underspecification formalism we as-
sume here is that of(labelled) dominance graphs
(Althaus et al., 2003). Dominance graphs are
equivalent to leaf-labelled normal dominance con-
straints (Egg et al., 2001), which have been dis-
cussed extensively in previous literature.

Definition 1. A (compact) dominance graphis a
directed graph(V,E]D) with two kinds of edges,
tree edges Eanddominance edges D, such that:

1. The graph(V,E) defines a collection of node
disjoint trees of height 0 or 1. We call the
trees in(V,E) thefragmentsof the graph.

2. If (v,v′) is a dominance edge inD, thenv is
a hole andv′ is a root. A nodev is a root if

v does not have incoming tree edges; other-
wise,v is ahole.

A labelled dominance graphover a ranked sig-
natureΣ is a triple G = (V,E]D,L) such that
(V,E]D) is a dominance graph andL : V Σ
is a partiallabelling functionwhich assigns a node
v a label with arityn iff v is a root withn outgoing
tree edges. Nodes without labels (i.e. holes) must
have outgoing dominance edges.

We will write R(F) for the root of the fragment
F , and we will typically just say “graph” instead
of “labelled dominance graph”.

An example of a labelled dominance graph is
shown to the left of Fig. 1. Tree edges are drawn as
solid lines, and dominance edges as dotted lines,
directed from top to bottom. This graph can serve
as an USR for the sentence “a representative of
a company saw a sample” if we demand that the
holes are “plugged” by roots while realising the
dominance edges as dominance, as in the twocon-
figurations(of five) shown to the right. These con-
figurations are trees that encode semantic repre-
sentations of the sentence. We will freely read con-
figurations as ground terms over the signatureΣ.

2.1 Hypernormally connected graphs

Throughout this paper, we will only considerhy-
pernormally connected (hnc)dominance graphs.
Hnc graphs are equivalent tochain-connected
dominance constraints (Koller et al., 2003), and
are closely related todominance nets(Niehren and
Thater, 2003). Fuchss et al. (2004) have presented
a corpus study that strongly suggests that all dom-
inance graphs that are generated by current large-
scale grammars are (or should be) hnc.

Technically, a graphG is hypernormally con-
nected iff each pair of nodes is connected by a sim-
ple hypernormal pathin G. A hypernormal path
(Althaus et al., 2003) inG is a path in the undi-
rected versionGu of G that does not use two dom-
inance edges that are incident to the same hole.

Hnc graphs have a number of very useful struc-
tural properties on which this paper rests. One
which is particularly relevant here is that we can
predict in which way different fragments can dom-
inate each other.

Definition 2. Let G be a hnc dominance graph. A
fragmentF1 in G is called apossible dominator
of another fragmentF2 in G iff it has exactly one
holeh which is connected toR(F2) by a simple hy-

ay

sampley

seex,y

ax

repr-ofx,z

az

compz

1 2 3

4 5 6

7

ay
ax

az
1

2

3

sampley seex,yrepr-ofx,zcompz

ay

ax

sampley seex,y

repr-ofx,z

az

compz

1

2

3

Figure 1: A dominance graph that represents the five readings of the sentence “a representative of a
company saw a sample” (left) and two of its five configurations.

{1,2,3,4,5,6,7} :〈1,h1 7→ {4},h2 7→ {2,3,5,6,7}〉
〈2,h3 7→ {1,4,5},h4 7→ {3,6,7}〉
〈3,h5 7→ {5},h6 7→ {1,2,4,5,7}〉

{2,3,5,6,7} :〈2,h3 7→ {5},h4 7→ {3,6,7}〉
〈3,h5 7→ {6},h6 7→ {2,5,7}〉

{3,6,7} :〈3,h5 7→ {6},h6 7→ {7}〉
{2,5,7} :〈2,h3 7→ {5},h4 7→ {7}〉
{1,4,5} :〈1,h1 7→ {4},h2 7→ {5}〉

{1,2,4,5,7} :〈1,h1 7→ {4},h2 7→ {2,5,7}〉
〈2,h3 7→ {1,4,5},h4 7→ {7}〉

Figure 2: The chart for the graph in Fig. 1.

pernormal path which doesn’t useR(F1). We write
ch(F1,F2) for this uniqueh.

Lemma 1 (Koller and Thater (2006)). Let F1, F2

be fragments in a hnc dominance graphG. If there
is a configurationC of G in whichR(F1) dominates
R(F2), thenF1 is a possible dominator ofF2, and
in particularch(F1,F2) dominatesR(F2) in C.

By applying this rather abstract result, we can
derive a number of interesting facts about the ex-
ample graph in Fig. 1. The fragments 1, 2, and 3
are possible dominators of all other fragments (and
of each other), while the fragments 4 through 7
aren’t possible dominators of anything (they have
no holes); so 4 through 7 must be leaves in any
configuration of the graph. In addition, if fragment
2 dominates fragment 3 in any configuration, then
in particular theright hole of 2 will dominate the
root of 3; and so on.

2.2 Dominance charts

Below we will not work with dominance graphs
directly. Rather, we will usedominance charts
(Koller and Thater, 2005b) as our USRs: they are
more explicit USRs, which support a more fine-
grained deletion of reading sets than graphs.

A dominance chart for the graphG is a mapping
of weakly connected subgraphs ofG to sets of
splits (see Fig. 2), which describe possible ways

of constructing configurations of the subgraph.
A subgraphG′ is assigned one split for each
fragmentF in G′ which can be at the root of a
configuration ofG′. If the graph is hnc, removing
F from the graph splitsG′ into a set of weakly
connected components (wccs), each of which is
connected to exactly one hole ofF . We also record
the wccs, and the hole to which each wcc belongs,
in the split. In order to compute all configurations
represented by a split, we can first compute
recursively the configurations of each component;
then we plug each combination of these sub-
configurations into the appropriate holes of the
root fragment. We define the configurations asso-
ciated with a subgraph as the union over its splits,
and those of the entire chart as the configurations
associated with the complete graph.

Fig. 2 shows the dominance chart correspond-
ing to the graph in Fig. 1. The chart represents
exactly the configuration set of the graph, and is
minimal in the sense that every subgraph and ev-
ery split in the chart can be used in constructing
some configuration. Such charts can be computed
efficiently (Koller and Thater, 2005b) from a dom-
inance graph, and can also be used to compute the
configurations of a graph efficiently.

The example chart expresses that three frag-
ments can be at the root of a configuration of the
complete graph: 1, 2, and 3. The entry for the split
with root fragment 2 tells us that removing 2 splits
the graph into the subgraphs{1,4,5} and{3,6,7}
(see Fig. 3). If we configure these two subgraphs
recursively, we obtain the configurations shown in
the third column of Fig. 3; we can then plug these
sub-configurations into the appropriate holes of 2
and obtain a configuration for the entire graph.

Notice that charts can be exponentially larger
than the original graph, but they are still expo-
nentially smaller than the entire set of readings
because common subgraphs (such as the graph
{2,5,7} in the example) are represented only

1 2 3

4 5 6 7

h2h1 h4h3 h6h5

1 3

4 5 6 7

h2h1 h6h5→ → 1 3

4 5 6 7

2

1 3

4 5 6 7

→

Figure 3: Extracting a configuration from a chart.

once, and are small in practice (see (Koller and
Thater, 2005b) for an analysis). Thus the chart can
still serve as an underspecified representation.

3 Equivalence

Now let’s define equivalence of readings more
precisely. Equivalence of semantic representations
is traditionally defined as the relation between
formulas (say, of first-order logic) which have
the same interpretation. However, even first-order
equivalence is an undecidable problem, and broad-
coverage semantic representations such as those
computed by the ERG usually have no well-
defined model-theoretic semantics and therefore
no concept of semantic equivalence.

On the other hand, we do not need to solve
the full semantic equivalence problem, as we only
want to compare formulas that are readings of the
same sentence, i.e. different configurations of the
same USR. Such formulas only differ in the way
that the fragments are combined. We can therefore
approximate equivalence by using arewrite system
that permutes fragments and defining equivalence
of configurations as mutual rewritability as usual.

By way of example, consider again the two con-
figurations shown in Fig. 1. We can obtain the sec-
ond configuration from the (semantically equiva-
lent) first one by applying the following rewrite
rule, which rotates the fragments 1 and 2:

ax(az(P,Q),R)→ az(P,ax(Q,R)) (3)

Thus we take these two configurations to be
equivalent with respect to the rewrite rule. (We
could also have argued that the second configu-
ration can be rewritten into the first by using the
inverted rule.)

We formalise this rewriting-based notion of
equivalence as follows. The definition uses the ab-
breviationx[1,k) for the sequencex1, . . . ,xk−1, and
x(k,n] for xk+1, . . . ,xn.

Definition 3. A permutation system Ris a system
of rewrite rules over the signatureΣ of the follow-

ing form:

f1(x[1,i), f2(y[1,k),z,y(k,m]),x(i,n])→
f2(y[1,k), f1(x[1,i),z,x(i,n]),y(k,m])

Thepermutability relation P(R) is the binary rela-
tion P(R) ⊆ (Σ×N)2 which contains exactly the
tuples((f1, i),(f2,k)) and((f2,k),(f1, i)) for each
such rewrite rule. Two terms areequivalentwith
respect toR, s ≈R t, iff there is a sequence of
rewrite steps and inverse rewrite steps that rewrite
s into t.

If G is a graph overΣ andR a permutation sys-
tem, then we writeSCR(G) for the set of equiva-
lence classes Conf(G)/≈R, where Conf(G) is the
set of configurations ofG.

The rewrite rule (3) above is an instance of this
schema, as are the other three permutations of ex-
istential quantifiers. These rules approximate clas-
sical semantic equivalence of first-order logic, as
they rewrite formulas into classically equivalent
ones. Indeed, all five configurations of the graph
in Fig. 1 are rewriting-equivalent to each other.

In the case of the semantic representations gen-
erated by the ERG, we don’t have access to an
underlying interpretation. But we can capture lin-
guistic intuitions about the equivalence of readings
in permutation rules. For instance, proper names
and pronouns (which the ERG analyses as scope-
bearers, although they can be reduced to constants
without scope) can be permuted with anything. In-
definites and definites permute with each other if
they occur in each other’sscope, but not if they
occur in each other’srestriction; and so on.

4 Redundancy elimination

Given a permutation system, we can now try to get
rid of readings that are equivalent to other read-
ings. One way to formalise this is to enumerate ex-
actly one representative of each equivalence class.
However, after such a step we would be left with a
collection of semantic representations rather than
an USR, and could not use the USR for ruling out
further readings. Besides, a naive algorithm which

first enumerates all configurations would be pro-
hibitively slow.

We will instead tackle the followingunderspec-
ified redundancy eliminationproblem: Given an
USR G, compute an USRG′ with Conf(G′) ⊆
Conf(G) and SCR(G) = SCR(G′). We want
Conf(G′) to be as small as possible. Ideally, it
would contain no two equivalent readings, but
in practice we won’t always achieve this kind
of completeness. Our redundancy elimination al-
gorithm will operate on a dominance chart and
successively delete splits and subgraphs from the
chart.

4.1 Permutable fragments

Because the algorithm must operate on USRs
rather than configurations, it needs a way to pre-
dict from the USR alone which fragments can be
permuted in configurations. This is not generally
possible in unrestricted graphs, but for hnc graphs
it is captured by the following criterion.

Definition 4. Let R be a permutation system.
Two fragmentsF1 andF2 with root labels f1 and
f2 in a hnc graphG are calledR-permutableiff
they are possible dominators of each other and
((f1,ch(F1,F2)),(f2,ch(F2,F1))) ∈ P(R).

For example, in Fig. 1, the fragments 1 and 2
are permutable, and indeed they can be permuted
in any configuration in which one is the parent of
the other. This is true more generally:

Lemma 2 (Koller and Thater (2006)). Let G
be a hnc graph,F1 andF2 be R-permutable frag-
ments with root labelsf1 and f2, andC1 any con-
figuration ofG of the formC(f1(. . . , f2(. . .), . . .))
(where C is the context of the subterm). Then
C1 can beR-rewritten into a treeC2 of the form
C(f2(. . . , f1(. . .), . . .)) which is also a configura-
tion of G.

The proof uses the hn connectedness ofG in two
ways: in order to ensure thatC2 is still a configu-
ration of G, and to make sure thatF2 is plugged
into the correct hole ofF1 for a rule application
(cf. Lemma 1). Note thatC2 ≈R C1 by definition.

4.2 The redundancy elimination algorithm

Now we can use permutability of fragments to de-
fine eliminable splits. Intuitively, a split of a sub-
graph G is eliminable if each of its configura-
tions is equivalent to a configuration of some other
split of G. Removing such a split from the chart

will rule out some configurations; but it does not
change the set of equivalence classes.

Definition 5. Let R be a permutation system. A
split S= (F, . . . ,hi 7→Gi , . . .) of a graphG is called
eliminablein a chartCh if someGi contains a frag-
mentF ′ such that (a)Ch contains a splitS′ of G
with root fragmentF ′, and (b)F ′ is R-permutable
with F and all possible dominators ofF ′ in Gi .

In Fig. 1, each of the three splits is eliminable.
For example, the split with root fragment 1 is elim-
inable because the fragment 3 permutes both with
2 (which is the only possible dominator of 3 in the
same wcc) and with 1 itself.

Proposition 3. Let Ch be a dominance chart, and
let Sbe an eliminable split of a hnc subgraph. Then
SC(Ch) = SC(Ch−S).

Proof. Let C be an arbitrary configuration ofS=
(F,h1 7→ G1, . . . ,hn 7→ Gn), and letF ′ ∈ Gi be the
root fragment of the assumed second splitS′.

Let F1, . . . ,Fn be those fragments inC that are
properly dominated byF and properly dominate
F ′. All of these fragments must be possible domi-
nators ofF ′, and all of them must be inGi as well,
so F ′ is permutable with each of them.F ′ must
also be permutable withF . This means that we can
apply Lemma 2 repeatedly to moveF ′ to the root
of the configuration, obtaining a configuration of
S′ which is equivalent toC.

Notice that we didn’t require thatCh must be
the complete chart of a dominance graph. This
means we can remove eliminable splits from a
chart repeatedly, i.e. we can apply the following
redundancy elimination algorithm:

REDUNDANCY-ELIMINATION (Ch,R)
1 for each splitS in Ch
2 do if S is eliminable with respect toR
3 then removeS from Ch

Prop. 3 shows that the algorithm is a correct
algorithm for the underspecified redundancy
elimination problem. The particular order in
which eliminable splits are removed doesn’t
affect the correctness of the algorithm, but it may
change the number of remaining configurations.
The algorithm generalises an earlier elimination
algorithm (Koller and Thater, 2006) in that the
earlier algorithm required the existence of asingle
split which could be used to establish eliminability
of all other splits of the same subgraph.

We can further optimise this algorithm by keep-
ing track of how often each subgraph is referenced
by the splits in the chart. Once a reference count
drops to zero, we can remove the entry for this
subgraph and all of its splits from the chart. This
doesn’t change the set of configurations of the
chart, but may further reduce the chart size. The
overall runtime for the algorithm isO(n2S), where
S is the number of splits inCh andn is the num-
ber of nodes in the graph. This is asymptotically
not much slower than the runtimeO((n+ m)S) it
takes to compute the chart in the first place (where
m is the number of edges in the graph).

4.3 Examples and discussion

Let’s look at a run of the algorithm on the chart
in Fig. 2. The algorithm can first delete the elim-
inable split with root 1 for the entire graphG. After
this deletion, the splits forG with root fragments
2 and 3 are still eliminable; so we can e.g. delete
the split for 3. At this point, only one split is left
for G. The last split for a subgraph can never be
eliminable, so we are finished with the splits for
G. This reduces the reference count of some sub-
graphs (e.g.{2,3,5,6,7}) to 0, so we can remove
these subgraphs too. The output of the algorithm is
the chart shown below, which represents a single
configuration (the one shown in Fig. 3).

{1,2,3,4,5,6,7} :〈2,h2 7→ {1,4},h4 7→ {3,6,7}〉
{1,4} :〈1,h1 7→ {4}〉

{3,6,7} :〈3,h5 7→ {6},h6 7→ {7}〉

In this case, the algorithm achievescomplete re-
duction, in the sense that the final chart has no two
equivalent configurations. It remains complete for
all variations of the graph in Fig. 1 in which some
or all existential quantifiers are replaces by univer-
sal quantifiers. This is an improvement over our
earlier algorithm (Koller and Thater, 2006), which
computed a chart with four configurations for the
graph in which 1 and 2 are existential and 3 is uni-
versal, as opposed to the three equivalence classes
of this graph’s configurations.

However, the present algorithm still doesn’t
achieve complete reduction for all USRs. One ex-
ample is shown in Fig. 4. This graph has six con-
figurations in four equivalence classes, but no split
of the whole graph is eliminable. The algorithm
will delete a split for the subgraph{1,2,4,5,7},
but the final chart will still have five, rather
than four, configurations. A complete algorithm

everyz

Dx,y,z

ayax
1 2 3

Ax By Cz
4 5 6

7

Figure 4: A graph for which the algorithm is not
complete.

would have to recognise that{1,3,4,6,7} and
{2,3,5,6,7} have splits (for 1 and 2, respectively)
that lead to equivalent configurations and delete
one of them. But it is far from obvious how such a
non-local decision could be made efficiently, and
we leave this for future work.

5 Evaluation

In this final section, we evaluate the the effective-
ness and efficiency of the elimination algorithm:
We run it on USRs from a treebank and measure
how many readings are redundant, to what extent
the algorithm eliminates this redundancy, and how
much time it takes to do this.

Resources. The experiments are based on the
Rondane corpus, a Redwoods (Oepen et al., 2002)
style corpus which is distributed with the English
Resource Grammar (Flickinger, 2002). The cor-
pus contains analyses for 1076 sentences from the
tourism domain, which are associated with USRs
based upon Minimal Recursion Semantics (MRS).
The MRS representations are translated into dom-
inance graphs using the open-sourceutool tool
(Koller and Thater, 2005a), which is restricted to
MRS representations whose translations are hnc.
By restricting ourselves to such MRSs, we end up
with a data set of 999 dominance graphs. The aver-
age number of scope bearing operators in the data
set is 6.5, and the median number of readings is 56.

We then defined a (rather conservative) rewrite
systemRERG for capturing the permutability rela-
tion of the quantifiers in the ERG. This amounted
to (XXX) rule schemata, which are automatically
expanded to 494 rewrite rules.

Experiment: Reduction. We first analysed the
extent to which our algorithm eliminated the re-
dundancy of the USRs in the corpus. We com-
puted dominance charts for all USRs, ran the al-
gorithm on them, and counted the number of con-
figurations of the reduced charts. We then com-

1

10

100

1000

10000

100000

0 1 2 3 4 5 6 7 8 9 10 11 12 13
log(#configurations)

Fa
ct
or

Algorithm Baseline Classes

Figure 5: Mean reduction factor on Rondane.

pared these numbers against a baseline and an up-
per bound. The upper bound is the true number of
equivalence classes with respect toRERG; for effi-
ciency reasons we could only compute this num-
ber for USRs with up to 500.000 configurations
(95 % of the data set). The baseline is given by
the number of readings that remain if we replace
proper names and pronouns by constants and vari-
ables, respectively. This simple heuristic is easy to
compute, and still achieves nontrivial redundancy
elimination because proper names and pronouns
are quite frequent (28% of the noun phrase occur-
rences in the data set). It also shows the degree of
non-trivial scope ambiguity in the corpus.

For each measurement, we sorted the USRs ac-
cording to the numberN of configurations, and
grouped USRs according to the natural logarithm
of N (rounded down) to obtain a logarithmic scale.

First, we measured the mean reduction factor
for each log(N) class, i.e. the ratio of the num-
ber of all configurations to the number of remain-
ing configurations after redundancy elimination
(Fig. 5). The upper-bound line in the figure shows
that there is a great deal of redundancy in the USRs

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13
log(#configurations)

Algorithm Baseline

Figure 6: Percentage of USRs for which the algo-
rithm and the baseline achieve complete reduction.

0

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13
log(#configurations)

tim
e

(m
s)

Full Chart Reduced Chart Enumeration

Figure 7: Mean runtimes.

in the data set. The average performance of our
algorithm is close to the upper bound and much
better than the baseline. For USRs with fewer than
e8 = 2980 configurations (83 % of the data set), the
mean reduction factor of our algorithm is above
86 % of the upper bound. The median number
of configurations for the USRs in the whole data
set is 56, and the median number of equivalence
classes is 3; again, the median number of config-
urations of the reduced charts is very close to the
upper bound, at 4 (baseline: 8). The highest reduc-
tion factor for an individual USR is 666.240.

We also measured the ratio of USRs for
which the algorithm achieves complete reduction
(Fig. 6): The algorithm is complete for 56 % of the
USRs in the data set. It is complete for 78 % of
the USRs with fewer thane5 = 148 configurations
(64 % of the data set), and still complete for 66 %
of the USRs with fewer thane8 configurations.

Experiment: Efficiency. Finally, we measured
the runtime of the elimination algorithm. The run-
time of the elimination algorithm is generally
comparable to the runtime for computing the chart
in the first place. However, in our experiments we
used an optimised version of the elimination algo-
rithm, which computes the reduced chart directly
from a dominance graph by checking each split
for eliminability before it is added to the chart.
We compare the performance of this algorithm to
the baseline of computing the complete chart. For
comparison, we have also added the time it takes
to enumerate all configurations of the graph, as a
lower bound for any algorithm that computes the
equivalence classes based on the full set of config-
urations. Fig. 7 shows the mean runtimes for each
log(N) class, on the USRs with less than one mil-
lion configurations (958 USRs).

As the figure shows, the asymptotic runtimes

for computing the complete chart and the reduced
chart are about the same, whereas the time for
enumerating all configurations grows much faster.
(Note that the runtime is reported on a logarithmic
scale.) For USRs with many configurations, com-
puting the reduced chart actually takesless time
on average than computing the complete chart
because the chart-filling algorithm is called on
fewer subgraphs. While the reduced-chart algo-
rithm seems to be slower than the complete-chart
one for USRs with less thane5 configurations,
these runtimes remain below 20 milliseconds on
average, and the measurements are thus quite un-
reliable. In summary, we can say that there is no
overhead for redundancy elimination in practice.

6 Conclusion

We presented an algorithm for redundancy elim-
ination on underspecified chart representations.
This algorithm successively deleteseliminable
splits from the chart, which reduces the set of de-
scribed readings while making sure that at least
one representative of each original equivalence
class remains. Equivalence is defined with respect
to a certain class of rewriting systems; this defini-
tion approximates semantic equivalence of the de-
scribed formulas and fits well with the underspec-
ification setting. The algorithm runs in polynomial
time in the size of the chart.

We then evaluated the algorithm on the Ron-
dane corpus and showed that it is useful in
practice: the median number of readings drops
from 56 to 4, and the maximum individual re-
duction factor is 666.240. The algorithm achieves
complete reduction for 56% of all sentences. It
does this in negligible runtime; even the most
difficult sentences in the corpus are reduced in a
matter of seconds, whereas the enumeration of all
readings would take about a year. This is the first
corpus evaluation of a redundancy elimination in
the literature.

The algorithm improves upon previous work
(Koller and Thater, 2006) in that it eliminates
more splits from the chart. It is an improvement
over earlier algorithms for enumerating irredun-
dant readings (Vestre, 1991; Chaves, 2003) in that
it maintains underspecifiedness; note that these
earlier papers never made any claims with respect
to, or evaluated, completeness.

There are a number of directions in which the
present algorithm could be improved. We are cur-

rently pursuing some ideas on how to improve the
completeness of the algorithm further. It would
also be worthwhile to explore heuristics for the or-
der in which splits of the same subgraph are elim-
inated. The present work could be extended to al-
low equivalence with respect to arbitrary rewrite
systems. Most generally, we hope that the methods
developed here will be useful for defining other
elimination algorithms, which take e.g. full world
knowledge into account.

References
E. Althaus, D. Duchier, A. Koller, K. Mehlhorn, J. Niehren,

and S. Thiel. 2003. An efficient graph algorithm for dom-
inance constraints.Journal of Algorithms, 48:194–219.

P. Blackburn and J. Bos. 2005.Representation and Inference
for Natural Language. A First Course in Computational
Semantics. CSLI Publications.

R. P. Chaves. 2003. Non-redundant scope disambiguation
in underspecified semantics. InProc. 8th ESSLLI Student
Session.

A. Copestake, D. Flickinger, C. Pollard, and I. Sag. 2004.
Minimal recursion semantics: An introduction.Journal of
Language and Computation. To appear.

M. Egg, A. Koller, and J. Niehren. 2001. The Constraint
Language for Lambda Structures.Logic, Language, and
Information, 10.

D. Flickinger. 2002. On building a more efficient grammar
by exploiting types. In J. Tsujii S. Oepen, D. Flickinger
and H. Uszkoreit, editors,Collaborative Language Engi-
neering. CSLI Publications, Stanford.

R. Fuchss, A. Koller, J. Niehren, and S. Thater. 2004. Mini-
mal recursion semantics as dominance constraints: Trans-
lation, evaluation, and analysis. InProc. of the 42nd ACL.

A. Koller and S. Thater. 2005a. Efficient solving and ex-
ploration of scope ambiguities. InACL-05 Demonstration
Notes, Ann Arbor.

A. Koller and S. Thater. 2005b. The evolution of dominance
constraint solvers. InProceedings of the ACL-05 Work-
shop on Software, Ann Arbor.

A. Koller and S. Thater. 2006. Towards a redundancy elimi-
nation algorithm for underspecified descriptions. InProc.
5th Intl. Workshop on Inference in Computational Seman-
tics (ICoS-5).

A. Koller, J. Niehren, and S. Thater. 2003. Bridging the gap
between underspecification formalisms: Hole semantics as
dominance constraints. InProc. 10th EACL.

J. Niehren and S. Thater. 2003. Bridging the gap between
underspecification formalisms: Minimal recursion seman-
tics as dominance constraints. InProc. of the 41st ACL.

S. Oepen, K. Toutanova, S. Shieber, C. Manning,
D. Flickinger, and T. Brants. 2002. The LinGO Red-
woods treebank: Motivation and preliminary applications.
In Proceedings of COLING’02.

K. van Deemter and S. Peters. 1996.Semantic Ambiguity
and Underspecification. CSLI, Stanford.

E. Vestre. 1991. An algorithm for generating non-redundant
quantifier scopings. InProc. of the Fifth EACL, Berlin.

