An Improved Redundancy Elimination Algorithm
for Underspecified Representations

Alexander Koller and Stefan Thater
Dept. of Computational Linguistics
Universitat des Saarlandes, Saarbriicken, Germany
{koller,stth} @coli.uni-sb.de

Abstract the English Resource Grammar (ERG; Flickinger

(2002)), a large-scale HPSG grammar of English.
We present an efficient algorithm for the

redundancy eliminatiorproblem: Given
an underspecified semantic representation
(USR) of a scope ambiguity, compute an

(1) Fortravellers going to Finnmark there is a bus
service from Oslo to Alta through Sweden.
(Rondane 1262)

USR with fewer mutually equivalent read- (2) We quickly put up the tents in the lee of a
ings. The algorithm operates on under- small hillside and cook for the first time in
specified chart representations which are the open. (Rondane 892)

derived from dominance graphs; it can be
applied to the USRs computed by large-
scale grammars. We evaluate the algo-
rithm on a corpus, and show that it reduces
the degree of ambiguity significantly while
taking negligible runtime.

For the annotated syntactic analysis of (1), the
ERG derives an USR with eight scope bearing op-
erators, which results in a total of 3960 readings.
These readings are all semantically equivalent to
each other. On the other hand, the USR for (2) has
480 readings, which fall into two classes of mutu-
ally equivalent readings, characterised by the rela-
tive scope of “the lee of” and “a small hillside.”
Underspecification is nowadays the standard ap- In this paper, we present an algorithm for the
proach to dealing with scope ambiguities in com-redundancy eliminatioproblem: Given an USR,
putational semantics (van Deemter and Petergompute an USR which has fewer readings, but
1996; Copestake et al., 2004; Egg et al., 2001still describes at least one representative of each
Blackburn and Bos, 2005). The basic idea behin@quivalence class — without enumerating any read-
it is to not enumerate all possible semantic repreings. This algorithm makes it possible to com-
sentations for each syntactic analysis, but to depute the one or two representatives of the seman-
rive a single compaatnderspecified representa- tic equivalence classes in the examples, so subse-
tion (USR) This simplifies semantics construc- quent modules don’t have to deal with all the other
tion, and current algorithms support the efficientequivalent readings. It also closes the gap between
enumeration of the individual semantic representhe large number of readings predicted by the
tations from an USR (Koller and Thater, 2005b). grammar and the intuitively perceived much lower

A major promise of underspecification is thatdegree of ambiguity of these sentences. Finally, it
it makes it possible, in principle, to rule out en- can be helpful for a grammar designer because it
tire subsets of readings that we are not interesteid much more feasible to check whether two read-
in wholesale, without even enumerating them. Foings are linguistically reasonable than 480. Our al-
instance, real-world sentences with scope ambigugorithm is applicable to arbitrary USRs (not just
ities often have many readings that are semantithose computed by the ERG). While its effect is
cally equivalent. Subsequent modules (e.g. for doparticularly significant on the ERG, which uni-
ing inference) will typically only be interested in formly treats all kinds of noun phrases, including
one reading from each equivalence class, and afiroper names and pronouns, as generalised quanti-
others could be deleted. This situation is illustratediers, it will generally help deal with spurious am-
by the following two (out of many) sentences from biguities (such as scope ambiguities between in-
the Rondane treebank, which is distributed withdefinites), which have been a ubiquitous problem

1 Introduction

in most theories of scope since Montague Gram- v does not have incoming tree edges; other-
mar. wise,Vvis ahole

We model equivalence in terms of rewrite rules
that permute quantifiers without changing the se- A labelled dominance grapbver a ranked sig-
mantics of the readings. The particular USRs wehatureX is a triple G = (V,EwD, L) such that
work with are underspecified chart representa(V,E @ D) is a dominance graph ard:V ~ Z
tions, which can be computed from dominances a partialabelling functionwhich assigns a node
graphs (or USRs in some other underspecifica¥ & label with arityn iff vis a root withn outgoing
tion formalisms) efficiently (Koller and Thater, tree edges. Nodes without labels (i.e. holes) must
2005b). We evaluate the performance of the algohave outgoing dominance edges.
rithm on the Rondane treebank and show that it \ve will write R(F) for the root of the fragment
reduces the median number of readings from 5 and we will typically just say “graph” instead
to 4, by up to a factor of 666.240 for individual of “|abelled dominance graph”.
USRs, while running in negligible time. An example of a labelled dominance graph is

To our knowledge, our algorithm and its lesSghown to the left of Fig. 1. Tree edges are drawn as
powerful predecessor (Koller and Thater, 2006)s0jid lines, and dominance edges as dotted lines,
are the first redundancy elimination algorithms ingjrected from top to bottom. This graph can serve
the literature that operate on the level of USRsg5 an USR for the sentence “a representative of
There has been previous researcteanmerating 5 company saw a sample” if we demand that the
only some representatives of each equivalencgples are “plugged” by roots while realising the
class (Vestre, 1991; Chaves, 2003), but thesgominance edges as dominance, as in thecvo
approaches don't maintain underspecificationfigyrations(of five) shown to the right. These con-
After running their algorithms, they are left with figyrations are trees that encode semantic repre-
a set of readings rather than an underspecifiedentations of the sentence. We will freely read con-
representation, i.e. we could no longer run othe¥igyrations as ground terms over the signafiire
algorithms on an USR.

The paper is structured as follows. We will first 2.1 Hypernormally connected graphs

define dominance graphs and review the necessamhroughout this paper, we will only considay-
background theory in Section 2. We will then in- pernormally connected (hn@ominance graphs.
troduce our notion of equivalence in Section 3, andHnc graphs are equivalent tohain-connected
present the redundancy elimination algorithm indominance constraints (Koller et al., 2003), and
Section 4. In Section 5, we describe the evaluatioryre closely related tdominance netdNiehren and

of the algorithm on the Rondane corpus. Finally,Thater, 2003). Fuchss et al. (2004) have presented
Section 6 concludes and points to further work. g corpus study that strongly suggests that all dom-
inance graphs that are generated by current large-
scale grammars are (or should be) hnc.

The basic underspecification formalism we as- Technically, a graplG is hypernormally con-
sume here is that (fabelled) dominance graphs nected iff each pair of nodes is connected by a sim-
(Althaus et al., 2003). Dominance graphs areple hypernormal pathin G. A hypernormal path
equivalent to leaf-labelled normal dominance con{Althaus et al., 2003) irG is a path in the undi-
straints (Egg et al., 2001), which have been dis¥ected versiori, of G that does not use two dom-
cussed extensively in previous literature. inance edges that are incident to the same hole.

Definition 1. A (compact) dominance gragh a Hnc graphs have a number of very useful struc-
directed graphiV, E &D) with two kinds of edges, tural properties on which this paper rests. One

tree edges Eanddominance edges,Buch that: which is particularly relevant here is that we can
_ _ predict in which way different fragments can dom-
1. The graph(V,E) defines a collection of node jnate each other.

disjoint trees of height 0 or 1. We call the
trees in(V, E) thefragmentsof the graph.

2 Dominance graphs

Definition 2. Let G be a hnc dominance graph. A

fragmentF; in G is called apossible dominator

2. If (v,V) is a dominance edge D, thenvis of another fragmenk, in G iff it has exactly one
a hole and/ is a root. A nodev is arootif holehwhich is connected tR(F,) by a simple hy-

dz

-
N -~

. ' [a, ay

NI
d ® ' ® ' comp,
comp, repr-ofy, + sampley .
‘. L repr-ofy ,
et comp, repr-ofy, sampley seeyy
seex y sampley seeyy

Figure 1: A dominance graph that represents the five readings of the sentence “a representative of a
company saw a sample” (left) and two of its five configurations.

{1,2,3,4,5,6,7} :(1,hy — {4}, ho — {2,3,5,6,7}) of constructing configurations of the subgraph.
(2,hz— {1,4,5},hy— {3,6,7}) A subgraphG' is assigned one split for each
(3,hs — {5},he — {1,2,4,5,7}) fragmentF in G’ which can be at the root of a
{2,3,5,6,7} :(2,h3 — {5},hs — {3,6,7}) configuration ofG'. If the graph is hnc, removing
(3,hg — {6},he — {2,5,7}) F from the graph split3’ into a set of weakly
{3,6,7} :(3,hs — {6}, hg — {7}) connected components (wccs), each of which is
{2,5,7} :(2,hg— {5}, hs — {7}) connected to exactly one holef®f We also record
{1,4,5} :(1,hy — {4} ,h, — {5}) the wccs, and the hole to which each wee belongs,
{1,2,4,5,7} :(1,hy — {4}, ha — {2,5,7}) in the split. In order to compute all configurations
(2,hg — {1,4,5} ,hy — {7}) represented by a split, we can first compute

recursively the configurations of each component;
then we plug each combination of these sub-
configurations into the appropriate holes of the
pernormal path which doesn’t uBg¢F;). We write root fragment. We define the configurations asso-
ch(Fy,R) for this uniqueh. ciated with a subgraph as the union over its splits,

Lemma 1 (Koller and Thater (2006)). LetFy, F» and those of the entire chart as the configurations
be fragments in a hnc dominance graphf there ~ @ssociated with the complete graph.

is a configuratiol€ of G in whichR(F1) dominates Fig. 2 shows the dominance chart correspond-
R(F.), thenF; is a possible dominator d%, and ing to the graph in Fig. 1. The chart represents
in particularch(Fy,) dominatesR(F,) in C. exactly the configuration set of the graph, and is

By applying this rather abstract result, we Canminimal in the sense that every subgraph and ev-

derive a number of interesting facts about the exS"Y split in the chart can be used in constructing

ample graph in Fig. 1. The fragments 1, 2, and ome configuration. Such charts can be computed

are possible dominators of all other fragments (an&ﬁiciently (Koller and Thater, 2005b) from a dom-
of each other), while the fragments 4 through Lnance graph, and can also be used to compute the

aren’t possible dominators of anything (they haveconfigurations of a graph efficiently.

no holes); so 4 through 7 must be leaves in any The example chart expresses that three frag-
configuration of the graph. In addition, if fragment Ments can be at the root of a configuration of the
2 dominates fragment 3 in any configuration, therfomplete graph: 1, 2, and 3. The entry for the split
in particular theright hole of 2 will dominate the with root fragment 2 tells us that removing 2 splits

Figure 2: The chart for the graph in Fig. 1.

root of 3: and so on. the graph into the subgrapk$, 4,5} and{3,6,7}
(see Fig. 3). If we configure these two subgraphs
2.2 Dominance charts recursively, we obtain the configurations shown in

Below we will not work with dominance graphs the third column of Fig. 3; we can then plug these
directly. Rather, we will usedominance charts Sub-configurations into the appropriate holes of 2
(Koller and Thater, 2005b) as our USRs: they areand obtain a configuration for the entire graph.
more explicit USRs, which support a more fine- Notice that charts can be exponentially larger
grained deletion of reading sets than graphs. than the original graph, but they are still expo-
A dominance chart for the gragghis a mapping nentially smaller than the entire set of readings
of weakly connected subgraphs @fto sets of because common subgraphs (such as the graph
splits (see Fig. 2), which describe possible ways{2,5,7} in the example) are represented only

' ‘\I LI . - ' ‘\ ' ' — —
é ¢ ¢ "3 s e & é /\ /\

Figure 3: Extracting a configuration from a chart.

once, and are small in practice (see (Koller andng form:
Thater, 2005b) for an analysis). Thus the chart can
still serve as an underspecified representation. f1(Xiys 22k, 2 Yiem)» X)) —

f2(Yizk)» f1(XLi)> 2 X)) Yiem))

3 Equivalence

Thepermutability relation PR) is the binary rela-
Now let's define equivalence of readings moretign P(R) C (Z x N)2 which contains exactly the
precisely. Equivalence of semantic representationﬁjmes((f1,i), (f2,k)) and((f2,k), (f1,i)) for each
is traditionally defined as the relation betweensych rewrite rule. Two terms aemjuivalentwith
formulas (say, of first-order logic) which have respect toR, s~gt, iff there is a sequence of
the same interpretation. However, even first-ordefewrite steps and inverse rewrite steps that rewrite
equivalence is an undecidable problem, and broadsinto t.
coverage semantic representations such as thosejf G is a graph oveE andR a permutation sys-

computed by the ERG usually have no well-tem, then we writeSGy(G) for the set of equiva-
defined model-theoretic semantics and thereforgince classes Cof)/~r, where ConfG) is the

no concept of semantic equivalence. set of configurations ob.

On the other hand, we do not need to SOVe pq reyrite rule (3) above is an instance of this
the full semantic equivalence problem, aswe Onlyschema, as are the other three permutations of ex-
want to compare formulas that are readings of theo via| quantifiers. These rules approximate clas-

same sentence,rl].i. dlffelrent clon;{?furgtlor;]s of th%ical semantic equivalence of first-order logic, as
same USR. Such formulas only differ in the WaYthey rewrite formulas into classically equivalent

that the fragments are combined. We can thereforg, oo - |ngeed, all five configurations of the graph
approximate equivalence by usingavrite system in Fig. 1 are rewriting-equivalent to each other.
that permutes fragments and defining equivalence In the case of the semantic representations gen-
of configurations as mutual rewritability as usual. erated by the ERG, we don't have access to an
~ By way of example, consider again the two con-nqerlying interpretation. But we can capture lin-
figurations shown in Fig. 1. We can obtain the secyistic intuitions about the equivalence of readings
ond configuration from the (semantically equiva-, permutation rules. For instance, proper names
lent) firgt one by applying the following rewrite .4 pronouns (which the ERG analyses as scope-
rule, which rotates the fragments 1 and 2: bearers, although they can be reduced to constants
without scope) can be permuted with anything. In-
ax(az(P,Q),R) — az(Pax(Q,R)) () definites and definites permute with each other if
they occur in each other'scope but not if they

Thus we take these two configurations to beyccyr in each other'sestrictiorr and so on.
equivalent with respect to the rewrite rule. (We

could also have argued that the second configud Redundancy elimination

ration can be rewritten into the first by using the .. .
Given a permutation system, we can now try to get

inverted rule.) rid of readings that are equivalent to other read-

We Iformallsef flhls reTV\r/]”tlgg];bi_Sed no“?: Ofbings. One way to formalise this is to enumerate ex-
equivaience as 1oflows. 1he detinition uses the a actly one representative of each equivalence class.
breviationx(iy for the sequencs,, ..., %1, and

o However, after such a step we would be left with a
Xk TO7 X, X, collection of semantic representations rather than
Definition 3. A permutation system R a system an USR, and could not use the USR for ruling out
of rewrite rules over the signatukeof the follow- further readings. Besides, a naive algorithm which

first enumerates all configurations would be pro-will rule out some configurations; but it does not
hibitively slow. change the set of equivalence classes.

We will instead tackle the followingnderspec- pefinition 5. Let R be a permutation system. A
ified redundancy eliminatioproblem: Given an splitS= (F,...,h — Gi,...) of a graphG s called
USR G, compute an USRS Wltt‘ Conf(G') € eliminablein a charChif someG; contains a frag-
Conf(Gl) and SQR(G) = SGR(G). We want mentF’ such that (alCh contains a spli of G
Conf(G') to be as small as possible. Ideally, it jth root fragment’, and (b)F’ is R-permutable

would contain no two equivalent readings, butyith F and all possible dominators & in Gi.
in practice we won't always achieve this kind . T

P y S In Fig. 1, each of the three splits is eliminable.
of completeness. Our redundancy elimination al-

gorithm will operate on a dominance chart andForexampIe,the splitwith root fragment 1 is elim-

. ; inable because the fragment 3 permutes both with
successively delete splits and subgraphs from thg o .) .
chart (which is the only possible dominator of 3 in the

same wcc) and with 1 itself.
4.1 Permutable fragments Proposition 3. Let Ch be a dominance chart, and

Because the algorithm must operate on USRgetSbe an eliminable split of a hnc subgraph. Then
rather than configurations, it needs a way to pre-SC(Ch) =SQCh-9).

dict from the USR alone which fragments can beproof. Let C be an arbitrary configuration &=

permuted in configurations. This is not generally(F, hy — G,...,hy— Gy), and letF’ € G; be the
possible in unrestricted graphs, but for hnc graphgoot fragment of the assumed second sglit

itis captured by the following criterion. Let Fy,...,F, be those fragments i6 that are

Definition 4. Let R be a permutation system. Properly dominated by and properly dominate

they are possible dominators of each other ang0 F' is permutable with each of therf! must
((f1,ch(F1,R)), (f2,ch(F2,F1))) € P(R). also be permutable with. This means that we can

apply Lemma 2 repeatedly to mot# to the root
For example, in Fig. 1, the fragments 1 and 2 PRY P y

bl d indeed th b of the configuration, obtaining a configuration of
are permut_a e, and indee they can be permuted i his equivalent €. .
in any configuration in which one is the parent of
the other. This is true more generally: Notice that we didn’t require thaCh must be

Lemma 2 (Koller and Thater (2006)). Let G the complete chart of a dominance graph. This

be a hne graphF; andF, be R-permutable frag- MEaNs We can remove eliminable splits from a
ments with root label$, and f,, andC; any con- chart repeateQIy,_ €. We can app_ly the following
figuration ofG of the formC(fa(..., fa(...),...)) reaundancy elimination algorithm:

(whereC is the context of the subterm). Then
C, can beR-rewritten into a treeC, of the form
C(fa(...,f1(...),...)) which is also a configura-
tion of G.

REDUNDANCY-ELIMINATION (Ch,R)
1 for each splitSin Ch
2 do if Sis eliminable with respect tB
3 then removeSfrom Ch

The proof uses the hn connectedness of two
ways: in order to ensure th@ is still a configu- Prop. 3 shows that the algorithm is a correct
ration of G, and to make sure th& is plugged algorithm for the underspecified redundancy
into the correct hole of; for a rule application elimination problem. The particular order in
(cf. Lemma 1). Note tha, ~r Cy by definition. which eliminable splits are removed doesn’t
affect the correctness of the algorithm, but it may
change the number of remaining configurations.
Now we can use permutability of fragments to de-The algorithm generalises an earlier elimination
fine eliminable splits Intuitively, a split of a sub- algorithm (Koller and Thater, 2006) in that the
graph G is eliminable if each of its configura- earlier algorithm required the existence cfiagle
tions is equivalent to a configuration of some othersplit which could be used to establish eliminability
split of G. Removing such a split from the chart of all other splits of the same subgraph.

4.2 The redundancy elimination algorithm

We can further optimise this algorithm by keep- ay ay every,

ing track of how often each subgraph is referenced

by the splits in the chart. Once a reference count ./\ ./\ ./\
drops to zero, we can remove the entry for this Ac v, By c,
subgraph and all of its splits from the chart. This Teell * _____ -
doesn’t change the set of configurations of the Dyy.z

chart, but may further reduce the chart size. The i i i
overall runtime for the algorithm i©(n?S), where Figure 4: A graph for which the algorithm is not
Sis the number of splits i€h andn is the num- complete.

ber of nodes in the graph. This is asymptotically

not much slower than the runtin@((n+m)S) it would have to recognise thdtl,3,4,6,7} and
takes to compute the chart in the first place (wherg2 3,5 6,7} have splits (for 1 and 2, respectively)
mis the number of edges in the graph). that lead to equivalent configurations and delete
one of them. But it is far from obvious how such a
non-local decision could be made efficiently, and
Let's look at a run of the algorithm on the chart we leave this for future work.

in Fig. 2. The algorithm can first delete the elim-

inable split with root 1 for the entire graigh After 5 Evaluation

this deletion, the splits fo6 with root fragments In this final section, we evaluate the the effective-

2 and 3 are still eliminable; so we can e.g. delete .. o) i
: . : g hess and efficiency of the elimination algorithm:
the split for 3. At this point, only one split is left

, We run it on USRs from a treebank and measure
for G. The last split for a subgraph can never b unt .

- _ . . ow many readings are redundant, to what extent
eliminable, so we are finished with the splits for y g

. the algorithm eliminates this redundancy, and how
G. This reduces the reference count of some sub- 9 y

graphs (e.g{2,3,5,6,7}) to 0, so we can remove much time it takes to do this.
these subgraphs too. The output of the algorithm iResources. The experiments are based on the
the chart shown below, which represents a singl®®Rondane corpus, a Redwoods (Oepen et al., 2002)
configuration (the one shown in Fig. 3). style corpus which is distributed with the English
Resource Grammar (Flickinger, 2002). The cor-
{1,2,3,4,5,6,7} :(2,hp — {1,4},hs — {3,6,7}) pus contains analyses for 1076 sentences from the
{1,4} (L, hy— {4}) tourism domain, which are associated with USRs
{3,6,7} :(3,hs — {6}, he — {7}) based upon Minimal Recursion Semantics (MRS).
])) The MRS representations are translated into dom-
In this case, the algorithm achievasmplete re- inance graphs using the open-soureeol tool

duction in the sense that the final chart has no tWO(KoIIer and Thater, 2005a), which is restricted to

equivalent configurations. It remains complete fofyng representations whose translations are hnc.
all variations of the graph in Fig. 1 in which some By restricting ourselves to such MRSs, we end up
or all existential quantifiers are replaces by univer-Wi,[h a data set of 999 dominance graphs. The aver-

sal quantifigrs. This is an improvement over _Ourage number of scope bearing operators in the data
earlier algorithm (Koller and Thater, 2006), which gq4 is 65 and the median number of readings is 56.

computed a chart with four configurations for the We then defined a (rather conservative) rewrite

graph in which 1 and 2 are existential and 3 is uni'systemRERG for capturing the permutability rela-

versal, as opposed to the three equivalence cIasstan of the quantifiers in the ERG. This amounted

of this graph’s configurations. . . . to (XXX) rule schemata, which are automatically
However, the present algorithm still doesntexpanded to 494 rewrite rules.

achieve complete reduction for all USRs. One ex-

ample is shown in Fig. 4. This graph has six con-Experiment: Reduction. We first analysed the
figurations in four equivalence classes, but no spliextent to which our algorithm eliminated the re-
of the whole graph is eliminable. The algorithm dundancy of the USRs in the corpus. We com-
will delete a split for the subgrapfi,2,4,5,7}, puted dominance charts for all USRs, ran the al-
but the final chart will still have five, rather gorithm onthem, and counted the number of con-
than four, configurations. A complete algorithm figurations of the reduced charts. We then com-

4.3 Examples and discussion

100000 7 f- - = = == == === == == 10000 -
10000 - 1000 -
1000 - 100 1

100

o 1 2 3 4 5 6 7 8 9 10 11 12 13 o 1 2 3 4 5 6 7 8 9 10 11 12 13

log(#configurations) log(#configurations)
—&— Algorithm —B&— Baseline —A—Classes —o—Full Chart —8—Reduced Chart —A— Enumeration
Figure 5: Mean reduction factor on Rondane. Figure 7: Mean runtimes.

pared these numbers against a baseline and an up-the data set. The average performance of our
per bound. The upper bound is the true number ofllgorithm is close to the upper bound and much
equivalence classes with respecRierg; for effi- better than the baseline. For USRs with fewer than
ciency reasons we could only compute this nume® = 2980 configurations (83 % of the data set), the
ber for USRs with up to 500.000 configurationsmean reduction factor of our algorithm is above
(95% of the data set). The baseline is given by86 % of the upper bound. The median number
the number of readings that remain if we replaceof configurations for the USRs in the whole data
proper names and pronouns by constants and vaet is 56, and the median number of equivalence
ables, respectively. This simple heuristic is easy t@lasses is 3; again, the median number of config-
compute, and still achieves nontrivial redundancyurations of the reduced charts is very close to the
elimination because proper names and pronoungpper bound, at 4 (baseline: 8). The highest reduc-
are quite frequent (28% of the noun phrase occurtion factor for an individual USR is 666.240.
rences in the data set). It also shows the degree of We also measured the ratio of USRs for
non-trivial scope ambiguity in the corpus. which the algorithm achieves complete reduction
For each measurement, we sorted the USRs a€Fig. 6): The algorithm is complete for 56 % of the
cording to the numbeN of configurations, and USRS in the data set. It is complete for 78 % of
grouped USRs according to the natural logarithnthe USRs with fewer thae® = 148 configurations
of N (rounded down) to obtain a logarithmic scale.(64 % of the data set), and still complete for 66 %
First, we measured the mean reduction factopf the USRs with fewer thae® configurations.
for each logN) class, i.e. the ratio of the num-

ber of all configurations to the number of reMaIN-yp o runtime of the elimination algorithm. The run-

ing configurations after redundancy ellmlnatlon,[ime of the elimination algorithm is generally

(Fig. 5). The upper-bound line in the figure ShOWScomparable to the runtime for computing the chart

that there is a great deal of redundancy in the USRS : . .
in the first place. However, in our experiments we
used an optimised version of the elimination algo-
rithm, which computes the reduced chart directly
100% T & from a dominance graph by checking each split
80 -\ N for eliminability beforeit is added to the chart.
We compare the performance of this algorithm to
the baseline of computing the complete chart. For
comparison, we have also added the time it takes
L e =S " N A to enumerate all configurations of the graph, as a
7 N == =~ =N lower bound for any algorithm that computes the
T i R equivalence classes based on the full set of config-
urations. Fig. 7 shows the mean runtimes for each
log(N) class, on the USRs with less than one mil-
Figure 6: Percentage of USRs for which the algo4ion configurations (958 USRs).

rithm and the baseline achieve complete reduction. As the figure shows, the asymptotic runtimes

Experiment: Efficiency. Finally, we measured

60% +--- Y- o <o

40% +---- == o NN\

—O— Algorithm —8— Baseline

for computing the complete chart and the reducedently pursuing some ideas on how to improve the
chart are about the same, whereas the time farompleteness of the algorithm further. It would
enumerating all configurations grows much fasteralso be worthwhile to explore heuristics for the or-
(Note that the runtime is reported on a logarithmicder in which splits of the same subgraph are elim-
scale.) For USRs with many configurations, com-inated. The present work could be extended to al-
puting the reduced chart actually takesstime low equivalence with respect to arbitrary rewrite
on average than computing the complete charsystems. Most generally, we hope that the methods
because the chart-filling algorithm is called ondeveloped here will be useful for defining other
fewer subgraphs. While the reduced-chart algoelimination algorithms, which take e.g. full world
rithm seems to be slower than the complete-chaktnowledge into account.

one for USRs with less thag® configurations,

these runtimes remain below 20 mHhsecond_s OReferences

average, and the measurements are thus quite un- _)
reliable. In summary, we can say that there is n . Althaus, D. Duchier, A. Koller, K. Mehlhorn, J. Niehren,

TRy R . and S. Thiel. 2003. An efficient graph algorithm for dom-
overhead for redundancy elimination in practice. inance constraintslournal of Algorithms48:194—219.

lUSi P. Blackburn and J. Bos. 200Representation and Inference
6 Conclusion for Natural Language. A First Course in Computational

]] SemanticsCSLI Publications.
We presented an algorithm for redundancy elim-
i At s ; . P. Chaves. 2003. Non-redundant scope disambiguation
majtlon on . underSpeCIfle_d chart repr_es_entatlonf in underspecified semantics. Broc. 8th ESSLLI Student
This algorithm successively deletediminable Session
splitsfrom the chart, which reduces the set of de- o
ibed readin while makin re that at | f\. Copestake, D. Flickinger, C. Pollard, and I. Sag. 2004.
Scribed rea g§ € ma g_S_u € tha _a €aSt" Minimal recursion semantics: An introductiodournal of
one representative of each original equivalence Language and Computatioffo appear.
class rem.ams' Equwalen.c_e IS deflned.WI'[.h resper%. Egg, A. Koller, and J. Niehren. 2001. The Constraint
tion approximates semantic equivalence of the de- Information 10.
_3_Cnb_ed formUIas and fits V_Ve” with the underSp_eC'D. Flickinger. 2002. On building a more efficient grammar
ification setting. The algorithm runs in polynomial by exploiting types. In J. Tsujii S. Oepen, D. Flickinger
time in the size of the chart. and H. Uszkoreit, editorsCollaborative Language Engi-

. neering CSLI Publications, Stanford.
We then evaluated the algorithm on the Ron- g

dane corpus and showed that it is useful inR.Fuchss, A.Koller, J. Niehren, and S. Thater. 2004. Mini-
A ; ; mal recursion semantics as dominance constraints: Trans-

practice: the median numbgr of rgaglmgs drOps lation, evaluation, and analysis. Rroc. of the 42nd ACL

from 56 to 4, and the maximum individual re-

duction factor is 666.240. The algorithm achieveg® Koller and S. Thater. 2005a. Efficient solving and ex-

. loration of scope ambiguities. ICL-05 Demonstration
complete reduction for 56% of all sentences. It E,mesAnn Arboﬁ. g

does this in negligible runtime; even the most
s ; ; . Koller and S. Thater. 2005b. The evolution of dominance
difficult sentences in the corpus are reduged in & constraint solvers. IProceedings of the ACL-05 Work-
matter of seconds, whereas the enumeration of all shop on Softwareann Arbor.
readings would take about a year. This is the first .
luati f dund liminati . A. Koller and S. Thater. 2006. Towards a redundancy elimi-
corp_us evaluauon or a redundancy elimination In - 5tion algorithm for underspecified descriptions Phoc.
the literature. 5th Intl. Workshop on Inference in Computational Seman-
The algorithm improves upon previous work ~tcs (1C0S-5)
(Koller and Thater, 2006) in that it eliminates A. Koller, J. Niehren, and S. Thater. 2003. Bridging the gap
more splits from the chart. It is an improvement between underspecification formalisms: Hole semantics as
over earlier algorithms for enumerating irredun- 9°minance constraints. roc. 10th EACL
dant readings (Vestre, 1991; Chaves, 2003) in that Niehren and S. Thater. 2003. Bridging the gap between
i intai ifi . underspecification formalisms: Minimal recursion seman-
I m.amtams underspecifiedness; .nOte .that these tics as dominance constraints. Rnoc. of the 41st ACL
earlier papers never made any claims with respect
to, or evaluated, completeness. S. Oepen, K. Toutanova, S. Shieber, C. Manning,
. . . . D. Flickinger, and T. Brants. 2002. The LIinGO Red-
There are a number of directions in which the

X ; woods treebank: Motivation and preliminary applications.
present algorithm could be improved. We are cur- In Proceedings of COLING’Q2

K. van Deemter and S. Peters. 1998emantic Ambiguity
and UnderspecificatianCSLI, Stanford.

E. Vestre. 1991. An algorithm for generating non-redundant
quantifier scopings. IRroc. of the Fifth EACLBerlin.

