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Abstract 
We present a shift-reduce rhetorical parsing algo- 
rithm that learns to construct rhetorical structures 
of texts from a corpus of discourse-parse action se- 
quences. The algorithm exploits robust lexical, syn- 
tactic, and semantic knowledge sources. 

I Introduction 
The application of decision-based learning tech- 
niques over rich sets of linguistic features has 
improved significantly the coverage and perfor- 
mance of syntactic (and to various degrees seman- 
tic) parsers (Simmons and Yu, 1992; Magerman, 
1995; Hermjakob and Mooney, 1997). In this pa- 
per, we apply a similar paradigm to developing a 
rhetorical parser that derives the discourse structure 
of unrestricted texts. 

Crucial to our approach is the reliance on a cor- 
pus of 90 texts which were manually annotated with 
discourse trees and the adoption of a shift-reduce 
parsing model that is well-suited for learning. Both 
the corpus and the parsing model are used to gener- 
ate learning cases of how texts should be partitioned 
into elementary discourse units and how discourse 
units and segments should be assembled into dis- 
course trees. 

2 T h e  C o r p u s  

We used a corpus of 90 rhetorical structure trees, 
which were built manually using rhetorical rela- 
tions that were defined informally in the style of  
Mann and Thompson (1988): 30 trees were built 
for short personal news stories from the MUC7 co- 
reference corpus (Hirschman and Chinchor, 1997); 
30 trees for scientific texts from the Brown corpus; 
and 30 trees for editorials from the Wall Street Jour- 
nal (WSJ). The average number of words for each 
text was 405 in the MUC corpus, 2029 in the Brown 
corpus, and 878 in the WSJ corpus. Each MUC text 
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was tagged by three annotators; each Brown and 
WSJ text was tagged by two annotators. 

The rhetorical structure assigned to each text is a 
(possibly non-binary) tree whose leaves correspond 
to elementary discourse units (edu)s, and whose in- 
ternal nodes correspond to contiguous text spans. 
Each internal node is characterized by a rhetori- 
cal relation, such as ELABORATION and CONTRAST. 
Each relation holds between two non-overlapping 
text spans called NUCLEUS and SATELLITE. (There 
are a few exceptions to this rule: some relations, 
such as SEQUENCE and CONTRAST, are multinu- 
clear.) The distinction between nuclei and satellites 
comes from the empirical observation that the nu- 
cleus expresses what is more essential to the writer's 
purpose than the satellite. Each node in the tree is 
also characterized by a promotion set that denotes 
the units that are important in the corresponding 
subtree. The promotion sets of leaf nodes are the 
leaves themselves. The promotion sets of internal 
nodes are given by the union of the promotion sets 
of the immediate nuclei nodes. 

Edus are defined functionally as clauses or 
clause-like units that are unequivocally the NU- 
CLEUS or SATELLITE of a rhetorical relation that 
holds between two adjacent spans of text. For ex- 
ample, "because of the low atmospheric pressure" 
in text (1) is not a fully fleshed clause. However, 
since it is the SATELLITE of  an EXPLANATION rela- 
tion, we treat it as elementary. 

[Only the midday sun at tropical latitudes is warm 
enough] [to thaw ice on occasion,] [but any liquid wa- 

ter formed in this way would evaporate almost instantly] 
[because of the low atmospheric pressure.] 

(1) 

Some edus may contain parenthetical units, i.e., 
embedded units whose deletion does not affect the 
understanding of the edu to which they belong. For 
example, the unit shown in italics in (2) is paren- 



thetic. 

This book, which I have received from John, is the best (2)  

book that I have read in a while. 

The annotation process was carried out using a 
rhetorical tagging tool. The process consisted in as- 
signing edu and parenthetical unit boundaries, in as- 
sembling edus and spans into discourse trees, and in 
labeling the relations between edus and spans with 
rhetorical relation names from a taxonomy of 71 re- 
lations. No explicit distinction was made between 
intentional, informational, and textual relations. In 
addition, we also marked two constituency relations 
that were ubiquitous in our corpora and that often 
subsumed complex rhetorical constituents. These 
relations were ATTRIBUTION, which was used to la- 
bel the relation between a reporting and a reported 
clause, and APPOSITION. Marcu et al. (1999) discuss 
in detail the annotation tool and protocol and assess 
the inter-judge agreement and the reliability of the 
annotation. 

3 The parsing model 

We model the discourse parsing process as a se- 
quence of shift-reduce operations. As front-end, the 
parser uses a discourse segmenter, i.e., an algorithm 
that partitions the input text into edus. The dis- 
course segmenter, which is also decision-based, is 
presented and evaluated in section 4. 

The input to the parser is an empty stack and an 
input list that contains a sequence of elementary dis- 
course trees, edts, one edt for each edu produced by 
the discourse segmenter. The status and rhetorical 
relation associated with each edt is UNDEFINED, and 
the promotion set is given by the corresponding edu. 
At each step, the parser applies a SHIFT or a REDUCE 
operation. Shift operations transfer the first edt of 
the input list to the top of the stack. Reduce opera- 
tions pop the two discourse trees located on the top 
of the stack; combine them into a new tree updating 
the statuses, rhetorical relation names, and promo- 
tion sets associated with the trees involved in the 
operation; and push the new tree on the top of the 
stack. 

Assume, for example, that the discourse seg- 
menter partitions a text given as input as shown 
in (3). (Only the edus numbered from 12 to 19 are 
shown.) Figure 1 shows the actions taken by a shift- 
reduce discourse parser starting with step i. At step 
i, the stack contains 4 partial discourse trees, which 
span units [1,11], [12,15], [16,17], and [18], and the 
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input list contains the edts that correspond to units 
whose numbers are higher than or equal to 19. 

. . .  [Close parallels between tests and practice tests (3) 
are common, 12] [some educators and researchers 

say. 13] [Test-preparation booklets, software and work- 

sheets are a booming publishing subindustryJ 4 ] [But 

some practice products are so similar to the tests them- 

selves that critics say they represent a form of school- 
sponsored cheatingJ 5 ] 

["If I took these preparation booklets into my 

classroom, 16 ] [I'd have a hard time justifying to my stu- 

dents and parents that it wasn't cheating, "17 ] [says John 

Kaminsky, TM] [a Traverse City, Mich., teacher who has 

studied test coaching. 19 ] . . .  

At step i the parser decides to perform a SHIFT op- 
eration. As a result, the edt corresponding to unit 
19 becomes the top of the stack. At step i + 1, the 
parser performs a REDUCE-APPOSITION-NS opera- 
tion, that combines edts 18 and 19 into a discourse 
tree whose nucleus is unit 18 and whose satellite 
is unit 19. The rhetorical relation that holds be- 
tween units 18 and 19 is APPOSITION. At step i+2, 
the trees that span over units [16,17] and [18,19] 
are combined into a larger tree, using a REDUCE- 
ATTRIBUTION-NS operation. As a result, the status 
of the tree [16,17] becomes NUCLEUS and the status 
of the tree [18,19] becomes SATELLITE. The rhetor- 
ical relation between the two trees is ATTRIBUTION. 
At step i + 3, the trees at the top of the stack are 
combined using a REDUCE-ELABORATION-NS oper- 
ation. The effect of the operation is shown at the 
bottom of figure 1. 

In order to enable a shift-reduce discourse parser 
derive any discourse tree, it is sufficient to imple- 
ment one SHIFT operation and six types of REDUCE 
operations, whose operational semantics is shown 
in figure 2. For each possible pair of nuclearity 
assignments NUCLEUS-SATELLITE (NS), SATELLITE- 

NUCLEUS (SN), and NUCLEUS-NUCLEUS (NN) there 
are two possible ways to attach the tree located at 
position top in the stack to the tree located at po- 
sition top - 1. If one wants to create a binary tree 
whose immediate children are the trees at top and 
top - 1, an operation of type REDUCE-NS, REDUCE- 
SN, or REDUCE-NN needs to be employed. If one 
wants to attach the tree at top as an extra-child 
of the tree at top - 1, thus creating or modifying 
a non-binary tree, an operation of type REDUCE- 
BELOW-NS, REDUCE-BELOW-SN, o r  REDUCE-BELOW- 

NN needs to be employed. Figure 2 illustrates how 
the statuses and promotion sets associated with the 
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Figure 1: Example of a sequence of shift-reduce operations that concern the discourse parsing of text (3). 

trees involved in the reduce operations are affected 
in each case. 

Since the labeled data that we relied upon 
was sparse, we grouped the relations that shared 
some rhetorical meaning into clusters of rhetor- 
ical similarity. For example, the cluster named 
CONTRAST contained the contrast-like rhetorical 

relations of ANTITHESIS, CONTRAST, and CON- 
CESSION. The cluster named EVALUATION- 
INTERPRETATION contained the rhetorical relations 
of  EVALUATION and INTERPRETATION. And the 
cluster named OTHER contained rhetorical rela- 
tions such as QUESTION-ANSWER, PROPORTION, RE- 
STATEMENT, and COMPARISON, which were used 
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Figure 2: The reduce operations supported by our 
parsing model. 

very seldom in the corpus. The grouping pro- 
cess yielded 17 clusters, each characterized by 
a generalized rhetorical relation name. These 
names were: APPOSITION-PARENTHETICAL, ATTRI- 
BUTION, CONTRAST, BACKGROUND-CIRCUMSTANCE, 

CAUSE-REASON-EXPLANATION, CONDITION, ELABO- 

RATION, EVALUATION-INTERPRETATION, EVIDENCE, 
EXAMPLE, MANNER-MEANS, ALTERNATIVE, PUR- 

POSE, TEMPORAL, LIST, TEXTUAL, and OTHER. 

In the work described in this paper, we attempted 
to automatically derive rhetorical structures trees 
that were labeled with relations names that corre- 
sponded to the 17 clusters of rhetorical similarity. 
Since there are 6 types of reduce operations and 
since each discourse tree in our study uses relation 
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names that correspond to the 17 clusters of rhetor- 
ical similarity, it follows that our discourse parser 
needs to learn what operation to choose from a set 
of 6 × 17 + 1 = 103 operations (the 1 corresponds 
to the SHXFT operation). 

4 T h e  discourse segmenter 

4.1 Generat ion of  learning examples 

The discourse segmenter we implemented processes 
an input text one lexeme (word or punctuation 
mark) at a time and recognizes sentence and edu 
boundaries and beginnings and ends of parentheti- 
cal units. We used the leaves of the discourse trees 
that were built manually in order to derive the learn- 
ing cases. To each lexeme in a text, we associated 
one learning case, using the features described in 
section 4.2. The classes to be learned, which are as- 
sociated with each lexeme, are sentence-break, edu- 
break, start-paTen, end-paTen, and none. 

4.2 Features used for learning 
To partition a text into edus and to detect parentheti- 
cal unit boundaries, we relied on features that model 
both the local and global contexts. 

The local context consists of a window of size 
5 that enumerates the Part-Of-Speech (POS) tags 
of the lexeme under scrutiny and the two lexemes 
found immediately before and after it. The POS 
tags are determined automatically, using the Brill 
tagger (1995). Since discourse markers, such as 
because and and, have been shown to play a ma- 
jor role in rhetorical parsing (Marcu, 1997), we also 
consider a list of  features that specify whether a lex- 
eme found within the local contextual window is a 
potential discourse marker. The local context also 
contains features that estimate whether the lexemes 
within the window are potential abbreviations. 

The global context reflects features that pertain to 
the boundary identification process. These features 
specify whether a discourse marker that introduces 
expectations (Cristea and Webber, 1997) (such as 
although) was used in the sentence under consider- 
ation, whether there are any commas or dashes be- 
fore the estimated end of the sentence, and whether 
there are any verbs in the unit under consideration. 

A binary representation of  the features that char- 
acterize both the local and global contexts yields 
learning examples with 2417 features/example. 

4.3 Evaluation 

We used the C4.5 program (Quinlan, 1993) in order 
to learn decision trees and rules that classify leT- 



Corpus # cases BI(%) B2(%) Acc(%) 
MUC 14362 91.28 93.1 96.244-0.06 
WSJ 31309 92.39 94.6 97.144-0.10 
Brown 72092 93.84 96.8 97.874-0.04 

Table 1: Performance of a discourse segmenter that 
uses a decision-tree, non-binary classifier. 

Ace 

Action (a) (b) (c) (d) (e) 
sentence-break (a) 272 4 
edu-break (b) 133 3 84 
start-parcH (c) 4 26 
end-paten (d) 20 6 
none (e) 2 38 1 4 7555 

Table 2: Confusion matrix for the decision-tree, 
non-binary classifier (the Brown corpus). 
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edu boundaries. The performance is high with re- 
spect to recognizing sentence boundaries and ends 
of parenthetical units. The performance with re- 
spect to identifying sentence boundaries appears 
to be close to that of systems aimed at identify- 
ing only sentence boundaries (Palmer and Hearst, 
1997), whose accuracy is in the range of 99%. 

Figure 3: Learning curve for discourse segmenter 
(the MUC corpus). 

emes as boundaries of sentences, edus, or parenthet- 
ical units, or as non-boundaries. We learned both 
from binary (when we could) and non-binary repre- 
sentations of the cases. 1 In general the binary rep- 
resentations yielded slightly better results than the 
non-binary representations and the tree classifiers 
were slightly better than the rule-based ones. Due 
to space constraints, we show here (in table 1) only 
accuracy results that concern non-binary, decision- 
tree classifiers. The accuracy figures were com- 
puted using a ten-fold cross-validation procedure. 
In table 1, B1 corresponds to a majority-based base- 
line classifier that assigns none to all lexemes, and 
B2 to a baseline classifier that assigns a sentence 
boundary to every DOT lexeme and a non-boundary 
to all other lexemes. 

Figure 3 shows the learning curve that corre- 
sponds to the MUC corpus. It suggests that more 
data can increase the accuracy of the classifier. 

The confusion matrix shown in table 2 corre- 
sponds to a non-binary-based tree classifier that 
was trained on cases derived from 27 Brown texts 
and that was tested on cases derived from 3 dif- 
ferent Brown texts, which were selected randomly. 
The matrix shows that the segmenter has problems 
mostly with identifying the beginning of  parentheti- 
cal units and the intra-sentential edu boundaries; for 
example, it correctly identifies only 133 of  the 220 

ZLeaming from binary representations of  features in the 
Brown corpus was too computationally expensive to terminate 
- -  the Brown data file had about 0.5GBytes. 

5 The shift-reduce action identifier , 

5.1 Generation of learning examples 

The learning cases were generated automatically, 
in the style of  Magerman (1995), by traversing in- 
order the final rhetorical structures built by anno- 
tators and by generating a sequence of discourse 
parse actions that used only SHIFT and REDUCE op- 
erations of the kinds discussed in section 3. When 
a derived sequence is applied as described in the 
parsing model, it produces a rhetorical tree that is 
a one-to-one copy of the original tree that was used 
to generate the sequence. For example, the tree at 
the bottom of figure 1 - -  the tree found at the top 
of the stack at step i + 4 - -  can be built if the fol- 
lowing sequence of operations is performed: {SHIFT 
12; SHIFT 13; REDUCE-ATTRIBUTION-NS; SHIFT 14; 
REDUCE-JOINT-NN; SHIFT 15; REDUCE-CONTRAST- 

SN, SHIFT 16,  SHIFT ] 7 ;  REDUCE-CONDITION- 

SN; SHIFT 18;  SHIFT 19;  REDUCE-APPOSITION-NS; 

REDUCE-ATTRIBUTION-NS; REDUCE-ELABORATION- 

NS.} 

5.2 Features used for learning 

To make decisions with respect to parsing actions, 
the shift-reduce action identifier focuses on the three 
top most trees in the stack and the first edt in the in- 
put list. We refer to these trees as the trees in focus. 
The identifier relies on the following classes of fea- 
tures. 
Structural features. 
• Features that reflect the number of trees in the 
stack and the number of  edts in the input list. 
• Features that describe the structure of the trees in 
focus in terms of  the type of textual units that they 
subsume (sentences, paragraphs, titles); the number 
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of immediate children of the root nodes; the rhetor- 
ical relations that link the immediate children of  the 
root nodes, etc. 2 
Lexical (cue-phrase-like) and syntactic features. 
• Features that denote the actual words and POS 
tags of the first and last two lexemes of the text 
spans subsumed by the trees in focus. 
• Features that denote whether the first and last 
units of the trees in focus contain potential discourse 
markers and the position of these markers in the 
corresponding textual units (beginning, middle, or 
end). 
Operational features. 
• Features that specify what the last five parsing op- 
erations performed by the parser were. 3 
Semantic-similarity-based features. 
• Features that denote the semantic similarity be- 
tween the textual segments subsumed by the trees 
in focus. This similarity is computed by applying in 
the style of Hearst (1997) a cosine-based metric on 
the morphed segments. 
• Features that denote Wordnet-based measures of 
similarity between the bags of words in the promo- 
tion sets of the trees in focus. We use 14 Wordnet- 
based measures of similarity, one for each Word- 
net relation (Fellbaum, 1998). Each of  these sim- 
ilarities is computed using a metric similar to the 
cosine-based metric. Wordnet-based similarities re- 
flect the degree of synonymy, antonymy, meronymy, 
hyponymy, etc. between the textual segments sub- 
sumed by the trees in focus. We also use 14 x 13/2 
relative Wordnet-based measures of similarity, one 
for each possible pair of Wordnet-based relations. 
For each pair of Wordnet-based measures of simi- 
larity w~l and wr2, each relative measure (feature) 
takes the value <,  = ,  or >, depending on whether 
the Wordnet-based similarity w~l between the bags 
of words in the promotion sets of the trees in focus is 
lower, equal, or higher that the Wordnet-based sim- 
ilarity w~2 between the same bags of  words. For ex- 
ample, if both the synonymy- and meronymy-based 
measures of similarity are 0, the relative similarity 
between the synonymy and meronymy of the trees 
in focus will have the value =.  

2The identifier assumes that each sentence break that ends 
in a period and is followed by two '\n' characters, for example, 
is a paragraph break; and that a sentence break that does not end 
in a punctuation mark and is followed by two '\n' characters is 
a title. 

3We could generate these features because, for learning, we 
used sequences of shift-reduce operations and not discourse 
trees. 

Corpus # cases B3(%) B4(%) Ace(%) 
MUC 1996 50.75 26.9 61.124-1.61 
WSJ 4360 50.34 27.3 61.654-0.41 
Brown 8242 50.18 28.1 61.814-0.48 

Table 3: Performance of the tree-based, shift-reduce 
action classifiers. 
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Figure 4: Learning curve for the shift-reduce action 
identifier (the MUC corpus). 

A binary representation of these features yields 
learning examples with 2789 features/example. 

5.3 Evaluation 
The shift-reduce action identifier uses the C4.5 pro- 
gram in order to learn decision trees and rules that 
specify how discourse segments should be assem- 
bled into trees. In general, the tree-based classifiers 
performed slightly better than the rule-based classi- 
tiers. Due to space constraints, we present here only 
performance results that concern the tree classifiers. 
Table 3 displays the accuracy of the shift-reduce ac- 
tion identifiers, determined for each of the three cor- 
pora by means of  a ten-fold cross-validation proce- 
dure. In table 3, the B3 column gives the accuracy 
of a majority-based classifier, which chooses action 
SHIFT in all cases. Since choosing only the action 
SHIFT never produces a discourse tree, in column 
B4, we present the accuracy of a baseline classifier 
that chooses shift-reduce operations randomly, with 
probabilities that reflect the probability distribution 
of the operations in each corpus. 

Figure 4 shows the learning curve that corre- 
sponds to the MUC corpus. As in the case of  the 
discourse segmenter, this learning curve also sug- 
gests that more data can increase the accuracy of  
the shift-reduce action identifier. 

6 Evaluation of the rhetorical parser 

Obviously, by applying the two classifiers sequen- 
tiaUy, one can derive the rhetorical structure of  any 
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Corpus 

MUC 

WSJ 

Brown 

Seg- Train- Elementary units Hierarchical spans Span nuclearity 
ment- ing J u d g e s [  Parser J u d g e s [  Parser Judges I Parser Judges 

e r  corpus R I P R I P R I P R I P R I P R I P R I P 
DT MUC 88.0 88.0 37.1 100.0 84.4 84.4 38.2 61.0 79.1 83.5 25.5 51.5 78.6 78.6 
DT All 75.4 96.9 70.9 72.8 58.3 68.9 
M MUC 100.0 100.0 87.5 82.3 68.8 78.2 
M All 100.0 100.0 84.8 73.5 71.0 69.3 

DT WSJ 85.1 86.8 18.1 95.8 79.9 80.1 34.0 65.8 67.6 77.1 21.6 54.0 73.1 73.3 
DT All 25.1 79.6 40.1 66.3 30.3 58.5 
M WSJ I00.0 100.0 83.4 84.2 63.7 79.9 
M All 100.0 100.0 83.0 85.0 69.0 82.4 
DT Brown 89.5 88.5 60.5 79.4 80.6 79.5 57.3 63.3 67.6 75.8 44.6 57.3 69.7 68.3 
DT All 44.2 80.3 44.7 59.1 33.2 51.8 
M Brown 100.0 100.0 81.1 73.4 60.1 67.0 
M All 100.0 100.0 80.8 77.5 60.0 72.0 

Rhetorical relations 
Parser 

R ] P 

14.9 28.7 
38.4 45.3 
72.4 62.8 
66.5 53.9 
13.0 34.3 
17.3 36.0 
56.3 57.9 
59.8 63.2 
26.7 35.3 
15.7 25.7 
59.5 45.5 
51.8 44.7 

Table 4: Performance of the rhetorical parser: labeled (R)ecall and (P)recision. The segmenter is either 
Decision-Tree-Based (DT) or Manual (M). 

text. Unfortunately, the performance results pre- 
sented in sections 4 and 5 only suggest how well 
the discourse segmenter and the shift-reduce action 
identifier perform with respect to individual cases. 
They say nothing about the performance of a rhetor- 
ical parser that relies on these classifiers. 

In order to evaluate the rhetorical parser as a 
whole, we partitioned randomly each corpus into 
two sets of texts: 27 texts were used for training and 
the last 3 texts were used for testing. The evalua- 
tion employs labeled recall and precision measures, 
which are extensively used to study the performance 
of syntactic parsers. Labeled recall reflects the num- 
ber of correctly labeled constituents identified by 
the rhetorical parser with respect to the number of 
labeled constituents in the corresponding manually 
built tree. Labeled precision reflects the number 
of correctly labeled constituents identified by the 
rhetorical parser with respect to the total number of 
labeled constituents identified by the parser. 

We computed labeled recall and precision figures 
with respect to the ability of our discourse parser 
to identify elementary units, hierarchical text spans, 
text span nuclei and satellites, and rhetorical rela- 
tions. Table 4 displays results obtained using seg- 
menters and shift-reduce action identifiers that were 
trained either on 27 texts from each corpus and 
tested on 3 unseen texts from the same corpus; or 
that were trained on 27×3 texts from all corpora 
and tested on 3 unseen texts from each corpus. The 
training and test texts were chosen randomly. Ta- 
ble 4 also displays results obtained using a man- 
ual discourse segmenter, which identified correctly 
all edus. Since all texts in our corpora were man- 
ually annotated by multiple judges, we could also 
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compute an upper-bound of the performance of the 
rhetorical parser by calculating for each text in the 
test corpus and each judge the average labeled recall 
and precision figures with respect to the discourse 
trees built by the other judges. Table 4 displays 
these upper-bound figures as well. 

The results in table 4 primarily show that errors in 
the discourse segmentation stage affect significantly 
the quality of the trees our parser builds. When 
a segmenter is trained only on 27 texts (especially 
for the MUC and WSJ corpora, which have shorter 
texts than the Brown corpus), it has very low per- 
formance. Many of the intra-sentential edu bound- 
aries are not identified, and as a consequence, the 
overall performance of the parser is low. When 
the segmenter is trained on 27 × 3 texts, its perfor- 
mance increases significantly with respect to the 
MUC and WSJ corpora, but decreases with respect 
to the Brown corpus. This can be explained by the 
significant differences in style and discourse marker 
usage between the three corpora. When a perfect 
segmenter is used, the rhetorical parser determines 
hierarchical constituents and assigns them a nucle- 
arity status at levels of performance that are not far 
from those of humans. However, the rhetorical la- 
beling of discourse spans is even in this case about 
15-20% below human performance. 

These results suggest that the features that we use 
are sufficient for determining the hierarchical struc- 
ture of texts and the nuclearity statuses of discourse 
segments. However, they are insufficient for deter- 
mining correctly the elementary units of discourse 
and the rhetorical relations that hold between dis- 
course segments. 



7 Related work  

The rhetorical parser presented here is the first that 
employs learning methods and a thorough evalua- 
tion methodology. All previous parsers aimed at 
determining the rhetorical structure of unrestricted 
texts (Sumita et al., 1992; Kurohashi and Nagao, 
1994; Marcu, 1997; Corston-Oliver, 1998)em- 
ployed manually written rules. Because of the lack 
of discourse corpora, these parsers did not evaluate 
the correctness of the discourse trees they built per 
se, but rather their adequacy for specific purposes: 
experiments carded out by Miike et al. (1994) and 
Marcu (1999) showed only that the discourse struc- 
tures built by rhetorical parsers (Sumita et al., 1992; 
Marcu, 1997) can be used successfully in order to 
improve retrieval performance and summarize text. 

8 Conclusion 

In this paper, we presented a shift-reduce rhetori- 
cal parsing algorithm that learns to construct rhetor- 
ical structures of texts from tagged data. The parser 
has two components: a discourse segmenter, which 
identifies the elementary discourse units in a text; 
and a shift-reduce action identifier, which deter- 
mines how these units should be assembled into 
rhetorical structure trees. 

Our results suggest that a high-performance dis- 
course segmenter would need to rely on more train- 
ing data and more elaborate features than the ones 
described in this paper - -  the learning curves did 
not converge to performance limits. If one's goal is, 
however, to construct discourse trees whose leaves 
are sentences (or units that can be identified at 
high levels of performance), then the segmenter de- 
scribed here appears to be adequate. Our results 
also suggest that the rich set of features that consti- 
tute the foundation of the action identifier are suffi- 
cient for constructing discourse hierarchies and for 
assigning to discourse segments a rhetorical status 
of nucleus or satellite at levels of performance that 
are close to those of humans. However, more re- 
search is needed in order to approach human perfor- 
mance in the task of assigning to segments correct 
rhetorical relation labels. 
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