Simplifying Failure-Inducing Input

Ralf Hildebrandt Andreas Zeller
Universitat Passau Universitat Passau
Lehrstuhl Software-Systeme Lehrstuhl Software-Systeme
Innstrafl3e 33 Innstrafl3e 33
94032 Passau, Germany 94032 Passau, Germany
ralf.hildebrandt@gmx.de zeller@acm.org
ABSTRACT Decomposing specific bug reports into simple test cases does not
Given some test case, a program fails. Which part of the test case@nY trouble the engineers of Mozilla, Netscape’s open source web
is responsible for the particular failure? We show how deita browser project [8]. The problem arises from generally conflicting

issues: Abug reportmust be as specific as possible, such that the
engineer can recreate the context in which the program failed. On
the other hand, test casanust be as simple as possible, because

In a case study, the Mozilla web browser crashed after 95 user ac-2 Minimal test case implies a most general context. Thus, a min-

tions. Our prototype implementation automatically simplified the imal test case not only allows for short problem descriptions and
input to 3 relevant user actions. Likewise, it simplified 896 lines valuable problem insights, but it also subsumes several current and
of HTML to the single line that caused the failure. The case study fUture bug reports.

required 139 automated test runs, or 35 minutes on a 500 MHz PC.

debuggingalgorithm generalizes and simplifies some failing input
to aminimal test caséhat produces the failure.

The striking thing about test case simplification is that no one so
far has thought tautomatethis task. Several textbooks and guides
about debugging are available that tell how to use binary search in
order to isolate the problem—based on the assumption that the test
is carried out manually, too. With aautomatedest, however, we

can alscautomate test case simplification.

Categories and Subject Descriptors
D.2.5 [Software Engineering: Testing and Debugging-gebug-
ging aids, diagnostics, testing tools, tracing

General Terms

Automated debugging, combinatorial testing This is what we describe in this paper. Qlglta debugginglgo-
rithm ddminis fed with a test case, which it simplifies by successive
1. INTRODUCTION testing.ddminstops when aninimal test casés reached, where re-

moving any single input entity would cause the failure to disappear.
. L) . !) In generalddminrequires a time 0D (n?) given an input of en-
investigating which changes to the_lnput file will ”.‘a"e the bug 90 tities. A well-structured input leads to better performance: in the
away and which changes will not affect it. best case, where a single input entity causes the faitidmjnre-
—Richard Stallmanising and PortingsNU CC quires logarithmic time to find the entityddmincan be tailored
with language-specific knowledge.

Often people who encounter a bug spend a lot of time

The Mozilla engineers faced imminent doom. In July 1999, more
than 370 open bug reports were stored in the bug data base, readyVe begin with a discussion of the problem and the basimin
to be simplified. “Simplifying” meant: turning these bug reports algorithm. Using a number of real-life failures, we show how the
into minimal test casesvhere every part of the input would be sig- ddmin algorithm detects failure-inducing input and how this test
nificant in reproducing the failure. Overwhelmed with work, the case is isolated and simplified. We close with discussions of related
engineers sent out thdozilla BugAThon call for volunteerthat and future work.
would help them process bug reports: For 5 bug reports simpli-
fied, a volunteer would be rewarded with an invitation to the launch
party; 20 bugs would earn him a T-shirt signed by the gratefulen- 2 CONFIGURATIONS AND TESTS
gineers [9].
lan Hickson stayed up until 5:40 a.m.
and simplified 18 bugs the first night of the BugAThon.

— Mozilla BugAThon call

Let us begin with some basic definitions. First of all, what does a
“minimal” test case mean?

For every program, there is sorseallest possible inputhat in-
duces a well-defined behavior which does not qualify as a failure.
Typically, this is theempty inputpr something very close. Here are
some examples:

e A C compiler accepts an empty translation unit (= an empty e The testsucceed$PASS written here a$l)

C file) as smallest possible input. S .
) P P e The test haproduced the failurét was intended to capture

e When given an empty input, @WW browser is supposed to (FAIL, written here as])

produce a defined error message. e The test producethdeterminate results

; 2
e When given an empty input file, th&TiEX typesetting system (UNRESOLVED, written here a).

is supposed to produce an error message. . . c
Definition 3 (Test) The function test 2~ — {00, 0, ?} deter-

mines for a test case € C whether some given failure occurS)(
It should be noted that the smallggissibleinput is not necessarily ~ or not () or whether the test is unresolve®)(
the smallesvalid input; even an invalid input is possible as long as

the program does not fail. . . .
In practice testwould construct the test case by applying the given

changes to the minimal possible input, feed the test case to a pro-

Let us now view dailure-inducing input Cas the result of apply-
gram and return the outcome.

ing a number othangesA1, Ao, ..., Ap to the minimal possible
input. This way, we have a graduahnsition from the minimal

possible input (= no changes applied)d= all changes applied). Let us now model our initial scenario. We have samiaimal pos-

sible inputthat works fine and some test case that fails:

We deliberately do not give a formal definition of a change here.
In general, a\; can stand foeny change in the circumstances that
influences the execution of the progralm.our previous work, for
instance, we had modeleti as changes to the program code [15]. o tes(¥) = O (“minimal input”) and
In this paper, we search for failure-inducing circumstances in the

program input; hence, a change is any operation that is applied on e tes{C) = O (*failing test case”).
the input. The only important thing is that applying all changes

results in the failure-inducing sét.

Axiom 4 (Failing test case) The following holds:

Our goal is now to simplify the failing test ca§k—that is, to min-

In the case studies presented in this paper, we have always chosefMZ€ it. A test case being “minimal” means that no subset of
changes as texical decompositiorf the failure-inducing input. ~ causes the test to fail. Formally:

That is, each\; stands for a lexical entity that can be present (the o o o
change is applied) or not (the change is not applied). As an ex- Definition 5 (Minimal test case) A test case & C isminimal if
ar_nple,_cons_ider_ a minima_l possibl_e input which is empty, and a vd cc (tes(c’) £0)

failure-inducing input consisting of lines of text. Each changg;

would add the -th line to the empty input, such that applying all holds.

changes results in the full set of lines. Modeling changes as lexi-
cal decomposition is the easiest approach, but the model can easil

extend to other notions of changes. ¥his is what we want: minimizing a test caBesuch that all parts

are significant in producing the failure—nothing can be removed

Still treating changes as given entities, let us now formally define without making the failure disappear.

tests and test cases. We can describe any test case between th
minimal possible input an@ as aconfiguration of changes f MINIMALITY OF TEST CASES

A simplified test case means the simplest possible web page that
Definition 1 (Test case)Let C = {A1, Ay, ..., An} be a set of still reproduces the bug. If you remove any more characters from
changesA;. A change set € C is called atest case. the file of the simplified test case, you no longer see the bug.

— Mozilla BugAThon call

A test case is constructed by applying changes to the minimal pos- Haw can one actually determine a minimal test case? Here comes

sible input: bad news. Let there be some test casensisting ofic| changes
(characters, lines, functions inserted) to the minimal input. Relying

Definition 2 (Minimal possible input) An empty test case € ¢ on testalone to determine minimality requires testing afil 2- 1

is called theminimal possible input. true subsets af, which obviously has exponential complexity.

What we can determine, however, is approximatior—for in-
We do not impose any constraints on how changes may be com-stance, a test case where every part on its own is still significant
bined; in particular, we do not assume that changes are ordered. Inin producing the failure, but we do not check whether removing
the worst case, there ar8 possible test cases farchanges. several parts at once might make the test case even smaller. For-
mally, we define this property dsminimality, wheren-minimality
To determine whether a test case induces a failure, we assume as defined as:
testing function According to thePOSIX1003.3 standard for test- 5
ing frameworks [5], we distinguish three outcomes:

POsIx 1003.3 also listaINTESTED and UNSUPPORTEDOUtCOMES,
which are of no relevance here.

IThe definitions in this section are adapted from our previous -T0 be precise, Axiom 4 tells us the resultteét#), such that only
work [15]. See Section 8 for a discussion. 2%l — 2 subsets need to be tested, but this does not help much.

Minimizing Delta Debugging Algorithm

Theminimizing delta debugging algorithm ddni@) is
ddminc) = ddmirp(c, 2) where

ddmimn (g, 2) if tes(c;) = Ofor somei (“reduce to subset”)
ddmins(c. n) = ddmirg(c‘i ,max(n — 1, 2)) else iftes(¢j) = O for somei (“reduce to complement”)
e m = ddmir]z(c, min(|c|, 2n)) else ifn < |c| (“increase granularity”)
c otherwise (“done”).
wherecy, ..., tn € csuch that J¢; = c, all ¢ are pairwise disjointyc; (|cj| ~ |c|/n), as well agj = ¢ — ¢;.

The recursion invariant (and thus precondition)ddmimn istes{c) = O A n < |c|.

Figure 1: Minimizing delta debugging algorithm

Definition 6 (n-minimal test case) A test case & C is nminimal Given sufficient knowledge about the nature of our input, we can
if certainly partition any test case intwo subsets such that at least
, , one of them fails the test. But what if this knowledge is insufficient,
vc' cc (ICI — || <n= (testc) # D)) or not present at all?
holds. Let us begin with the worst case: after splittingaipto subsets, all

tests pass or are unresolved—ignorance is complete. All we know
is thatc as a whole is failing. How do we increase our chances of

A failing test case composed ofc| lines would thus b&-minimal getting a failing subset?

if removing any single line would cause the failure to disappear;
likewise, it would be3-minimalif removing any combination of
three or less lines would make it work again.clfs |c|-minimal,

thenc is minimal in the sense of Definition 5 e By testinglarger subsets oC, we increase the chances that

the test fails—the difference frof is smaller. On the other
hand, a smaller difference means a slower progression—the

Definition 6 gives a first idea of what we should be aiming at. How- .
test case is not halved, but reduced by a smaller amount.

ever, given, say, a 100,000 line test case, we cannot simply remove

each individual line in order to minimize it. Thus, we need an ef- By testingsmaller subsets o, we get a faster progression
fective algorithm to r r test fficiently. . . :
ective algo 0 reduce our test case efficiently in case the test fails. On the other hand, the chances that the

test fails are smaller.
4., A MINIMIZING ALGORITHM

Proceed by binary search. Throw away half the input and see if - _ o
the output is still wrong; if not, go back to the previous state and These specific methods can be combined by partitioniingo a
discard the other half of the input. larger number of subsetnd testing each (smalt) as well as its

(large) complement; —until each subset contains only one change,
which gives us the best chance to get a failing test case. The disad-

. . vantage, of course, is that more subsets means more testing.
What do humans do in order to minimize test cases? They use

— Brian Kernighan and Rob Pik&he Practice of Programming

binary search.f ¢ contains only one change, theiis minimal by This is what can happen. Lebe the number of subsets, . . . , cn.
definition. Otherwise, weartition c into two subsetg; andcy Testing eactr; and its complemeng — c — ¢, we h;ive }hree
with similar size and test each of them. This gives us three possible o cqipie OULCOMES (Figure 1): ' b

outcomes:

Reduce to subset.If testing anyc; fails, thenc; is a smaller test

Reduce tocy. The test ofcy fails—cy is a smaller test case. case. Continue reducirg with n — 2 subsets.

Reduce toco. The test ofc, fails—cy is a smaller test case.

Ignorance. Both tests pass, or are unresolved—neittyenor c, Step| ¢ | Configuration te?st
qualify as possible simplifications. 1ie 1 2 3 4. o
2lc|. . . . 5 6 7 8 O
3¢ 5 6 O
In the first two cases, we can simply continue the search in the fail- 41C 7 8 0
ing subset, as illustrated in Table 1. Each line of the diagram shows ReguItCl ; U Done

a configuration. A number stands for an included changg; a
dot stands for an excluded change. Change 7 is the minimal failing

test case—and it is isolated in just a few steps. Table 1: Quick minimization of test cases

Step Ci Configuration test
l1{cg=0C[1 2 3 4 N Testingcy, ¢
2|¢c=¢|. . . . 5 6 7 8|7 = Increase granularity
3 c1 i 2 |7 Testingcy, ..., Cq
4 Co .. 3 4 . . 0
5 C3 56 . .|O
6 Ca 7 8|?
7 =1 . . 3 4 5 6 7 8|? Testing complements
8 C 1 2 5 6 7 80O = Reduce ta = Cy; continue withn = 3
9 c1 12 ?¥ Testingcy, ¢, C3
10 Co 5 6 . .|0O* *sameestcarriedoutin an earlier step
11 c3 T 8|7
12 =1 5 6 7 8|? Testing complements
13 C 1 2 7 8|0 = Reduce ta@ = Cy; continue withn = 2
Ule=0601 2|? Testingcy,
15| cp=¢6|. 7 8|? = Increase granularity
16 c1 1 . ? Testingcy, ..., Cq
17 Co L2 . 0
18 c3 T A 4
19 C4 8|7
20 =1 .2 7 8|? Testing complements
21 C 1 7 8|0 = Reduce ta@ = &y; continue withn = 3
22 c1 ... ?¥ Testingcy, ..., C3
23 C27
24 c3 - A &
25 C1 7 8|7 Testing complements
26 G 1 . 8|7
27 C3 r7 |7 Done
Result i 7 8

Table 2: Minimizing a test case with increasing granularity

This reduction rule results in a classical “divide and conquer” We begin with partitioning the total set of changes in two halves—
approach. If one can identify a smaller part of the test case but none of them passes the test. We continue with granularity
that is failure-inducing on its own, then this rule helps in nar- increased to 4 subsets (Step 3-6). When testing the complements,
rowing down the test case efficiently. the sett fails, thus removing changes 3 and 4. We continue with
splitting € in three subsets. The next three tests (Steps 9-11) have

Reduce to complement.If testing any¢; fails, thend; is a smaller already been carried out and need not be repeated (marked)with

test case. Continue reduciggwith n — 1 subsets. When testingt, (Step 13), changes 5 and 6 can be eliminated. We
increase granularity to 4 subsets and test each (Steps 16-19), be-
fore the last complemerd, (Step 21) eliminates change 2. Only
changes 1, 7, and 8 remain; Steps 25-27 show that none of these
changes can be eliminated. To minimize this test case, a total of
19 different tests was required.

Why do we continue witl — 1 and not two subsets here?
Because splitting; into n — 1 subsets means that the subsets
of ¢ are identical to the subsets of c—in other words,
every subset of eventually gets tested. If we continued with
two subsets from, say = 32, we would have to work our
way down withn = 2,4, 8, ..., but only withn = 32 would

the next subset af be tested. We close with some formal propertiesadmin First,ddmineven-

tually returns a 1-minimal test case:

Increase granularity. Otherwise (that is, no test failed), try again

Proposition 7 (ddmin minimizes) For any c € C, ddmir(c) is 1-

with 2n subsets. (Shouldr2> |c| hold, try again with|c| minimal in the sense of definition 6.

subsets instead, each containing one change.) This results in
at most twice as many tests, but increases chances for failure.

PROOF According to the ddmin definition (Figure 1), ddrdhn

returns c only if n> |c| and testGj) # Oforall cq,...,cn. If
The process is repeated until granularity can no longer be increasech > |c|, then|c;j| = 1and|¢; | = |c| — 1. Since all subsets of & ¢
(that is, the next would be larger thafc|). Inthis case, we have al- with |c| — |¢/| = 1 are in {C1,...,Cn} and testc;) # Ofor all G,

ready tried removing every single change individually without fur- the condition of definition 6 applies and ¢ is 1-minimal]
ther failures: the resulting change set is minimal.

As an example, consider Table 2, where the minimal test case con-In the worst caseddmintakes 3c| + Ic|2 tests:
sists of the changes 1, 7, and 8. Any test case that includes only a

subset of these changes results in an unresolved test outcome; a teftroposition 8 (ddmin complexity, worst case) The number of tests

case that includes none of these changes passes the test. carried out by ddmirc) is 3|c| + c2 in the worst case.

PrROOF The worst case can be divided in two phases: First, |#define SIZE 20
every test is |nconS|stent_ untlld_a Ic| hoIds; then, testing only the doublemult (doublez], int)
last complement results in a failure until-a 2 holds. (

inti, j;
¢ In the first phase, every test is inconsistent. This results in a i o
re-invocation of ddmip with a doubled number of subsets, for_(' ’ o i nj+4) {
until |¢j| = 1. The number of tests to be carried out2is- i J _| ;_J j<+ 11
— lcl , lc _ = ;
e Inthe second phase, the worst case is testindgtsteomple- }

mentcy, fails, and ddmin is re-invoked with ddm(Cn, |c|— returnz[n];
1). This results inc| — 1 calls of ddmin, with two tests per }

call,or2(jc| - 1) +2(lc| —2)+---+2=244+6+---+ . .
21¢| — 1) = [el(lc| — 1) = [of? — |c] tests. void copy(doubleto[], doublefrom[], int coun)

{
intn=(count+ 7)/8;
The overall number of tests is théig|+|c|2 —|c| = 3|c|+|c/2. O switch (count% 8) do {
case 0: to++ = *fromt++;
case 7: to++ = *from++;
case 6: to++ = *from++;
case 5: to++ = *from++;
case 4: to++ = *from++;
case 3: to++ = *from++;

In practice, however, it is unlikely that ancharacter input requires
3n 4 n? tests. The “divide and conquer” rule dfimintakes care
of quickly narrowing down failure-inducing parts of the input:

Proposition 9 (ddmin complexity, best case)lf there is only one case 2: to++ = *fromt+:
failure-inducing changeé\; € c, and all test cases that includs case 1: to++ — *fromt+:
cause a failure as well, then the number of tests t is limited by |} \yhile (----n > 0);

t < 2logy(|cl).

return multfo, 2);

}

ProOF Under the given conditionsh; must always be in ei-
g S y int main(int argc, char *argv])
{

ther ¢ or ¢y, whose test will fail. Thus, the overall complexity is

that of a bi h.
atof a binary search. L doublex[SIZE], y[SIZE];

double px = x;
Whether this “best case” efficiency applies depends on our ability .
to break down the input into smaller chunks that result in deter- Wh*”e EB_X _< X + SIzB SIZE + 1.0)
mined (or better: failing) test outcomes. Consequently, the more it = (px =) * (+ 10
knowledge about the structure of the input we have, the better we| eturn copyy, x, SIZE);

can identify possibly failure-inducing subsets, and the better is the
overall performance addmin

—

Figure 2: The bug.c program that crashesGNU CC
The surprising thing, however, is that even witthknowledge about
the input structure at allthe ddminalgorithm has sufficient per- o
formance—at least in the case studies we have examined. This is®_(ulimit -H -s 256; gcc -O bug.c)

. . . . gcc: Internal compiler error:
illustrated in the following three sections. program ccl got fatal signal 11

5. CASE STUDY:
GCC GETS A FATAL SIGNAL The GCC error message (and the resulting core dump) kegie

None of us has time to study a large program maintainers only; as ordinary users, we must now narrow down the
to figure out how it would work if compiled correctly, ~ failure-inducing inputirbug.c —andminimizebug.c in order to
much less which line of it was compiled wrong. file in a bug report.
—Richard Stallman{Jsing and PortingsNU CC
Using & In the case ofsCC, the minimal test input is the empty input. For
the sake of simplicity, we modeleddaangeas theinsertion of a

Let us now turn to some real-life input. The C program in Fig- single characterThis means that
o :

ure 2 not only demonstrates some particular nasty aspects of th
language, it also causes tlU C compiler GCQO) to crash—at
least, when using version 2.95.2 on Intel-Linux with optimization ¢ each change; becomes thé-th character obug.c
enabled. Before crashinCcC grabs all available memory for its
stack, such that other processes may run out of resources ahd die.
The latter can be prevented by limiting the stack memory available e partitioningC means partitioning the input into parts.
to GCC, but the effect remains:

4The authors deny any liability for damage caused by repeating this No special effort was made to exploit syntactic or semantic knowl-
experiment. edge about C programs; consequently, we expected a large number

e C becomes the entire failure-inducing infutg.c

temin log

1000 i
bug.

input size

WW

100

100 200 300 400

tests executed

500 600 700 800

Figure 3: Minimizing GCC input bug.c

of test cases to be invalid C programs.

To minimizebug.c , we implemented thddminalgorithm of Fig-
ure 1 into ouWYNOT prototypé. Thetestprocedure would create
the appropriate subset bfig.c , feed it toGCC, returnO iff GCC
had crashed, and otherwise. The results of thiwYNOT run are
shown in Figure 3.

After the first two testswYNOT has already reduced the input size

from 755 characters to 377 and 188 characters, respectively—the

test case now only contains thrult function. Reducingnult, how-

ever, takes time: only after 731 more tests (and 34 secbudsye

get a test case that can not be minimized any further. Only 77 char-
acters are left:

t(doublez[],int n){inti,j;for(;;){i =i+ j +1;z[i] = Z[i] * (z[0] +
0);}returnz[n];}

This test case is 1-minimal—no single character can be removed
without removing the failure. Even every single superfluous white-

tcmin log
100

GCC Options

10

options

4
tests executed

Figure 5: Minimizing GCC options

that the failure is associated with optimization. Could it be possible
to influence optimization in a way that the failure disappears?

The GCC documentation lists 31 options that can be used to influ-
ence optimization on Linux, shown in Table 3. It turns out that
applyingall of these optionsauses the failure to disappear:

$ gcc -O -ffloat-store -fno-default-inline
-fno-defer-pop ...-fstrict-aliasing bug.c
$ _

This means that some option(s) in the [iseéventthe failure. We
can use test case minimization in order to find the preventing op-
tion(s). This time, eacl; stands for a5CC option from Table 3.
Since we want to find an option thpteventsthe failure, thetest
outcome is invertedtestreturnsO if GCC crashes andl if GCC
works fine.

ThiswWYNOT run is a straight-forward “divide and conquer” search,

space has been removed, and the function name has shrunk fronshown in Figure 5. After 7 tests (and less than a second), the single

multto a singlet. (At least, we now know that neither whitespace
nor function name were failure-inducing!)

Figure 4 shows an excerpt from thag.c testlog. (The character

O indicates an omitted character with regard to the minimized in-
put.) We see how thédminalgorithm tries to remove every single
change (= character) in order to minimize the input even further—
but every test results in a syntactically invalid program.

t(doublez{],int n)
t(doublez]],int n)
t(doublez]],int n)
t(doublez]],int n)
t(doublez{],int n)
t(doublez{],int n)

inti,j;forG:)i =i + j + L,Zi] = Z[i] % (O] + 0);}returnz[n];}
inti,j;forG){i =i + j + LZi] = Z[i] * (00 + 0);}returnz[n];}
inti,j;forG){i =i+ + LZi] = Z[i] * (0] O 0);}returnz[n];}

inti,j;forG:){i =i+ j + LZi] = Z[i] * (0] + O);}returnz[n];}
inti,j;forG;){i =i + j + L,Z[i] = Z[i] * (Z[0] + 00;}returnz[n];}
inti,j;forG;){i =i + j + L,Z[i] = Z[i] * (Z[0] + 0)O}returnz[n];}

t(doublez],int n){inti,j;for(;;){i =i + j + L;Z[i] = Z[i] * (z[0] + 0);}returnz[n];}
Figure 4: Excerpt from the bug.c test log

As GCCusers, we can now file this in as a minimal bug report. But
where inGCC does the failure actually occur? We already know

SwyNoT = “Worked Yesterday, NOt Today”

BAll times were measured on a Linux PC with a 500 MHz Pen-
tium Il processor. The time given is thepu user time of our
WYNOT prototype as measured by theix kernel; it includes all
spawned child processes (such asdberun in this example).

option—ffast-maths found which prevents the failure:

$ gcc -O -ffast-math bug.c

Unfortunately, the-ffast-mathoption is a bad candidate for work-
ing around the failure, because it may alter the semantics of the
program. We removeffast-mathfrom the list of options and make
anotherwYNOT run. Again after 7 tests, it turns out the option
—fforce-addralso prevents the failure:

—fno-default-inline
—fforce-addr
—finline-functions
—fno-function-cse
—fthread-jumps
—frerun-cse-after-loop
—fexpensive-optimizations
—ffunction-sections
—funroll-loops
—freduce-all-givs

—ffloat-store
—fforce-mem
—fno-inline
—fkeep-static-consts
—fstrength-reduce
—fcse-skip-blocks
—fgcse
—fschedule-insns2
—fcaller-saves
—fmove-all-movables
—fstrict-aliasing

—fno-defer-pop
—fomit-frame-pointer
—fkeep-inline-functions
—ffast-math
—fcse-follow-jumps
—frerun-loop-opt
—fschedule-insns
—fdata-sections
—funroll-all-loops
—fno-peephole

Table 3: GCCoptimization options

tcmin log tcmin log

1e+06 T T 1e+06 I
flex /116 —— 171 crtplot / test t16 ———
100000
100000 10000

1000

10000 100
LL—A— 0

input size
input size

p
1000 1 jﬁ—L
[50 100 150 200 250 300 350 400 450 500 0 5 10 15 20 25
tests executed tests executed
Figure 6: Minimizing FLEX fuzz input Figure 7: Minimizing CRTPLOT fuzz input
$ gce -O -fforce-addr bug.c We applied ouwYNOT tool in all 42 cases to minimize the failure-
$_ inducing fuzz input. Table 5 shows the resulting input sizes; Table 6

lists the number of tests requir@dDepending on the crash cause,

Are there any other options that prevent the failure? Rungiag the programs could be partitioned into two groups:

with the remaining 29 options shows that the failure is still there;
so it seems we have identified all failure-preventing options. And

L L The first group of programs shows obviobsffer overrun
this is what we can send to ti@&CC maintainers: * group ot prog

problems.
1. The minimal test case — FLEX, the most robust utility, crashes on sequences of
2,121 or more non-newline and non-NUL characters
2. “The failure occurs only with optimization.” (t14-t15).
3. “—ffast-mathand—fforce-addrprevent the failure.” — UL crashes on sequences of 516 or more printable non-

newline characterdd-tg, t13-t16)-

— UNITS crashes on sequences of 77 or more 8-bit char-

Still, we cannot identify a place in theCC code that causes the
acters (o—t4 andty1—t12).

problem. On the other hand, we have identified as nifaifyre cir-
cumstancess we can. In practice, program maintainers can easily
enhance their automated regression test suites such that the failure
circumstances are automatically simplified for any failing test case.

Figure 6 shows the first 500 tests of th&NOT run for FLEX
andtyg. After 494 tests, the remaining size of 2,122 charac-
ters is already close to the final size; however, it takes more
than 10,000 further tests to eliminate one more character.

6. CASE STUDY: MINIMIZING FUZZ

If you understand the context in which a problem occurs, e The second group of programs appears vulnerabigrdom
you're more likely to solve the problem completely commands
rather than only one aspect of it.

— Steve McConnellCode Complete

— NROFFandTROFFcrash
* on malformed commanddike "\D"J%OF" 8

In a classical experiment [6, 7], Bart Miller and his team examined (NROF.E.t6)’ and \ N

the robustness afNIX utilities and services by sending théozz * on8-bit inputsuch as\302in (TROFF 1y)

input—a large number of random characters. The studies showed — CRTPLOTcrashes on the one-letter inputs (t1) and

that, in the worst case, 40% of the basic programs crashed or went "' (s, tg, t13-116)-

into infinite loops when being fed with fuzz input. . L
TheWYNOT run for CRTPLOTandty g is shown in Figure 7.

We wanted to know how well thédminalgorithm performs in min- It takes 24 tests to minimize the fuzz input ofiharacters

imizing the fuzz input sequences. We examined a subset of the to the single failure-inducing character.

UNIX utilities listed in Miller's paper:NROFF (format documents

for display), TROFF (format documents for typesettePLEX (fast

lexical analyzer generatorlLRTPLOT (graphics filter for various

plotters),UL (underlining filter), andUNITS (convert quantities).

Again, all test runs can be (and have been) entirely automated. This
allows for massive automated stochastic testingnere programs

are fed with fuzz input in order to reveal defects. As soon as a
failure is detected, input minimization can generalize the large fuzz

We set up 16 different fuzz inputs, differing in size 1@ 1 . .
input to a minimal bug report.

characters) and content (whether all characters or only printable
characters were included, and whether NUL characters were in- 7Taple 6 also includepeated testwhich have been carried out in
cluded or not). As shown in Table 4, Miller’s results still apply—at earlier steps. On the average, the number of actual (non-repeated)
least on Sun’s Solaris 2.6 operating system: out»fl = 96 test tests is 30% smaller.

runs, the utilities crashed 42 times (43%). 8All input is shown in C string notation.

Name h | b | t3 | g | t5 | T t7 tg | to | tig | tag | t1p | T13 | t14 | T15 | t16
Input size 100 100 [10° [1P [103 [10 [10 [1P [10° [107 | 10° | 10P | 103 | 10% | 10° | 10P
Character range all printable all printable
NUL characters| yes yes no no
NROFF S| oS oS o8] - oAl oAl oAl oS oS OS] DS | - - - -
TROFF - | S| oS| 0S| - | A A BS| - | - | DSOS - | = | - | -
FLEX - - -1 -1 - - - - - - | -] -1 -1|0%| S| %
CRTPLOT oS| - | - | - | D5 - - - | o8| - | - | - | 0S| o8| o8| S
uL - |-/ -| -S| | S| S| -| -| -| - | O5| 05| 0S| S
UNITS - | oS| 0S| oS | - - - - - | - | S| oS5 - - -] -
“_" = test passed[{), 0°= Segmentation Faultg?= Arithmetic Exception
Table 4: Test outcomes oUNIX utilities subjected to fuzz input
Name th | b | t3 | g | t5 | tg | t7 | tg | tg |10 | t1g | 12 | 13 | t14 | U35 | l1p
Input size 100 (100 1P [1P |18 [100 [1P [108 | 103 [107 [1P | 10P | 10° | 10* | 10° | 10P
Character range all printable all printable
NUL characters| yes yes no no
NROFF 2 2 2 2 - 7 7 7 2 2 2 2 - - - -
TROFF 3 3 3 - 7 7 7 - 3 3 - - - -
FLEX - - - - - - - - - - - - — | 2121 | 2121 | 2121
CRTPLOT 1 - - - 1 - - - 1 - - - 1 1 1 1
uL - - - — | 516 | 516 | 516 | 516 - - - - | 516 | 516 | 516 | 516
UNITS —| 77| T | 77 - - - - - —| 77| 77 - - - -
Table 5: Size of minimized failure-inducing fuzz input
7. CASE STUDY:

MOZILLA CANNOT PRINT

When you've cut away as muegitML, CSS and JavaScript as you

can, and cutting away any more causes the bug to disappear,

you're done.
— Mozilla BugAThon call

As a last case study, we wanted simplify a real-world Mozilla test
case and thus contribute to the Mozilla BugAThon. A search in

In a first run, we wanted to know whether all actions in the bug
report were actually necessary. We thus subjected the log to test
case minimization, in order to findfailure-inducing minimum of
user actionsOut of the 711 X events, only 95 were related to user
actions—that is, moving the mouse pointer, pressing or releasing
the mouse button, and pressing or releasing a key on the keyboard.
These 95 user actions were subjected to minimization.

The results of this run are shown in Figure 9. After 82 test runs (or
21 minutes), only 3 out of 95 user actions are left:

Bugzilla, the Mozilla bug database, shows us bug #24735, reported

by anantk@yahoo.com

Ok the following operations cause mozilla to crash consis-
tently on my machine

Start mozilla
Go to bugzilla.mozilla.org
Select search for bug

Print to file setting the bottom and right margins to .50
(I use the file /var/tmp/netscape.ps)

Once it's done printing do the exact same thing again
on the same file (/var/tmp/netscape.ps)

This causes the browser to crash with a segfault

—

Vil

\

In this case, the Mozilla input consists of two items: Heguence

of input events-that is, the succession of mouse motions, pressed
keys, and clicked buttons—and tkML codeof the erroneous
WWW page. We used thBLAB capture/replaytool [13] to run
Mozilla while capturing all user actions and logging them to a file.
We could easily reproduce the error, creatingxamB log with

711 recorded X events. OWYNOT tool would now USe&XLAB to
replaythe log and feed Mozilla with the recorded user actions, thus
automating Mozilla execution.

1. Press thé& key while theAlt modifier key is held. (Invoke
the Print dialog.)

2. Pressnouse button dn thePrint button without a modifier.
(Arm thePrint button.)

3. Releasenouse button.1(Start printing.)

User actions removed include moving the mouse pointer, selecting
the Print to file option, altering the default file name, setting the
print margins t0.50, and releasing th® key before clicking on
Print—all this is irrelevant in producing the failufe.

Since the user actions can hardly be further generalized, we turn our
attention to another input source—the failure-indugiygML code.

The originalSearch for bugrage has a length of 39094 characters
or 896 lines. In order to minimize theTML code, we chose a
hierarchical approach: In a first run, we wanted to minimize the
number of linegthat is, eaclt; was identified with a line); in a later
run, we wanted to minimize the failure-inducing line(s) according
to single characters.

Otis relevant, though, that the mouse button be pressed before itis
released.

Name h | o | B3 | 14 t5 ig t7 tg to | tip | t11 t12 t13 | 14 tis tie
Input size 1000|1001 [1P | 103 [107 [10° | 1P [10° [100 [10° | 2P | 10° | 10* | 10° | 10P
Character range all printable all printable

NUL characters| yes yes no no
NROFF 55 41 60 39 - 156 153 243 17 22 27 54 - - - —
TROFF — 84 73| 100 - 156 153 | 22493 - - 50 42 - - - —
FLEX — — — — - - — — — — — - — | 11589 | 17960 | 10619
CRTPLOT 15 — — — 15 - - - 16 — — - 14 17 23 24
uL - - - — | 7138 | 7012 | 6058 | 7090 - - - — | 2434 | 3455 | 3055 | 2307
UNITS — | 662 | 623 | 626 - - - - - — | 630 | 221095 - - - -

Table 6: Number of required test runs
temin log temin log
1000 quer‘y.hlml 100 Jé MN evehts removeﬁ
I S—

., 100 P % j
L

10 2

L#
1 41 1

20 30

tests executed

40 50 60

Figure 8: Minimizing Mozilla HTML input

The results of thdinesrun are shown in Figure 8. After 57 test
runs, theddminalgorithm minimizes the original 896 lines to a 1-
line input:

<SELECT NAME="priority" MULTIPLE SIZE=7>

This is theHTML input which causes Mozilla to crash when being
printed. As in theGCC example of Section 5, the actual failure-
inducing input is very small. Further minimizatithreveals that
the attributes of th&ELECTtag are not relevant for reproducing
the failure, either, such that the single input

<SELECT>

already suffices for reproducing the failure. Overall, we obtain the
following self-contained minimized bug report:

— Create &HTML page containing<SELECT>
— Load the page and print it usirgjt+P andPrint.

— The browser crashes with a segmentation fault.

As long as the bug reports can be reproduced, this minimization

procedure can easily be repeated automatically with the 5595 other.

bugs listed in the Bugzilla databdde All one needs is aiTML

input, a sequence of user actions, an observable failure—and a little

time to let the computer simplify the failure-inducing input.

10This minimization was done by hand. We apologize.
Has of 14 Feb 2000, 14:00 GMT

20 30 40 50

tests executed

60 70 80 90

Figure 9: Minimizing Mozilla user actions

RELATED WORK

When you have two competing theories which make exactly the
same predictions, the one that is simpler is the better.

— Occam’s Razor

As stated in the introduction, we are unaware of any other technique
that would automatically simplify test cases to determine failure-
inducing input. One important exception is the simplification of
test cases which have beertificially produced.In [11], Don Slutz
describes how to stress-test databases with genegaiedtate-
ments. After a failure has been produced, the test cases had to be
simplified—after all, a failing 1,000-lin8QL statement would not

be taken seriously by the database vendor, but a 3-line statement
would. This simplification was realized simply by undoing the ear-
lier production steps and testing whether the failure still occurred,

In general, delta debugging determines circumstances that are rel-
evant for producing a failure (in our case, parts of the program in-
put.) In the field of automated debugging, such failure-inducing
circumstances have almost exclusively been understood as failure-
inducingstatementsluring a program execution. The most signif-
icant method to determine statements relevant for a failupeois
gram slicing—either the static form obtained by program analy-
sis [14, 12] or the dynamic form applied to a specific run of the
program [1, 3].

The strength of analysis is that several potential failure causes can
be eliminated due to lack of data or control dependency. This
does not suffice, though, to check whether the remaining potential
causes are relevant or not for producing a given failure. Only by
experiment (that is, testing) can we prove that some circumstance
is relevant—by showing that there is some alteration of the circum-

stance that makes the failure disappear. When it comes to concrete
failures, program analysis and testing are complementary: analysis

disproves causality, and testing proves it.

It would be nice to see how far systematic testing and program

analysis could work together and whether delta debugging could

e The implementation can choose howptartition cinto
subsetg; . This is the place where knowledge about the
structure of the input comes in handy.

The implementation can choosehich subset to test
first. Some subsets may be more likely to cause a fail-
ure than others.

be used to determine failure-inducing statements as well. Just as

determining which parts of the input were relevant in producing the

failure, delta debugging could determine the failure-relevant state-

ments in the programCritical slicing [2] is a related approach
which is test-based like delta debugging; additional data flow anal-
ysis is used to eliminate circumstantial positives.

The ddmin algorithm presented in this paper is an alternative to
the original delta debugging algorithda™ presented in [15]. Like
ddmin ddt takes a set of changes and minimizes it according to

a given test; in [15], these changes affected the program code and

were obtained by comparing two program versions.

The main differences betweeidminanddd* are:

o ddt determines the minimal difference between a failing and
a non-failing configuration, whiledminminimizes the dif-
ference between a failing and an empty configuration.

ddt is not well-suited for failures induced by a large com-
bination of changes. In particulatg™ does not guarantee a
1-minimal subset, which is why it is not suited for minimiz-
ing test cases.

ddt assumesonotonyithatis, whenevetes(c) = O holds,
thentest(c’) = O holds for every subset af as well. This
assumption, which was found to be useful for changes to pro-
gram code, gavddt a better performance when most tests
produced determinate results.

We recommenddminas a general replacement ftat. To exploit
monotony inddmin one can makees{c) return 0 whenever a
superset ot has already passed the test.

9. FUTURE WORK

If you get all the way up to the group-signed T-Shirt, yan
qualify for a stuffed animal as well by doing 12 more.

— Mozilla BugAThon call

Our future work will concentrate on the following topics:

Domain-specific simplification methods.Knowledge about the
input structure can very much enhance the performance of
theddminalgorithm. For instance, valid program inputs are
frequently described bgrammars it would be nice to rely
on such grammars in order to exclude syntactically invalid
input right from the start. Also, with a formal input descrip-
tion, one could replace input by smalbdternate inputather
than simply cutting it away. In theCC example, one could
try to replace arithmetic expressions by constants, or pro-
gram blocks by no-opstiTML input could be reduced ac-
cording toHTML structure rules.

Optimization. In general, the abstract description of ttdminal-
gorithm leaves a lot of flexibility in the actual implementa-
tion and thus provides “hooks” for several domain-specific
optimizations:

The implementation can choose whether and how to
handlemultiple independent failure-inducing inputs
that is, the case where there are several sulosetih
tes{(cj) = 0. Options include

— to continue with the first failing subset,

— to continue with the smallest failing one, or

— to simplify each individual failing subset.

Our implementation currently goes for the first failing
subset only and thus reports only one subset. The rea-
son is economy: it is wiser to fix the first failure before
checking for further similar failures.

Program analysis. So far, we have treated all tested programs as
black boxes, not referring to source code at all. However,
there are severgkogram analysisnethods available that can
help in relating input to a specific failure, or that can simply
tell us which parts of the input are related (and can thus be
changed in one run) and which others not. A singyaamic
slice of the failing test case can tell us which input actually
influenced the program and which input never did. The com-
bination of input-centered and execution-centered debugging
methods remains to be explored.

Maximizing passing test casesRight now,ddminmakes no dis-
tinction between passing and unresolved tests. There are sev-
eral settings, however, where such a distinction may be use-
ful, and where we could minimize ttdifferencebetween a
passing and a failing test—not only by minimizing the failure-
inducing input, but also bgnaximizing the passing inputve
expect that such a two-folded approach pinpoints the failure
faster and more precisely.

Other failure-inducing circumstances. Changing the input of the
program is only one means to influence its execution. As
stated in Section 2, &; can stand for any change in the
circumstances that influences the execution of the program.
We will thus research whether delta debugging is applicable
to further failure-inducing circumstances such as executed
statements, control predicates or thread schedules.

10. CONCLUSION

Debugging is still, as it was 30 years ago,
a matter of trial and error.

—Henry LiebermanThe Debugging Scandal

We have shown how thddminalgorithm simplifies failure-inducing
input, based on an automated testing procedure. The method can
be (and has been) applied in a number of settings, finding failure-
inducing parts in the program invocatioBGC options), in the pro-
gram input GCC, Fuzz, and Mozilla input), or in the sequence of
user interactions (Mozilla user actions).

We recommend that automated test case simplification be an inte-
grated part of automated testing. Each time a test fails, delta de-
bugging could be used to simplify the circumstances of the fail-

ure. Given sufficient testing resources and a reasonable choice of

changesA; that influence the program execution, ttémin al-

gorithm presented in this paper provides a simplification that is

straight-forward and easy to implement.

In practice, testing and debugging typically come in pairs. How-
ever, in debugging research, testing has played a very minor role.

(4]

(5]

This is surprising, because re-testing a program under changed cir-
cumstances is a common debugging approach. Delta debugging 6]

does nothing but to automate this process. Eventually, we expect

that several debugging tasks can in fact be stated as search and

minimization problems, based on automated testing—and thus be

solved automatically.

More details on the case studies listed in this paper can be found
in [4]. Further information on delta debugging, including the full

WYNOT implementation, is available at

http://www.fmi.uni-passau.de/st/dd/

Acknowledgements. Mirko Streckenbach provided helpful in-
sights onUNIX internals. Tom Truscott pointed us to tBeCerror.

Holger Cleve, Jens Krinke and Gregor Snelting provided valuable
comments on earlier revisions of this paper. Special thanks go to

the anonymous reviewers for their constructive comments.

11.

(1]

(2]

(3]

REFERENCES

H. Agrawal and J. Horgan. Dynamic program slicing.
SIGPLAN Notices5:246—256, 1990.

R. A. DeMillo, H. Pan, and E. H. Spafford. Critical slicing
for software fault localization. In S. J. Zeil, editéyoc. of

the 1996 International Symposium on Software Testing and
Analysis (ISSTANolume 21(3) ofACM Software

Engineering Notegpages 121-134, San Diego, California,
USA, Jan. 1996.

T. Gyimothy, A. Bes&des, and I. Foags. An efficient
relevant slicing method for debugging. In Nierstrasz and
Lemoine [10], pages 303-321.

(7]

(8]
9]

10]

[11]

[12]

[13]

[14]

[15]

R. Hildebrandt. Minimierung fehlerverursachender
Eingaben. Diploma thesis, Technical University of
Braunschweig, Germany, Apr. 2000. In German.

IEEE, New York.Test Methods for Measuring Conformance
to POSIX 1991. ANSI/IEEE Standard 1003.3-1991.
ISO/IEC Standard 13210-1994.

B. P. Miller, L. Fredrikson, and B. So. An empirical study of
the reliability of UNIX utilities. Communications of the
ACM, 33(12):32-44, Dec. 1990.

B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy,

A. Natarajan, and J. Steidl. Fuzz revisted: A re-examination
of the reliability of UNIX utilities and services. Technical
report, University of Wisconsin, Computer Science
Department, Nov. 1995.

Mozilla web site. http://www.mozilla.org/.

Mozilla web site: The Gecko BugAThon.
http://www.mozilla.org/newlayout/bugathon.html.

O. Nierstrasz and M. Lemoine, editofzroc. ESEC/FSE’'99

— 7th European Software Engineering Conference / 7th ACM
SIGSOFT Symposium on the Foundations of Software
Engineering volume 1687 ot.ecture Notes in Computer
ScienceToulouse, France, Sept. 1999. Springer-Verlag.

D. R. Slutz. Massive stochastic testing of SQL. In A. Gupta,
O. Shmueli, and J. Widom, editofBroc. of 24rd

International Conference on Very Large Data Bases
(VLDB'98), New York City, New York, USpages 618—622.
Morgan Kaufmann, Aug. 1998.

F. Tip. A survey of program slicing techniquekurnal of
Programming Language$8(3):121-189, Sept. 1995.

M. Vertes. Xlab—a tool to automate graphical user
interfacesLinux Weekly Newdviay 1998. Archived as
http://lwn.net/980528/a/xlab.html.

M. Weiser. Programmers use slices when debugging.
Commun. ACM25(7):446-452, 1982.

A. Zeller. Yesterday, my program worked. Today, it does not.
Why? In Nierstrasz and Lemoine [10], pages 253—-267.

