Articles

Features

Devillers & Vidrascu

Emotions in IVR Systems Anger and Frustration

Emotions in Speech November 9

Yves Scherrer

 J. Liscombe, G. Riccardi & D. Hakkani-Tür: Using Context to Improve Emotion Detection in Spoken Dialog Systems

 L. Devillers & L. Vidrascu: Real-life Emotions Detection with Lexical and Paralinguistic Cues on Human-Human Call Center Dialogs

Overview

	Liscombe et al.	Devillers & Vidrascu
Setting of data collection	Phone account information Automated dialog system	Medical emergencies Human-Human interactions
Motivation	Improve customer satisfaction	Study real-life speech in highly emotive situations
Studied emotions	Negative, non-negative (but 7 emotions annotated)	Anger, Fear, Relief, Sadness (but finer-grained annotation)
Corpus used for experiments	5690 dialogs 20,013 user turns	680 dialogs 2258 speaker turns
Training-test split	75% - 25%	72% - 28%
Machine Learning method used for classification	Boosting algorithm	Log-likelihood ratio (linguistic) SVM (paralinguistic)

Lexical features / Trigrams of user utterances Unigrams of user utterances, Linguistic cues Stemming Prosodic features / Loudness (energy), Loudness (energy), Paralinguistic cues Pitch contour (F0), Pitch contour (F0), Speaking rate, Speaking rate, Voice quality (jitter), Voice quality (jitter, ...), Hesitations. Disfluency (pauses), Turn-final pitch contour, Non-linguistic events (mouth Pitch accent. noise, crying, ...). Normalized by gender. Normalized by speaker. **Dialog act features** Domain-dependent dialog act tag --Contextual features Differential of prosodic features ---Transcriptions Repetition measure Dialog acts

Liscombe et al.

... of 2 previous turns

Liscombe et al.

Motivation:

- Two sources of user frustration:
 - Reason of call (complaint about bill, ...)
 - Arising from interaction problems with the spoken dialog system
- Goal:
 - Detect the problem
 - Try to repair it, or transfer to human operator
 - How could a spoken dialog system "repair" an interaction?

- 20,013 user turns from 5,690 dialogs
- Emotional states:
 - positive/neutral, somewhat frustrated, very frustrated, somewhat angry, very angry, somewhat other negative, very other negative
 - Simplified set: positive/neutral, negative (Wise choice?)
- Inter-annotator agreement:
 - 0.32 Cohen's Kappa for full set ("fair agreement")
 - 0.42 for simplified set ("moderate agreement")

Automatic Classification

- Features used:
 - 1 lexical feature
 - I7 prosodic features
 - I dialog act feature
 - 61 contextual features
- 2000 iterations with the BoosTexter boosting algorithm
 - Each user turn must be classified as negative or nonnegative given a set of 80 features

Automatic Classification

- Boosting algorithm:
 - Boosting is a general method of producing a very accurate prediction rule by combining rough and moderately inaccurate "rules of thumb." http://www.cs.princeton.edu/~schapire/boost.html
 - Can a set of weak learners create a single strong learner?
 - A weak learner is a classifier which is only slightly correlated with the true classification (it can label examples better than random guessing).
 - A strong learner is a classifier that is arbitrarily well correlated with the true classification. http://en.wikipedia.org/wiki/Boosting

Corpus

Lexical features

- Unigrams, bigrams, trigrams of transcription
- Result:
 - Words correlating with negative user state:
 - dollars, cents, call
 - person, human, speak, talking, machine
 - ●oh, sigh
 - What can these results tell us about emotion annotation?

- Features:
 - Energy (loudness)
 - F0 (pitch contour)
 - Speaking rate
 - Turn-final pitch contour
 - Pitch accent
 - Voice quality (jitter)
- Normalization:
 - Speaker normalization not possible (data sparsity)
 - Gender normalization

Dialog act features

- 65 specific, domain-dependent dialog act tags:
 - Yes
 - Customer_Rep
 - Account_Balance
- Why should these tags work better than the words of the utterances?

Contextual features

- First-order differentials of prosodic features wrt. 2 previous utterances
- Second-order differentials of prosodic features wrt.
 2 previous utterances (Why?)
- Transcriptions of 2 previous utterances
- Measure of repetition (Levenshtein edit distance)
- Dialog acts of 2 previous user turns
 - Once frustrated, always frustrated?
- Dialog acts of 2 previous system turns

Results

Devillers & Vidrascu

• No surprises...

What do you think about these results?

	Accuracy rate
Baseline	73.1% (majority)
Lexical + prosodic features	76.1%
Lexical + prosodic + dialog act features	77.0%
Lexical + prosodic + dialog act + context	79.0%

- Motivations:
 - "The context of emergency gives a larger palette of complex and mixed emotions."
 - Emotions in emergency situations are more extreme, and are "really felt in a natural way."
 - Debate on acted vs. real emotions
 - Ethical concerns?

Corpus

688 dialogs, avg 48 turns per dialog

- Annotation:
 - Decisions of 2 annotators are combined in a soft vector:
 Emotion mixtures
 - 8 coarse-level emotions, 21 fine-grained emotions
 - Inter-annotator agreement for client turns: 0.57 (moderate)
 - Consistency checks:
 - Self-reannotation procedure (85% similarity)
 - Perception test (no details given)

Classification

- Restrict corpus to:
 - Utterances from callers
 - Utterances annotated with one of the following nonmixed emotions:
 - Anger, Fear, Relief, Sadness
 - Justification for this choice?
- This yields 2258 utterances from 680 speakers.

Lexical cue model

- Log-likelihood ratio:
 - 4 unigram emotion models (1 for each emotion)
 - A general task-specific model
 - Interpolation coefficient to avoid data sparsity problems
 A coefficient of 0.75 gave the best results
- Stemming:
 - Cut inflectional suffixes (more important for richmorphology languages like French)
 - Improves overall recognition rates by 12-13 points

Paralinguistic (prosodic) cues

- 100 features, fed into an SVM classifier:
 - F0 (pitch contour) and spectral features (formants)
 - Energy (loudness)
 - Voice quality (jitter, shimmer, ...)
 - Speaking rate, silences, pauses, filled pauses
 - Mouth noise, laughter, crying, breathing
- Normalized by speaker
 - Here: ~24 client turns in each dialog
 - Liscombe et al.: 3.5 client turns in each dialog
 → data sparsity

Paralinguistic (prosodic) cues

- Voice quality
 - Jitter: varying pitch in the voice
 - Shimmer: varying loudness in the voice
 - NHR: Noise-to-harmonic ratio
 - HNR: Harmonic-to-noise ratio

	Anger	Fear	Relief	Sadness	Total
Number of utterances	49	384	107	100	640
Lexical cues	59%	90%	86%	34%	78%
Prosodic cues	39%	64%	58%	57%	59.8%

- Relief is associated to lexical markers like *thanks* or *I agree*.
- "Sadness is more prosodic or syntactic than lexical."
- Comments?

Results

Results

	Liscombe et al.	Devillers & Vidrascu
Baseline	73.1% (majority)	25% (random)
Lexical/linguistic features		78%
Prosodic/paralinguistic features	75.2% (see thesis)	59.8%
Lexical + prosodic features	76.1%	
Lexical + prosodic + dialog act features	77.0%	
Lexical + prosodic + dialog act + context	79.0%	