Semi-automated Ontology Creation for High-level
Service Classification

Knarig Arabshian, Peter Danielsen

Alcatel-Lucent, Bell Labs
Murray Hill, NJ, USA
knarig.arabshian@alcatel-lucent.com
peter.danielsen@alcatel-lucent.com

Abstract—In this paper, we propose a LexOnt, a semi-
automatic ontology creation tool for high-level service ontology.
LexOnt uses the Programmable Web directory of services as its
corpus of data along with Internet sources such as Wikipedia
in order to generate common terms within a service domain
and determine generic properties for classification. Currently,
Programmable Web classifies services in a flat categorization
where each service is manually classified within a single category.
Search is limited to attributes that are not related to the
semantics of the service, such as protocol or messaging type.
When using an ontology for the service API descriptions, services
can be automatically classified and queried for according to
their attributes. Additionally, services can then be distributed
in an ontology-based service discovery system such as GloServ
so that semantic registration and querying of services becomes
possible. Keywords: semi-automated ontology creation, OWL,
service discovery, service composition

I. INTRODUCTION

In recent years, the availability of services on the World
Wide Web has surged. In order to make good use of these ser-
vices, both human and software consumers require knowledge
about existing services. Thus, the need for automatic service
discovery and composition is critical. A current technological
trend is in creating web service mashups. The concept of a
mashup is to allow users to create their own content from
different types of sources such as websites, RSS Feeds [1], or
Flickr [2]. A user is able to filter tailored information on a
personal page to view and share with others. It is not necessary
for a user to know how to create websites, but can do so simply
by bringing different components together via a simplified user
interface. For example, the Google Maps API [3] is often used
in conjunction with location-based web services. Currently,
there are a number of web services in various domains, such
as social media or mapping services that offer their APIs to
be used in mashup applications. Programmable Web [4] is one
such directory that offers a listing of Web service APIs.

Creating mashups of web services is a difficult process
since these services exist as separate entities on the web.
Every site has its databases modeled in a specific way, causing
semantically equivalent properties to be defined differently,
since data is not easily shared across different domains in the
Internet.. As a result, service discovery and composition across
different service domains becomes a tedious process. With the
use of Semantic Web technologies, such as description logic
ontologies and reasoners, data linking becomes a seamless

effort. Thus, ontologies are now being used to describe and
classify services. Currently, there are a number of ontology
languages that are under development for representing a ser-
vice. A few are: Web Ontology Language for Services (OWL-
S) [5], Web Services Modeling Ontology (WSMO) [6], and
Semantic Web Services Language (SWSL) [7]. All of these
use some form of the Web Ontology Language (OWL) [8]
which is the de facto ontology standard within the W3C and
used by a few of the standard description logic reasoners such
as Pellet [9] and RacerPro [10].

One of the limitations in using ontologies for services is
in creating a generic description of a service domain. By a
generic description, we mean a high-level description of a
service that is not just a taxonomic classification, but also
describes general properties shared across the service domain.
This means finding common properties that exist within a
service domain, such that all services in that domain have
at least those property assignments. For example, all social
networking services have at least user profile and friend list
properties as well as some kind of sharing attribute; or all
location-based services have at least location as a property.

Currently, most of the semi-automated ontology generation
tools either have an established taxonomy or a well-defined
corpus, such as in the fields of biology and medicine which
aid domain experts in creating ontologies. There are tools
which analyze generic text to semi-automatically create an
ontology, but these ontologies are taxonomic hierarchies and
do not indicate property descriptions of the classes. As we
have indicated above, there is a need for ontology descrip-
tions of different service domains to ease the discovery and
composition of services. In order to make the use of ontologies
for web service descriptions prevalent, a tool is required that
will allow anyone to create a high-level ontology description
of a service domain given a corpus of data.

In this paper, we propose a LexOnt, a work-in-progress for a
semi-automatic ontology creation tool for a high-level service
ontology. LexOnt uses the Programmable Web directory of
services as its corpus of data along with Internet sources such
as Wikipedia [11] in order to generate common terms within
a service domain and determine generic properties for clas-
sification. Currently, Programmable Web classifies services in
a flat categorization where each service is manually classified
within a single category. Search is limited to attributes that are

not related to the semantics of the service, such as protocol
or messaging type. When using an ontology for the service
API descriptions, services can be automatically classified and
queried for according to their attributes. Additionally, services
can then be distributed in an ontology-based service discovery
system such as GloServ [12] so that semantic registration and
querying of services becomes possible.

The main contribution of this paper is LexOnt’s novel
algorithm and implementation for semi-automatic ontology
creation. LexOnt combines text analysis for term generation
on the PW Service API data and Wikipedia sources, using
the Lucene pacakage [13], with ontology term matching in
order to semi-automatically generate an ontology description
of the PW Service class. We describe the details of the work-
in-progress algorithm and implementation in this paper.

The paper is divided as follows: Section II describes re-
lated work in semi-automatic ontology creation; Section III
describes the algorithm and implementation of LexOnt; and
we conclude in Section IV.

II. RELATED WORK

Most of the related work closest to our work involves
semi-automated ontology creation for taxonomic hierarchies
or domains that already have some kind of structural descrip-
tion. Machine learning techniques are used on text corpora
alongside an already existing ontological description of the
domain to generate an ontology for that specific dataset. There
is work that uses clustering for semi-automatic construction
of ontologies from parsed text corpora [14], [15], creating
taxonomic hierarchies [16] or topic ontologies [17]. The
work closest to ours are those that involve finding property
relationships between concepts. A few systems have been
proposed: TextToOnto [18], Ontolearn [19], OntoLT [20].

The main difference betwee LexOnt and these systems is
that they start off with some kind of ontological or structured
description in addition to the text corpora whereas we start
with only the descriptions of the service API in order to
determine the relationships. Thus, we also use other types of
data to describe the domain of the service such as matching
common terms from Wikipedia to the common terms within
the service API to generate important terms and phrases. Also,
in our work, we are concentrating mainly on describing service
domains. Although our techniques may be applied to all types
of domains, it works best for describing high-level service
domains as the properties that are shared within a service class
are feasible to deduce with semi-automatic means since they
are limited to a few generic properties.

III. SEMI-AUTOMATED ONTOLOGY CREATION USING
LEXONT

LexOnt is a semi-automatic ontology creation tool. Al-
though it can be applied to all types of textual data, we have
geared it toward the domain of services since it is possible
to describe and classify a service on a high-level, like in a
yellowpage directory, where common properties are shared

across all services within that domain. We distinguish services
by characteristic features of that service.

As mentioned above, an example would be the social
networking service. All social networking services have user
profiles, friend lists and some kind of sharing attribute. There
are many social networking services available on the Internet
today and these are distinguished by the required feature of
a user profile and a friend list and then certain types of
sharing features. For example, Facebook’s sharing features
would include: photos, videos, status updates, or applications,
whereas Twitter’s sharing feature would be status updates.
However, there are many other types of social networks
that share information not necessarily captured by the most
commonly used SNs. For example, travel information, live
video chats, book reviews, or blogs. When searching for a
social networking service that allows one to share a specific
feature, these property values need to be defined. Thus, the
goal of LexOnt is to enable a user to distinguish common
terms within a category such that these terms can be applied as
distinguishing features of a service domain. Once these terms
are chosen, they are added as hasFeature” properties to the
ontology.

It is unrealistic to assume that an ontology can be created in
a purely automated fashion. Ontologies are often subjective de-
scriptions of a given domain which require human evaluation.
However, we can semi-automate this process by analyzing a
corpus of data within a domain and aiding a user who may not
be completely familiar with a domain to choose terms that may
describe this domain, and then automating the instantiation of
these attributes. Furthermore, as the ontology is being created
for a domain, the information within it can also be used to give
higher weights for the terms within the corpus that match the
terms that have been instantiated in the ontology.

We are currently researching various algorithms to deter-
mine the best way to generate a top-n list of terms. Unlike
other semi-automatic ontology generators that focus on a
single domain, we are targeting all types of service domains
and users who may not be experts within the domain. The
novelty in LexOnt’s algorithm is twofold: 1) use information
from HTML text describing service APIs, wikipedia articles
describing that service domain and a thesaurus ontology for
synonymous terms as our corpus for generating a top-n list of
words and phrases 2) semi-automate the construction of the
ontology by labeling terms that have been assigned manually
to the ontology with higher weight within the corpus and
then creating or asserting property assignments within the
ontology for subsequent iterations. Thus, we incorporate the
current state of the ontology into the corpus of data itself
to assign higher weights to those terms which are already
assigned in the ontology and then regenerate a list of terms
from the text data given the current ontological terms. Text
analysis for generating a top-n list is done using Lucene. We
are still looking at various text analysis and machine learning
algorithms within the Lucene package to see which is best to
use for the top-n term or phrase generation.

A. Algorithm

1) Semi-automatic ontology creation process: The
pseudocode below describes the process of ontology creation.
This is an interactive process where the system starts with a
set of service classes, generates a top-n list given the initial
corpus of data, then the user chooses relevant terms, enters
it into the system as property-value assignments, the system
then adds this information onto the ontology and then uses
the newly consturcted ontology as part of its corpus by
regenerating a new list of top-n terms. The user can maually
add information to the ontology using an ontology editor
such as Protege [21].

LexOnt:

o Creates an OWL ontology of service classes.

o Generates a top-n list of terms using: PW service instance
data, wikipedia and thesaurus ontology.

« Displays this in a GUI format seen in Figure 1

User:

o For a given category, look through the top-n terms or
phrases generated for each PW instance.

o Choose keywords to assign as features.

« Enter these terms into the ”Ontology Processing” tab in
LexOnt to run ontology processing code

LexOnt:

e For every PW instance that has these terms in the top-
n list, create a corresponding OWL instance and add a
hasFeature property assigned to that term.

o Use the newly constructed ontology to regenerate a new
list of top-n terms by assigning these newly created terms
within the ontology with higher weights.

T

Fig. 1. LexOnt Semi-automatic Ontology Generation Tool

B. Implementation

The corpus consists of web pages from each of the APIs
listed in Programmable Web. We first fetch the Programmable
Web listing for each API. A listing contains links to web

pages maintained by the API owner. Those pages are fetched,
stripped of their HTML, and added to a Lucene index. The in-
dex maintains the content of each page, and its Programmable
Web category and API. We use the Lucene index to find
Programmable Web categories, to find APIs within a category,
to query for terms and their frequencies, and to build top-n
lists of term frequencies within a category and within an APIL.

C. Discussion

From our initial use of LexOnt, we are seeing promising
results. Initially we processed a category that we are familiar
with, Social Network. In this category, it was quickly obvious
that the features of the Social Network class comprise of
a user profile, friend list and then a set of things that are
being shared. After looking through a few instances, it became
clear that the top-n list included terms about what was being
shared. A quick look at the stripped HTML data confirmed
this as well. We then tried processing a category that we
were not familiar with. We chose the Advertising category.
Once again, after looking through a few instances, we saw
that the top-n terms included words that were related to the
types of advertising offered such as search engine marketing,
banners, email marketing, etc. As these terms were chosen,
more instances that matched these keywords were also found
and automatically created and assigned those properties. Thus,
with just a basic top-n keyword generating algorithm of
frequence count, we have already seen promising results. We
hope that with the incorporation of wikipedia, the thesaurus
ontology and generated ontology data, these terms and phrases
will become even more accurate.

IV. FUTURE WORK AND CONCLUSION

For future work, we are looking at the best way to generate
top-n list of terms. Currently we look at frequency count. The
Lucene package offers a number of text analysis tools which
we will work through to see what works best. Additionally,
for the thesaurus ontology, we are going to use a generic
thesaurus API and build an ontology of terms as the ontology
is generated.

Eventually, we would like to describe services not just on a
high-level but in its functional details. Allowing standard de-
scriptions of a service’s inputs, outputs, pre and post conditions
will aid in autmomatic service composition. Once we have the
high-level discovery phase automated with this ontology, we
plan on continuing this work to see how we can generate an
ontology description of the service which include its functional
details.

In conclusion, we have presented our work-in-progress,
LexOnt, a semi-automatmic ontology generator that aids in the
ontology creation of a high-level service ontology. It uses the
Programmable Web directory of services, Wikipedia, thesaurus
ontology and the current state of the generated ontology
to suggest relevant terms that may be incorporated within
the ontology. The LexOnt builds the ontology iteratively, by
interacting with the user, taking in terms that the user has
chosen, adding these to the ontology and then regenerating

list of terms. From our initial findings, we have determined
that LexOnt is a useful tool to generate a high-level ontology
description of a domain, specifically for users who are not
domain experts.

[1]

[2]
[3]

[4]
[5]
[6]
[7]

[9]
[10]
[11]
(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

Rss: Really simple syndication specifications. [Online]. Available:
http://www.rssboard.org/rss-specification
Flickr. [Online]. Available: http://www.flickr.com

Google maps api. [Online]. Available:
http://code.google.com/apis/maps/index.html
Programmable web. [Online]. Available:

http://www.programmableweb.com

Owl-s (semantic markup for web services). [Online]. Available:
http://www.w3.org/Submission/OWL-S/

Wsmo: Web services modeling ontology. [Online]. Available:
http://www.wsmo.org/

Semantic web services language. [Online]. Available:
http://www.daml.org/services/swsl/

Owl: Web ontology language. [Online]. Available:
http://www.w3.org/2004/OWL/

Pellet. [Online]. Available: http://clarkparsia.com/pellet/

Racer system. [Online]. Available: http://www.racer-systems.com/
Wikipedia. [Online]. Available: http://www.wikipedia.org

K. Arabshian and H. Schulzrinne, “An ontology-based hierarchical
peer-to-peer global service discovery system,” Journal of Ubiquitous
Computing and Intelligence (JUCI), vol. 2, pp. 133'1‘(;%7144, December.
Apache lucene. [Online]. Available:
http://lucene.apache.org/java/docs/index.html

G. Bisson, C. Nedellec, and L. Canamero, “Designing clustering meth-
ods for ontology building: The mok workbench,” in Ontology Learning
Workshop, The 14th European Conference on Artificial Inteligence
(ECAI), Berlin, Germany, 2000.

M. Reinberger and P. Spyns, “Discovering knowledge in texts for the
learning of dogma-inspired ontologies,” in In Proceedings of the Ontol-
0gy Learning and Population Workshop, The 16th European Conference
on Artificial Inteligence (ECAI), Valenci, Spain, 2004.

L. S.-T. S. S. P. Cimiano, A. Pivk, “Learningtaxonomicrelations from
heterogeneous evidence.” in Ontology Learning and Population Work-
shop The 16th European Conference on Artificial Inteligence (ECAI),
Valenci, Spain, 2004.

D. M. B. Fortuna, M. Grobelnik, “Ontogen: Semi-automatic ontology
editor,” in Human Interface, Part II, HCII 2007, 2007.

A. Maedche and S. S. Staab, “Semi-automatic engineering of ontologies
from text.” in 12th International Conference on Software Engineering
and Knowledge Engineering, 2000.

R. Navigli and A. G. P. Velardi, “Ontology learning and its application
to automated terminology translation,” in IEEE Intelligent Systems, vol.
18:1, 2003.

S. Buitelaar and D. Olejnik, “A protege plug-in for ontology extraction
from text based on linguistic analysis,” 2004.

Protege ontology editor and knowledge acquisition system. [Online].
Available: http://protege.stanford.edu/

