Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2021. All
rights reserved. Draft of September 21, 2021.

CHAPTER

Question Answering

The quest for knowledge is deeply human, and so it is not surprising that practi-
cally as soon as there were computers we were asking them questions. By the early
1960s, systems used the two major paradigms of question answering—information-
retrieval-based and knowledge-based—to answer questions about baseball statis-
tics or scientific facts. Even imaginary computers got into the act. Deep Thought,
the computer that Douglas Adams invented in The Hitchhiker’s Guide to the Galaxy,
managed to answer “the Ultimate Question Of Life, The Universe, and Everything”.!
In 2011, IBM’s Watson question-answering system won the TV game-show Jeop-

ardy!, surpassing humans at answering questions like:

WILLIAM WILKINSON’S “AN ACCOUNT OF THE

PRINCIPALITIES OF WALLACHIA AND MOLDOVIA”
INSPIRED THIS AUTHOR’S MOST FAMOUS NOVEL ¢

Question answering systems are designed to fill human information needs that
might arise in situations like talking to a virtual assistant, interacting with a search
engine, or querying a database. Most question answering systems focus on a par-
ticular subset of these information needs: factoid questions, questions that can be
answered with simple facts expressed in short texts, like the following:

(23.1) Where is the Louvre Museum located?
(23.2) What is the average age of the onset of autism?

In this chapter we describe the two major paradigms for factoid question answer-
ing. Information-retrieval (IR) based QA, sometimes called open domain QA,
relies on the vast amount of text on the web or in collections of scientific papers
like PubMed. Given a user question, information retrieval is used to find relevant
passages. Then neural reading comprehension algorithms read these retrieved pas-
sages and draw an answer directly from spans of text.

In the second paradigm, knowledge-based question answering, a system in-
stead builds a semantic representation of the query, such as mapping What states bor-
der Texas? to the logical representation: Ax.state(x) A borders(x,texas), or When
was Ada Lovelace born? to the gapped relation: birth-year (Ada Lovelace,
7x). These meaning representations are then used to query databases of facts.

We’ll also briefly discuss two other QA paradigms. We’ll see how to query a
language model directly to answer a question, relying on the fact that huge pretrained
language models have already encoded a lot of factoids. And we’ll sketch classic
pre-neural hybrid question-answering algorithms that combine information from IR-
based and knowledge-based sources.

We’ll explore the possibilities and limitations of all these approaches, along the
way also introducing two technologies that are key for question answering but also

1 The answer was 42, but unfortunately the details of the question were never revealed.

2 The answer, of course, is ‘Who is Bram Stoker’, and the novel was Dracula.

2 CHAPTER 23

23.1

information
retrieval

IR

ad hoc retrieval
document
collection

term
query

QUESTION ANSWERING

relevant throughout NLP: information retrieval (a key component of IR-based QA)
and entity linking (similarly key for knowledge-based QA). We’ll start in the next
section by introducing the task of information retrieval.

The focus of this chapter is factoid question answering, but there are many
other QA tasks the interested reader could pursue, including long-form question
answering (answering questions like “why” questions that require generating long
answers), community question answering, (using datasets of community-created
question-answer pairs like Quora or Stack Overflow), or even answering questions
on human exams like the New York Regents Science Exam (Clark et al., 2019) as
an NLP/AI benchmark to measure progress in the field.

Information Retrieval

Information retrieval or IR is the name of the field encompassing the retrieval of all
manner of media based on user information needs. The resulting IR system is often
called a search engine. Our goal in this section is to give a sufficient overview of IR
to see its application to question answering. Readers with more interest specifically
in information retrieval should see the Historical Notes section at the end of the
chapter and textbooks like Manning et al. (2008).

The IR task we consider is called ad hoc retrieval, in which a user poses a
query to a retrieval system, which then returns an ordered set of documents from
some collection. A document refers to whatever unit of text the system indexes and
retrieves (web pages, scientific papers, news articles, or even shorter passages like
paragraphs). A collection refers to a set of documents being used to satisfy user
requests. A term refers to a word in a collection, but it may also include phrases.
Finally, a query represents a user’s information need expressed as a set of terms.
The high-level architecture of an ad hoc retrieval engine is shown in Fig. 23.1.

- Document
Hll

()) Inverted
- Indexing [f--- Index

S
S
AN

Documents

JPTICPRBY The architecture of an ad hoc IR system.

The basic IR architecture uses the vector space model we introduced in Chap-
ter 6, in which we map queries and document to vectors based on unigram word
counts, and use the cosine similarity between the vectors to rank potential documents
(Salton, 1971). This is thus an example of the bag-of-words model introduced in
Chapter 4, since words are considered independently of their positions.

23.1.1 Term weighting and document scoring

Let’s look at the details of how the match between a document and query is scored.

term weight

BM25

23.1 <+ INFORMATION RETRIEVAL 3

We don’t use raw word counts in IR, instead computing a term weight for each
document word. Two term weighting schemes are common: the tf-idf weighting
introduced in Chapter 6, and a slightly more powerful variant called BM25.

We’ll reintroduce tf-idf here so readers don’t need to look back at Chapter 6.
Tf-idf (the ‘-* here is a hyphen, not a minus sign) is the product of two terms, the
term frequency tf and the indirect document frequency idf.

The term frequency tells us how frequent the word is; words that occur more
often in a document are likely to be informative about the document’s contents. We
usually use the logg of the word frequency, rather than the raw count. The intuition
is that a word appearing 100 times in a document doesn’t make that word 100 times
more likely to be relevant to the meaning of the document. Because we can’t take
the log of 0, we normally add 1 to the count:?

tfa = logjo(count(s,d)+1) (23.3)

If we use log weighting, terms which occur O times in a document would have
tf = log;o(1) = 0, 10 times in a document tf = log;y(11) = 1.04, 100 times tf =
log;((101) = 2.004, 1000 times tf = 3.00044, and so on.

The document frequency df; of a term ¢ is the number of documents it oc-
curs in. Terms that occur in only a few documents are useful for discriminating
those documents from the rest of the collection; terms that occur across the entire
collection aren’t as helpful. The inverse document frequency or idf term weight
(Sparck Jones, 1972) is defined as:

N
ldfl = loglo E (234)
t

where N is the total number of documents in the collection, and df; is the number
of documents in which term ¢ occurs. The fewer documents in which a term occurs,
the higher this weight; the lowest weight of 0 is assigned to terms that occur in every
document.

Here are some idf values for some words in the corpus of Shakespeare plays,
ranging from extremely informative words that occur in only one play like Romeo,
to those that occur in a few like salad or Falstaff, to those that are very common like
fool or so common as to be completely non-discriminative since they occur in all 37
plays like good or sweet.*

Word df idf
Romeo 1 1.57

salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

3 Or we can use this alternative: tf; ; =

1+log;ycount(t,d) if count(r,d) >0
0 otherwise

4 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

4 CHAPTER 23 * QUESTION ANSWERING

The tf-idf value for word ¢ in document d is then the product of term frequency
tf; 4 and IDF:

tf-idf(,d) = tf, 4 - idf, (23.5)

23.1.2 Document Scoring
We score document d by the cosine of its vector d with the query vector q:

q-d
score(q,d) = cos(q,d) = —— (23.6)
|q/[d]
Another way to think of the cosine computation is as the dot product of unit vectors;
we first normalize both the query and document vector to unit vectors, by dividing
by their lengths, and then take the dot product:
d
score(q,d) = cos(q,d) = % .] (23.7)
q

We can spell out Eq. 23.7, using the tf-idf values and spelling out the dot product as
a sum of products:

score(q.d) = 3 tf-idf(z,) tf-idf(r,d)
feq \/Z%Eq tf-ldfz(q“q) \/ZdiEd tf-ldfz(d“d>

In practice, it’s common to approximate Eq. 23.8 by simplifying the query pro-
cessing. Queries are usually very short, so each query word is likely to have a count
of 1. And the cosine normalization for the query (the division by |¢|) will be the
same for all documents, so won’t change the ranking between any two documents
D; and D; So we generally use the following simple score for a document d given a

query g:

(23.8)

score(q,d) = Z tf_ldz((’d) (23.9)

teq

Let’s walk through an example of a tiny query against a collection of 4 nano doc-
uments, computing tf-idf values and seeing the rank of the documents. We’ll assume
all words in the following query and documents are downcased and punctuation is
removed:

Query: sweet love

Doc 1: Sweet sweet nurse! Love?
Doc 2: Sweet sorrow

Doc 3: How sweet is love?

Doc 4: Nurse!

Fig. 23.2 shows the computation of the tf-idf values and the document vector
length |d| for the first two documents using Eq. 23.3, Eq. 23.4, and Eq. 23.5 (com-
putations for documents 3 and 4 are left as an exercise for the reader).

Fig. 23.3 shows the scores of the 4 documents, reranked according to Eq. 23.9.
The ranking follows intuitively from the vector space model. Document 1, which has
both terms including two instances of sweet, is the highest ranked, above document
3 which has a larger length |d| in the denominator, and also a smaller tf for sweet.
Document 3 is missing one of the terms, and Document 4 is missing both.

BM25

stop list

23.1 + INFORMATION RETRIEVAL 5

Document 1 Document 2
word count tf df idf tf-idf count tf df idf tf-idf
love 1 0.301 2 0.301 0.091 0 0 2 0.301 0
sweet 2 0.477 3 0.125 0.060 1 0.301 3 0.125 0.038
sorrow () 0 1 0.602 0 1 0.301 1 0.602 0.181
how 0 0 1 0.602 0 0 0 1 0.602 0
nurse 1 0.301 2 0.301 0.091 0 0 2 0.301 O
is 0 0 1 0.602 0 0 0 1 0.602 0
|di| = v/.0912 +.0602 +.0912 = .141 |do| = V0382 + 1812 = .185

J3TICPR®) Computation of tf-idf for nano-documents 1 and 2, using Eq. 23.3, Eq. 23.4,
and Eq. 23.5.

Doc |d| tf-idf(sweer) tf-idf(love) score

1 141 .060 .091 1.07
3 274 .038 .091 0.471
2 185 .038 0 0.205
4 09 O 0 0

JOTICPRR] Ranking documents by Eq. 23.9.

A slightly more complex variant in the tf-idf family is the BM25 weighting
scheme (sometimes called Okapi BM25 after the Okapi IR system in which it was
introduced (Robertson et al., 1995)). BM25 adds two parameters: k, a knob that
adjust the balance between term frequency and IDF, and b, which controls the im-
portance of document length normalization. The BM25 score of a document d given
a query q is:

IDF weighted tf
—
1
> log (N) f’?"d (23.10)
= \df k(l—b+b<%))+tft,d

where |dqyg| is the length of the average document. When & is 0, BM25 reverts to
no use of term frequency, just a binary selection of terms in the query (plus idf).
A large k results in raw term frequency (plus idf). b ranges from 1 (scaling by
document length) to 0 (no length scaling). Manning et al. (2008) suggest reasonable
values are k = [1.2,2] and b = 0.75. Kamphuis et al. (2020) is a useful summary of
the many minor variants of BM25.

Stop words In the past it was common to remove high-frequency words from both
the query and document before representing them. The list of such high-frequency
words to be removed is called a stop list. The intuition is that high-frequency terms
(often function words like the, a, to) carry little semantic weight and may not help
with retrieval, and can also help shrink the inverted index files we describe below.
The downside of using a stop list is that it makes it difficult to search for phrases
that contain words in the stop list. For example, common stop lists would reduce the
phrase to be or not to be to the phrase not. In modern IR systems, the use of stop lists
is much less common, partly due to improved efficiency and partly because much
of their function is already handled by IDF weighting, which downweights function
words that occur in every document. Nonetheless, stop word removal is occasionally
useful in various NLP tasks so is worth keeping in mind.

6 CHAPTER 23 ¢ QUESTION ANSWERING

inverted index

postings

23.1.3 Inverted Index

In order to compute scores, we need to efficiently find documents that contain words
in the query. (As we saw in Fig. 23.3, any document that contains none of the query
terms will have a score of 0 and can be ignored.) The basic search problem in IR is
thus to find all documents d € C that contain a term g € Q.

The data structure for this task is the inverted index, which we use for mak-
ing this search efficient, and also conveniently storing useful information like the
document frequency and the count of each term in each document.

An inverted index, given a query term, gives a list of documents that contain the
term. It consists of two parts, a dictionary and the postings. The dictionary is a list
of terms (designed to be efficiently accessed), each pointing to a postings list for the
term. A postings list is the list of document IDs associated with each term, which
can also contain information like the term frequency or even the exact positions of
terms in the document. The dictionary can also start the document frequency for
each term For example, a simple inverted index for our 4 sample documents above,
with each word containing its document frequency in {}, and a pointer to a postings
list that contains document IDs and term counts in [], might look like the following:

how {1} — 3[1]
is {1} — 3[1]
love {2} — 1[1]—3][1]
nurse {2} — 1[1] —4[1]
sorry {1} — 2[1]
sweet {3} — 1[2]—2[1]—3[1]

Given a list of terms in query, we can very efficiently get lists of all candidate
documents, together with the information necessary to compute the tf-idf scores we
need.

There are alternatives to the inverted index. For the question-answering domain
of finding Wikipedia pages to match a user query, Chen et al. (2017) show that
indexing based on bigrams works better than unigrams, and use efficient hashing
algorithms rather than the inverted index to make the search efficient.

23.1.4 Evaluation of Information-Retrieval Systems

We measure the performance of ranked retrieval systems using the same precision
and recall metrics we have been using. We make the assumption that each docu-
ment returned by the IR system is either relevant to our purposes or not relevant.
Precision is the fraction of the returned documents that are relevant, and recall is the
fraction of all relevant documents that are returned. More formally, let’s assume a
system returns 7' ranked documents in response to an information request, a subset
R of these are relevant, a disjoint subset, N, are the remaining irrelevant documents,
and U documents in the collection as a whole are relevant to this request. Precision
and recall are then defined as:

Precision = ﬂ Recall = |ﬂ (23.11)

7] U

Unfortunately, these metrics don’t adequately measure the performance of a system
that ranks the documents it returns. If we are comparing the performance of two
ranked retrieval systems, we need a metric that prefers the one that ranks the relevant
documents higher. We need to adapt precision and recall to capture how well a
system does at putting relevant documents higher in the ranking.

23.1 + INFORMATION RETRIEVAL 7

Rank Judgment Precisiong;;; Recallg,,x

1 R 1.0 A1
2 N .50 A1
3 R .66 22
4 N .50 22
5 R .60 .33
6 R .66 44
7 N 57 44
8 R .63 .55
9 N .55 .55
10 N .50 .55
11 R .55 .66
12 N .50 .66
13 N 46 .66
14 N 43 .66
15 R 47 a7
16 N 44 a7
17 N 44 17
18 R 44 .88
19 N 42 .88
20 N 40 .88
21 N .38 .88
22 N .36 .88
23 N .35 .88
24 N .33 .88
25 R .36 1.0

I3TN PR Rank-specific precision and recall values calculated as we proceed down
through a set of ranked documents (assuming the collection has 9 relevant documents).

1.0

0.8

o
o

Precision

o
>

0.2r

0_ L L L L
80 0.2 0.4 0.6 0.8 1.0
Recall

I3tV PREY The precision recall curve for the data in table 23.4.

Let’s turn to an example. Assume the table in Fig. 23.4 gives rank-specific pre-
cision and recall values calculated as we proceed down through a set of ranked doc-
uments for a particular query; the precisions are the fraction of relevant documents
seen at a given rank, and recalls the fraction of relevant documents found at the same
rank. The recall measures in this example are based on this query having 9 relevant
documents in the collection as a whole.

Note that recall is non-decreasing; when a relevant document is encountered,

8 CHAPTER 23 °* QUESTION ANSWERING

recall increases, and when a non-relevant document is found it remains unchanged.
Precision, on the other hand, jumps up and down, increasing when relevant doc-
uments are found, and decreasing otherwise. The most common way to visualize
precision and recall is to plot precision against recall in a precision-recall curve,
like the one shown in Fig. 23.5 for the data in table 23.4.
Fig. 23.5 shows the values for a single query. But we’ll need to combine values
for all the queries, and in a way that lets us compare one system to another. One way
of doing this is to plot averaged precision values at 11 fixed levels of recall (0 to 100,
in steps of 10). Since we’re not likely to have datapoints at these exact levels, we

i“‘egl!’;;'iz}gg use interpolated precision values for the 11 recall values from the data points we do
have. We can accomplish this by choosing the maximum precision value achieved
at any level of recall at or above the one we’re calculating. In other words,

precision-recall
curve

IntPrecision(r) = gg}iPrecision(i) (23.12)
This interpolation scheme not only lets us average performance over a set of queries,
but also helps smooth over the irregular precision values in the original data. It is
designed to give systems the benefit of the doubt by assigning the maximum preci-
sion value achieved at higher levels of recall from the one being measured. Fig. 23.6
and Fig. 23.7 show the resulting interpolated data points from our example.

Interpolated Precision Recall
1.0 0.0
1.0 .10
.66 .20
.66 .30
.66 40
.63 .50
.55 .60
47 .70
44 .80
.36 .90
.36 1.0

I PTICPREY Interpolated data points from Fig. 23.4.

Given curves such as that in Fig. 23.7 we can compare two systems or approaches
by comparing their curves. Clearly, curves that are higher in precision across all
recall values are preferred. However, these curves can also provide insight into the
overall behavior of a system. Systems that are higher in precision toward the left
may favor precision over recall, while systems that are more geared towards recall
will be higher at higher levels of recall (to the right).

e ecision A second way to evaluate ranked retrieval is mean average precision (MAP),
which provides a single metric that can be used to compare competing systems or
approaches. In this approach, we again descend through the ranked list of items,
but now we note the precision only at those points where a relevant item has been
encountered (for example at ranks 1, 3, 5, 6 but not 2 or 4 in Fig. 23.4). For a single
query, we average these individual precision measurements over the return set (up
to some fixed cutoff). More formally, if we assume that R, is the set of relevant
documents at or above r, then the average precision (AP) for a single query is

1
AP = — Precision, (d (23.13)
P @)

deR,

23.1 <+ INFORMATION RETRIEVAL 9

Interpolated Precision Recall Curve
1
0.9
0.8
0.7
0.6
c
2
§ 0.5
a
0.4
0.3
0.2
0.1
0 T T T T T T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall
ISR N] An 11 point interpolated precision-recall curve. Precision at each of the 11

standard recall levels is interpolated for each query from the maximum at any higher level of
recall. The original measured precision recall points are also shown.

where Precision,(d) is the precision measured at the rank at which document d was
found. For an ensemble of queries Q, we then average over these averages, to get
our final MAP measure:

MAP — - > AP(q) (23.14)
1%

The MAP for the single query (hence = AP) in Fig. 23.4 is 0.6.

23.1.5 IR with Dense Vectors

The classic tf-idf or BM25 algorithms for IR have long been known to have a con-
ceptual flaw: they work only if there is exact overlap of words between the query
and document. In other words, the user posing a query (or asking a question) needs
to guess exactly what words the writer of the answer might have used to discuss the
issue. As Lin et al. (2020) put it, the user might decide to search for a tragic love
story but Shakespeare writes instead about star-crossed lovers. This is called the
vocabulary mismatch problem (Furnas et al., 1987).

The solution to this problem is to use an approach that can handle synonymy:
instead of (sparse) word-count vectors, using (dense) embeddings. This idea was
proposed quite early with the LSI approach (Deerwester et al., 1990), but modern
methods all make use of encoders like BERT. In what is sometimes called a bi-
encoder we use two separate encoder models, one to encode the query and one to
encode the document, and use the dot product between these two vectors as the score
(Fig. 23.8. For example, if we used BERT, we would have two encoders BERT and
BERT) and we could represent the query and document as the [CLS] token of the
respective encoders (Karpukhin et al., 2020):

hy = BERT(q) [CLS]
hg = BERTp(d) [CLS]
score(d,q) = hg-hq (23.15)

10 CHAPTER 23 ¢ QUESTION ANSWERING

Faiss

hq hyg
(ENCODER ¢,) (ENCODER 56 men)
i i A B
ql qn di dn

J3TIICPRRY BERT bi-encoder for computing relevance of a document to a query.

More complex versions can use other ways to represent the encoded text, such as
using average pooling over the BERT outputs of all tokens instead of using the CLS
token, or can add extra weight matrices after the encoding or dot product steps (Liu
et al. 2016, Lee et al. 2019).

Using dense vectors for IR or the retriever component of question answerers is
still an open area of research. Among the many areas of active research are how to
do the fine-tuning of the encoder modules on the IR task (generally by fine-tuning on
query-document combinations, with various clever ways to get negative examples),
and how to deal with the fact that documents are often longer than encoders like
BERT can process (generally by breaking up documents into passages).

Efficiency is also an issue. At the core of every IR engine is the need to rank ev-
ery possible document for its similarity to the query. For sparse word-count vectors,
the inverted index allows this very efficiently. For dense vector algorithms like those
based on BERT or other Transformer encoders, finding the set of dense document
vectors that have the highest dot product with a dense query vector is an example of
nearest neighbor search. Modern systems therefore make use of approximate nearest
neighbor vector search algorithms like Faiss (Johnson et al., 2017).

23.2 IR-based Factoid Question Answering

IR-based QA

retrieve and
read

reading
comprehension

The goal of IR-based QA (sometimes called open domain QA) is to answer a user’s
question by finding short text segments from the web or some other large collection
of documents. Figure 23.9 shows some sample factoid questions and their answers.

Question Answer

Where is the Louvre Museum located? in Paris, France
What are the names of Odin’s ravens? Huginn and Muninn
What kind of nuts are used in marzipan? almonds

What instrument did Max Roach play? drums

What’s the official language of Algeria? Arabic

IPCPRRY Some factoid questions and their answers.

The dominant paradigm for IR-based QA is the retrieve and read model shown
in Fig. 23.10. In the first stage of this 2-stage model we retrieve relevant passages
from a text collection, usually using a search engines of the type we saw in the
previous section. In the second stage, a neural reading comprehension algorithm
passes over each passage and finds spans that are likely to answer the question.

Some question answering systems focus only on the second task, the reading
comprehension task. Reading comprehension systems are given a factoid question
q and a passage p that could contain the answer, and return an answer s (or perhaps
declare that there is no answer in the passage, or in some setups make a choice from

23.2 ¢ IR-BASED FACTOID QUESTION ANSWERING 11
query
Retriever > Reader
Q: When was : docs S G — A 1791
the premiere of —— - »| (BERT
The Magic Flute? B (ST ot a2 [SE1 i c2
b . 2 \ /
~ Relevant
4 Docs
Indexed Docs

TR BI] IR-based factoid question answering has two stages: retrieval, which returns relevant doc-
uments from the collection, and reading, in which a neural reading comprehension system extracts answer

spans.

SQuAD

HotpotQA

a set of possible answers). Of course this setup does not match the information need
of users who have a question they need answered (after all, if a user knew which
passage contained the answer, they could just read it themselves). Instead, this task
was originally modeled on children’s reading comprehension tests—pedagogical in-
struments in which a child is given a passage to read and must answer questions
about it—as a way to evaluate natural language processing performance (Hirschman
et al., 1999). Reading comprehension systems are still used that way, but have also
evolved to function as the second stage of the modern retrieve and read model.

Other question answering systems address the entire retrieve and read task; they
are given a factoid question and a large document collection (such as Wikipedia or
a crawl of the web) and return an answer, usually a span of text extracted from a
document. This task is often called open domain QA.

In the next few sections we’ll lay out the various pieces of IR-based QA, starting
with some commonly used datasets.

23.2.1 IR-based QA: Datasets

Datasets for IR-based QA are most commonly created by first developing reading
comprehension datasets containing tuples of (passage, question, answer). Reading
comprehension systems can use the datasets to train a reader that is given a passage
and a question, and predicts a span in the passage as the answer. Including the
passage from which the answer is to be extracted eliminates the need for reading
comprehension systems to deal with IR.

For example the Stanford Question Answering Dataset (SQuAD) consists of
passages from Wikipedia and associated questions whose answers are spans from
the passage (Rajpurkar et al. 2016). Squad 2.0 in addition adds some questions
that are designed to be unanswerable (Rajpurkar et al. 2018), with a total of just
over 150,000 questions. Fig. 23.11 shows a (shortened) excerpt from a SQUAD 2.0
passage together with three questions and their gold answer spans.

SQuAD was built by having humans read a given Wikipedia passage, write ques-
tions about the passage, and choose a specific answer span.

Other datasets are created by similar techniques but try to make the questions
more complex. The HotpotQA dataset (Yang et al., 2018) was created by showing
crowd workers multiple context documents and asked to come up with questions
that require reasoning about all of the documents.

The fact that questions in datasets like SQuAD or HotpotQA are created by an-
notators who have first read the passage may make their questions easier to answer,
since the annotator may (subconsciously) make use of words from the answer text.

12 CHAPTER 23 ¢ QUESTION ANSWERING

Beyoncé Giselle Knowles-Carter (born September 4, 1981) is an American singer, songwriter,
record producer and actress. Born and raised in Houston, Texas, she performed in various
singing and dancing competitions as a child, and rose to fame in the late 1990s as lead singer
of R&B girl-group Destiny’s Child. Managed by her father, Mathew Knowles, the group became
one of the world’s best-selling girl groups of all time. Their hiatus saw the release of Beyoncé’s
debut album, Dangerously in Love (2003), which established her as a solo artist worldwide, earned
five Grammy Awards and featured the Billboard Hot 100 number-one singles “Crazy in Love” and
“Baby Boy”.

Q: “In what city and state did Beyoncé grow up?”

A: “Houston, Texas”

: “What areas did Beyoncé compete in when she was growing up?”’

: “singing and dancing”

: “When did Beyoncé release Dangerously in Love?”

: “2003”

A (Wikipedia) passage from the SQUAD 2.0 dataset (Rajpurkar et al., 2018) with 3 sample
questions and the labeled answer spans.

p el d.e

A solution to this possible bias is to make datasets from questions that were not
written with a passage in mind. The TriviaQA dataset (Joshi et al., 2017) contains
94K questions written by trivia enthusiasts, together with supporting documents
from Wikipedia and the web resulting in 650K question-answer-evidence triples.

The Natural Questions dataset (Kwiatkowski et al., 2019) incorporates real
anonymized queries to the Google search engine. Annotators are presented a query,
along with a Wikipedia page from the top 5 search results, and annotate a paragraph-
length long answer and a short span answer, or mark null if the text doesn’t contain
the paragraph. For example the question “When are hops added to the brewing
process?” has the short answer the boiling process and a long answer which the
surrounding entire paragraph from the Wikipedia page on Brewing. In using this
dataset, a reading comprehension model is given a question and a Wikipedia page
and must return a long answer, short answer, or ‘'no answer’ response.

TyDi QA The above datasets are all in English. The TyDi QA dataset contains 204K
question-answer pairs from 11 typologically diverse languages, including Arabic,
Bengali, Kiswahili, Russian, and Thai (Clark et al., 2020). In the TYDI QA task,
a system is given a question and the passages from a Wikipedia article and must
(a) select the passage containing the answer (or NULL if no passage contains the
answer), and (b) mark the minimal answer span (or NULL). Many questions have
no answer. The various languages in the dataset bring up challenges for QA systems
like morphological variation between the question and the answer, or complex issue
with word segmentation or multiple alphabets.

In the reading comprehension task, a system is given a question and the passage
in which the answer should be found. In the full two-stage QA task, however, sys-
tems are not given a passage, but are required to do their own retrieval from some
document collection. A common way to create open-domain QA datasets is to mod-
ify a reading comprehension dataset. For research purposes this is most commonly
done by using QA datasets that annotate Wikipedia (like SQuAD or HotpotQA). For
training, the entire (question, passage, answer) triple is used to train the reader. But
at inference time, the passages are removed and system is given only the question,
together with access to the entire Wikipedia corpus. The system must then do IR to
find a set of pages and then read them.

Natural
Questions

23.2 ¢ IR-BASED FACTOID QUESTION ANSWERING 13

23.2.2 1IR-based QA: Reader (Answer Span Extraction)

The first stage of IR-based QA is a retriever, for example of the type we saw in
Section 23.1. The second stage of IR-based question answering is the reader. The
reader’s job is to take a passage as input and produce the answer. In the extractive
extractive QA QA we discuss here, the answer is a span of text in the passage.’ For example given
a question like “How tall is Mt. Everest?” and a passage that contains the clause
Reaching 29,029 feet at its summit, a reader will output 29,029 feet.
The answer extraction task is commonly modeled by span labeling: identifying
span in the passage a span (a continuous string of text) that constitutes an answer. Neural
algorithms for reading comprehension are given a question g of n tokens qy,...,q,
and a passage p of m tokens py, ..., pp,. Their goal is thus to compute the probability
P(a|q, p) that each possible span a is the answer.
If each span a starts at position a; and ends at position a,, we make the simplify-
ing assumption that this probability can be estimated as P(a|q, p) = Pstart(as5|q, p) Pend(ae|gq, p)-
Thus for for each token p; in the passage we’ll compute two probabilities: pgiart (i)
that p; is the start of the answer span, and pg, (i) that p; is the end of the answer
span.
A standard baseline algorithm for reading comprehension is to pass the ques-
tion and passage to any encoder like BERT (Fig. 23.12), as strings separated with a
[SEP] token, resulting in an encoding token embedding for every passage token p;.

P start; P endi

i)
t t t t

Encoder (BERT))

f 1 1 f

[CLS] d; Tt dy [SEP]& me
N Y
Question Passage

I3 VPRBP] An encoder model (using BERT) for span-based question answering from
reading-comprehension-based question answering tasks.

For span-based question answering, we represent the question as the first se-
quence and the passage as the second sequence. We’ll also need to add a linear layer
that will be trained in the fine-tuning phase to predict the start and end position of the
span. We’ll add two new special vectors: a span-start embedding S and a span-end
embedding E, which will be learned in fine-tuning. To get a span-start probability
for each output token p!, we compute the dot product between S and p} and then use
a softmax to normalize over all tokens p/ in the passage:

exp(S- pj)

Py, = ——— 23.16
start; ZjeXp(S-p}) ()

5 Here we skip the more difficult task of abstractive QA, in which the system can write an answer
which is not drawn exactly from the passage.

14 CHAPTER 23 ¢ QUESTION ANSWERING

We do the analogous thing to compute a span-end probability:

exp(E - p})
> jexp(E-ph)

The score of a candidate span from position i to jis S-pi+E - p’j, and the highest
scoring span in which j > i is chosen is the model prediction.

The training loss for fine-tuning is the negative sum of the log-likelihoods of the
correct start and end positions for each instance:

Pong, = (23.17)

L = —log Pyar; — l0g Peng; (23.18)

Many datasets (like SQuAD 2.0 and Natural Questions) also contain (question,
passage) pairs in which the answer is not contained in the passage. We thus also
need a way to estimate the probability that the answer to a question is not in the
document. This is standardly done by treating questions with no answer as having
the [CLS] token as the answer, and hence the answer span start and end index will
point at [CLS] (Devlin et al., 2019).

For many datasets the annotated documents/passages are longer than the maxi-
mum 512 input tokens BERT allows, such as Natural Questions whose gold passages
are full Wikipedia pages. In such cases, following Alberti et al. (2019), we can cre-
ate multiple pseudo-passage observations from the labeled Wikipedia page. Each
observation is formed by concatenating [CLS], the question, [SEP], and tokens from
the document. We walk through the document, sliding a window of size 512 (or
rather, 512 minus the question length » minus special tokens) and packing the win-
dow of tokens into each next pseudo-passage. The answer span for the observation
is either labeled [CLS] (= no answer in this particular window) or the gold-labeled
span is marked. The same process can be used for inference, breaking up each re-
trieved document into separate observation passages and labeling each observation.
The answer can be chosen as the span with the highest probability (or nil if no span
is more probable than [CLS]).

23.3 Entity Linking

entity linking

wikification

We’ve now seen the first major paradigm for question answering, IR-based QA.
Before we turn to the second major paradigm for question answering, knowledge-
based question answering, we introduce the important core technology of entity
linking, since it is required for any knowledge-based QA algorithm.

Entity linking is the task of associating a mention in text with the representation
of some real-world entity in an ontology (Ji and Grishman, 2011).

The most common ontology for factoid question-answering is Wikipedia, since
Wikipedia is often the source of the text that answers the question. In this usage,
each unique Wikipedia page acts as the unique id for a particular entity. This task of
deciding which Wikipedia page corresponding to an individual is being referred to
by a text mention has its own name: wikification (Mihalcea and Csomai, 2007).

Since the earliest systems (Mihalcea and Csomai 2007, Cucerzan 2007, Milne
and Witten 2008), entity linking is done in (roughly) two stages: mention detec-
tion and mention disambiguation. We’ll give two algorithms, one simple classic
baseline that uses anchor dictionaries and information from the Wikipedia graph
structure (Ferragina and Scaiella, 2011) and one modern neural algorithm (Li et al.,

anchor texts

23.3 « ENTITY LINKING 15

2020). We’ll focus here mainly on the application of entity linking to questions
rather than other genres.

23.3.1 Linking based on Anchor Dictionaries and Web Graph

As a simple baseline we introduce the TAGME linker (Ferragina and Scaiella, 2011)
for Wikipedia, which itself draws on earlier algorithms (Mihalcea and Csomai 2007,
Cucerzan 2007, Milne and Witten 2008). Wikification algorithms define the set of
entities as the set of Wikipedia pages, so we’ll refer to each Wikipedia page as a
unique entity e. TAGME first creates a catalog of all entities (i.e. all Wikipedia
pages, removing some disambiguation and other meta-pages) and indexes them in a
standard IR engine like Lucene. For each page e, the algorithm computes an in-link
count in(e): the total number of in-links from other Wikipedia pages that point to e.
These counts can be derived from Wikipedia dumps.

Finally, the algorithm requires an anchor dictionary. An anchor dictionary
lists for each Wikipedia page, its anchor texts: the hyperlinked spans of text on
other pages that point to it. For example, the web page for Stanford University,
http://www.stanford.edu, might be pointed to from another page using anchor
texts like Stanford or Stanford University:

Stanford University

We compute a Wikipedia anchor dictionary by including, for each Wikipedia
page e, e’s title as well as all the anchor texts from all Wikipedia pages that point to e.
For each anchor string a we’ll also compute its total frequency freq(a) in Wikipedia
(including non-anchor uses), the number of times a occurs as a link (which we’ll call
link(a)), and its link probability linkprob(a) = link(a) /freq(a). Some cleanup of the
final anchor dictionary is required, for example removing anchor strings composed
only of numbers or single characters, that are very rare, or that are very unlikely to
be useful entities because they have a very low linkprob.

Mention Detection Given a question (or other text we are trying to link), TAGME
detects mentions by querying the anchor dictionary for each token sequence up to
6 words. This large set of sequences is pruned with some simple heuristics (for
example pruning substrings if they have small linkprobs). The question:

When was Ada Lovelace born?

might give rise to the anchor Ada Lovelace and possibly Ada, but substrings spans
like Lovelace might be pruned as having too low a linkprob, and but spans like born
have such a low linkprob that they would not be in the anchor dictionary at all.

Mention Disambiguation If a mention span is unambiguous (points to only one
entity/Wikipedia page), we are done with entity linking! However, many spans are
ambiguous, matching anchors for multiple Wikipedia entities/pages. The TAGME
algorithm uses two factors for disambiguating ambiguous spans, which have been
referred to as prior probability and relatedness/coherence. The first factor is p(e|a),
the probability with which the span refers to a particular entity. For each page e €
&(a), the probability p(e|a) that anchor a points to e, is the ratio of the number of
links into e with anchor text a to the total number of occurrences of a as an anchor:

__count(a — e)

prior(a — e) = p(e|a) = Tink(a) (23.19)

Let’s see how that factor works in linking entities in the following question:

http://www.stanford.edu

16 CHAPTER 23 ¢ QUESTION ANSWERING

What Chinese Dynasty came before the Yuan?

The most common association for the span Yuan in the anchor dictionary is the name
of the Chinese currency, i.e., the probability p(Yuan_currency| yuan) is very high.
Rarer Wikipedia associations for Yuan include the common Chinese last name, a
language spoken in Thailand, and the correct entity in this case, the name of the
Chinese dynasty. So if we chose based only on p(e|a) , we would make the wrong
disambiguation and miss the correct link, Yuan_dynasty.

To help in just this sort of case, TAGME uses a second factor, the relatedness of
this entity to other entities in the input question. In our example, the fact that the
question also contains the span Chinese Dynasty, which has a high probability link to
the page Dynasties_in _Chinese_history, ought to help match Yuan_dynasty.

Let’s see how this works. Given a question ¢, for each candidate anchors span
a detected in g, we assign a relatedness score to each possible entity e € £(a) of a.
The relatedness score of the link a — e is the weighted average relatedness between
e and all other entities in g. Two entities are considered related to the extent their
Wikipedia pages share many in-links. More formally, the relatedness between two
entities A and B is computed as

log(max([in(4)|, |in(B)])) —log(|in(4) Nin(B)[)
log(|W|) —log(min(|in(A)], [in(B)]))

rel(A,B) = (23.20)

where in(x) is the set of Wikipedia pages pointing to x and W is the set of all Wiki-
pedia pages in the collection.

The vote given by anchor b to the candidate annotation a — X is the average,
over all the possible entities of b, of their relatedness to X, weighted by their prior
probability:

1

vote(h,X) = |g(b)Ye%‘b)rel(x,Y)p(mb) (23.21)

The total relatedness score for a — X is the sum of the votes of all the other anchors
detected in ¢:

relatedness(a — X) = Z vote(h,X) (23.22)
beXy\a

To score a — X, we combine relatedness and prior by choosing the entity X
that has the highest relatedness(a — X), finding other entities within a small € of
this value, and from this set, choosing the entity with the highest prior P(X|a). The
result of this step is a single entity assigned to each span in g.

The TAGME algorithm has one further step of pruning spurious anchor/entity
pairs, assigning a score averaging link probability with the coherence.

1
coherence(a — X) = S Z rel(B,X)
1= BeS\X
coherence(a — X) + linkprob(a)
2

score(a — X) = (23.23)

Finally, pairs are pruned if score(a — X) < A, where the threshold A is set on a
held-out set.

23.3 ¢ ENTITY LINKING 17

23.3.2 Neural Graph-based linking

More recent entity linking models are based on biencoders, encoding a candidate
mention span, encoding an entity, and computing the dot product between the en-
codings. This allows embeddings for all the entities in the knowledge base to be
precomputed and cached (Wu et al., 2019). Let’s sketch the ELQ linking algorithm
of Li et al. (2020), which is given a question g and a set of candidate entities from
Wikipedia with associated Wikipedia text, and outputs tuples (e, my, m,) of entity id,
mention start, and mention end. As Fig. 23.13 shows, it does this by encoding each
Wikipedia entity using text from Wikipedia, encoding each mention span using text
from the question, and computing their similarity, as we describe below.

Q : When did shaq come to the nba?

P(“Shagquille 0'Neal”|Q, 'shaq’ is a mention)
P('shaq’ is a mention|Q)

Mention classifier + scorer

1 @ Inner product

2 | ‘_575%
= o A= S 0 02 o8
2 og T 0 < © 5 o 258 2
gE8 85288~ gEgz=28EEZExR
= S =20 85“53::.

@« & ©

IPTICPRBR] A sketch of the inference process in the ELQ algorithm for entity linking in
questions (Li et al., 2020). Each candidate question mention span and candidate entity are
separately encoded, and then scored by the entity/span dot product.

Entity Mention Detection To get an s-dimensional embedding for each question
token, the algorithm runs the question through BERT in the normal way:

a1+ 4] = BERT([CLS]g1 - - - ¢ [SEP]) (23.24)
It then computes the likelihood of each span [i, j] in ¢ being an entity mention, in

a way similar to the span-based algorithm we saw for the reader above. First we
compute the score for i/j being the start/end of a mention:

Sstart(i) = Wotart " (i, Send(j) = Wend " 4, (23.25)
where Wy and Wepg are vectors learned during training. Next, another trainable
embedding, Wmention 15 Used to compute a score for each token being part of a men-

tion:

Smention (t) = Wmention " qr (23.26)

Mention probabilities are then computed by combining these three scores:

J
p([la.]D =0 (sstart(i) +Send(j) + Zsmention (0) (23.27)

18 CHAPTER 23 ¢ QUESTION ANSWERING

Entity Linking To link mentions to entities, we next compute embeddings for
each entity in the set £ = ey, ,¢;,- -+ , e, of all Wikipedia entities. For each en-
tity e; we’ll get text from the entity’s Wikipedia page, the title #(e;) and the first
128 tokens of the Wikipedia page which we’ll call the description d(e;). This is
again run through BERT, taking the output of the CLS token BERT|cys) as the entity
representation:

X, = BERT[CLS] ([CLS]Z(E,’) [ENT]d(el-) [SEP]) (23.28)

Mention spans can be linked to entities by computing, for each entity e and span
[i, /], the dot product similarity between the span encoding (the average of the token
embeddings) and the entity encoding.

1 J
Yij= G=it1) tz_;qt
s(e,[i, j]) =Xy, (23.29)
Finally, we take a softmax to get a distribution over entities for each span:

exp(s(e, [i, j])
eet exp(s(e’, [l7j]))

elli,j]) = 23.30
plelli) = 55 (23.30)
Training The ELQ mention detection and entity linking algorithm is fully super-
vised. This means, unlike the anchor dictionary algorithms from Section 23.3.1,
it requires datasets with entity boundaries marked and linked. Two such labeled
datasets are WebQuestionsSP (Yih et al., 2016), an extension of the WebQuestions
(Berant et al., 2013) dataset derived from Google search questions, and GraphQues-
tions (Su et al., 2016). Both have had entity spans in the questions marked and
linked (Sorokin and Gurevych 2018, Li et al. 2020) resulting in entity-labeled ver-
sions WebQSPgL, and GraphQgg, (Li et al., 2020).

Given a training set, the ELQ mention detection and entity linking phases are
trained jointly, optimizing the sum of their losses. The mention detection loss is a
binary cross-entropy loss

Lmp = —% Z (y[i,j] log p([i, j]) + (1 =y} j) log(1 = p(li.)) (23.31)

1<i<j<min(i+L—1,n)
with yj; ; = Lif [i, j] is a gold mention span, else 0. The entity linking loss is:
Lep = —logp(eglli, j]) (23.32)

where ¢, is the gold entity for mention [i, j].
See the end of the chapter for more discussion of other applications of entity
linking outside of question answering.

23.4 Knowledge-based Question Answering

While an enormous amount of information is encoded in the vast amount of text
on the web, information obviously also exists in more structured forms. We use
the term knowledge-based question answering for the idea of answering a natural

23.4 ¢+ KNOWLEDGE-BASED QUESTION ANSWERING 19

language question by mapping it to a query over a structured database. Like the text-
based paradigm for question answering, this approach dates back to the earliest days
of natural language processing, with systems like BASEBALL (Green et al., 1961)
that answered questions from a structured database of baseball games and stats.
Two common paradigms are used for knowledge-based QA. The first, graph-
based QA, models the knowledge base as a graph, often with entities as nodes and
relations or propositions as edges between nodes. The second, QA by semantic
parsing, using the semantic parsing methods we saw in Chapter 16. Both of these
methods require some sort of entity linking that we described in the prior section.

23.4.1 Knowledge-Based QA from RDF triple stores

Let’s introduce the components of a simple knowledge-based QA system after entity
linking has been performed. We’ll focus on the very simplest case of graph-based
QA, in which the dataset is a set of factoids in the form of RDF triples, and the
task is to answer questions about one of the missing arguments. Recall from Chap-
ter 17 that an RDF triple is a 3-tuple, a predicate with two arguments, expressing
some simple relation or proposition. Popular such ontologies are often derived from
Wikipedia; DBpedia (Bizer et al., 2009) has over 2 billion RDF triples, or Free-
base (Bollacker et al., 2008), now part of Wikidata (Vrandeci¢ and Krotzsch, 2014).
Consider an RDF triple like the following:

subject predicate object
Ada Lovelace birth-year 1815

This triple can be used to answer text questions like “When was Ada Lovelace
born?” or “Who was born in 18157”.

A number of such question datasets exist. SimpleQuestions (Bordes et al., 2015)
contains 100K questions written by annotators based on triples from Freebase. For
example, the question "What American cartoonist is the creator of Andy Lippin-
cott?”. was written based on the triple (andy lippincott, character created
by, garry trudeau). FreebaseQA (Jiang et al., 2019), aligns the trivia questions
from TriviaQA (Joshi et al., 2017) and other sources with triples in Freebase, align-
ing for example the trivia question “Which 18th century author wrote Clarissa (or
The Character History of a Young Lady), said to be the longest novel in the English
language?” with the triple (Clarissa, book.written-work.author, Samuel
Richardson). Another such family of datasets starts from WEBQUESTIONS (Be-
rant et al., 2013), which contains 5,810 questions asked by web users, each be-
ginning with a wh-word, containing exactly one entity, and paired with handwritten
answers drawn from the Freebase page of the question’s entity. WEBQUESTIONSSP
(Yih et al., 2016) augments WEBQUESTIONS with human-created semantic parses
(SPARQL queries) for those questions answerable using Freebase. COMPLEXWEB-
QUESTIONS augments the dataset with compositional and other kinds of complex
questions, resulting in 34,689 questions, along with answers, web snippets, and
SPARQL queries (Talmor and Berant, 2018).

Let’s assume we’ve already done the stage of entity linking introduced in the
prior section. Thus we’ve mapped already from a textual mention like Ada Lovelace
to the canonical entity ID in the knowledge base. For simple triple relation question
answering, the next step is to determine which relation is being asked about, map-
ping from a string like “When was ... born” to canonical relations in the knowledge
base like birth-year. We might sketch the combined task as:

“When was Ada Lovelace born?” — birth-year (Ada Lovelace, ?7x)

20 CHAPTER 23 ¢ QUESTION ANSWERING

“What is the capital of England?” — capital-city(?x, England)

The next step is relation detection and linking. For simple questions, where we
assume the question has only a single relation, relation detection and linking can
be done in a way resembling the neural entity linking models: computing similarity
(generally by dot product) between the encoding of the question text and an encoding
for each possible relation. For example, in the algorithm of (Lukovnikov et al.,
2019), the CLS output of a BERT model is used to represent the question span for
the purposes of relation detection, and a separate vector is trained for each relation
ri. The probability of a particular relation r; is then computed by softmax over the
dot products:

m, = BERTCLs([CLS}ql o qn[SEP])
s(m,r;) = my - Wr;

exp(s(my,r;))

p(rilgr,- qn) S~ Neexp(s(me.70)) (23.33)
Ranking of answers Most algorithms have a final stage which takes the top j
entities and the top k relations returned by the entity and relation inference steps,
searches the knowledge base for triples containing those entities and relations, and
then ranks those triples. This ranking can be heuristic, for example scoring each
entity/relation pairs based on the string similarity between the mention span and the
entities text aliases, or favoring entities that have a high in-degree (are linked to
by many relations). Or the ranking can be done by training a classifier to take the
concatenated entity/relation encodings and predict a probability.

23.4.2 QA by Semantic Parsing

The second kind of knowledge-based QA uses a semantic parser to map the ques-
tion to a structured program to produce an answer. These logical forms can take the
form of some version of predicate calculus, a query language like SQL or SPARQL,
or some other executable program like the examples in Fig. 23.14.

The logical form of the question is thus either in the form of a query or can easily
be converted into one (predicate calculus can be converted to SQL, for example).
The database can be a full relational database, or some other structured knowledge
store.

As we saw in Chapter 16, semantic parsing algorithms can be supervised fully
with questions paired with a hand-built logical form, or can be weakly supervised
by questions paired with an answer (the denotation), in which the logical form is
modeled only as a latent variable.

For the fully supervised case, we can get a set of questions paired with their
correct logical form from datasets like the GEOQUERY dataset of questions about
US geography (Zelle and Mooney, 1996), the DROP dataset of complex questions
(on history and football games) that require reasoning (Dua et al. 2019), or the ATIS
dataset of flight queries, all of which have versions with SQL or other logical forms
(Iyer et al. 2017, Wolfson et al. 2020, Oren et al. 2020).

The task is then to take those pairs of training tuples and produce a system that
maps from new questions to their logical forms. A common baseline algorithm is a
simple sequence-to-sequence model, for example using BERT to represent question
tokens, passing them to an encoder-decoder (Chapter 10), as sketched in Fig. 23.15.
Any other of the semantic parsing algorithms described in Chapter 16 would also be
appropriate.

23.5 ¢ USING LANGUAGE MODELS TO DO QA 21

Question Logical form
What states border Texas? Ax.state(x) A borders(x, texas)
What is the largest state? argmax(Ax.state(x), Ax.size(x))

SELECT DISTINCT f1.flight_id
FROM flight f1, airport_service al,
city cl, airport_service a2, city c2
WHERE f1.from_airport=al.airport_code
I’d like to book a flight from San Diego to AND al.city_code=cl.city_code
Toronto AND cl.city_name= "san diego’
AND f1.to_airport=a2.airport_code
AND a2.city_code=c2.city_code
AND c2.city_name= ’toronto’
How many people survived the sinking of (count (!fb:event.disaster.survivors
the Titanic? fb:en.sinking of _the_titanic))
How many yards longer was Johnson’s ARITHMETIC diff(SELECT num(ARGMAX(
longest touchdown compared to his short- SELECT)) SELECT num(ARGMIN(FILTER(
est touchdown of the first quarter? SELECT))))
Sample logical forms produced by a semantic parser for question answering, including two
questions from the GeoQuery database of questions on U.S. Geography (Zelle and Mooney, 1996) with predi-
cate calculus representations, one ATIS question with SQL (Iyer et al., 2017), a program over Freebase relations,
and a program in QDMR, the Question Decomposition Meaning Representation (Wolfson et al., 2020).

lambda x state (x) and borders (x , Texas)

ftrt t ottt bt

C encoder-decoder

t t t 1t ¢t
BERT
?

F
[CLS] what states border Texas ? [SEP]

ISR BE] An encoder-decoder semantic parser for translating a question to logical
form, with a BERT pre-encoder followed by an encoder-decoder (biLSTM or Transformer).

23.5 Using Language Models to do QA

An alternative approach to doing QA is to query a pretrained language model, forc-
ing a model to answer a question solely from information stored in its parameters.
For example Roberts et al. (2020) use the T5 language model, which is an encoder-
decoder architecture pretrained to fill in masked spans of task. Fig. 23.16 shows the
architecture; the deleted spans are marked by <M>, and the system is trained to have
the decoder generating the missing spans (separated by <M>).

Roberts et al. (2020) then finetune the TS system to the question answering task,
by giving it a question, and training it to output the answer text in the decoder. Using
the largest 11-billion-parameter TS model does competitively, although not quite as
well as systems designed specifically for question answering.

Language modeling is not yet a complete solution for question answering; for
example in addition to not working quite as well, they suffer from poor interpretabil-
ity (unlike standard QA systems, for example, they currently can’t give users more
context by telling them what passage the answer came from). Nonetheless, the study
of extracting answer from language models is an intriguing area for future question

22 CHAPTER 23

QUESTION ANSWERING

[President Franklin <M> born <M> January 1882.

Lily couldn't <M>. The waitress
had brought the largest <M> of
chocolate cake <M> seen.

D. Roosevelt was <M> in]
believe her eyes <M>
piece <M> she had ever
peaches are <M> at our]

President Franklin D.
Roosevelt was born
in January 1882.

Our <M> hand-picked and sun-dried
<M> orchard in Georgia.

Pre-training

Fine-tuning

When was Franklin D.
Roosevelt born?

The T5 system is an encoder-decoder architecture. In pretraining, it learns to
fill in masked spans of task (marked by <M>) by generating the missing spans (separated by
<M>) in the decoder. It is then fine-tuned on QA datasets, given the question, without adding
any additional context or passages. Figure from Roberts et al. (2020).

answer research.

23.6 Classic QA Models

While neural architectures are the state of the art for question answering, pre-neural
architectures using hybrids of rules and feature-based classifiers can sometimes
achieve higher performance. Here we summarize one influential classic system,
the Watson DeepQA system from IBM that won the Jeopardy! challenge in 2011
(Fig. 23.17). Let’s consider how it handles these Jeopardy! examples, each with a
category followed by a question:

=

(1) Question
Processing

Focus Detection

Lexical
Answer Type
Detection

Named En
Tagging

Relation Extraction

(2) Candidate Answer Generation (3) Candidate (4
. ot R Answer Confidence
rom Text Resources Scorin i
Candidate 9 Merging
Document - and
and P A i e Candidate R .
S — nswer ankin
Passsage [—%" Extraction Yo Answer g
Retrieval N [and -
Document titleg [N - X Merge
— Anchor text Evidence Candidate Equivalent
Candidate Retrieval L1 | Answer Answers
A and scoring +
"] Candidate Confi
; BAN |
5 - > Candidate L
Text | Time from Answer R LOgls“?
Answe g DBPedia egression
From Structured Data Y candidate Sources [oo -~ Answer
I Answer Candidate Rank
— | -7 Text | Type Answer anker
___________ Candidate Evidence [
Retrieval S i
5.4 Candidate o c:ndldate
o S Answer Space from gewey
Facebook =
DBPedi Confidence

Coreference

IUTCPRBY] The 4 broad stages of Watson QA: (1) Question Processing, (2) Candidate Answer Generation,
(3) Candidate Answer Scoring, and (4) Answer Merging and Confidence Scoring.

Poets and Poetry: He was a bank clerk in the Yukon before he published
“Songs of a Sourdough” in 1907.

focus

lexical answer
type

23.6 + CLASSIC QA MODELS 23

THEATRE: A new play based on this Sir Arthur Conan Doyle canine
classic opened on the London stage in 2007.

Question Processing In this stage the questions are parsed, named entities are ex-
tracted (Sir Arthur Conan Doyle identified as a PERSON, Yukon as a GEOPOLITICAL
ENTITY, “Songs of a Sourdough” as a COMPOSITION), coreference is run (he is
linked with clerk).

The question focus, shown in bold in both examples, is extracted. The focus is
the string of words in the question that corefers with the answer. It is likely to be
replaced by the answer in any answer string found and so can be used to align with a
supporting passage. In DeepQA The focus is extracted by handwritten rules—made
possible by the relatively stylized syntax of Jeopardy! questions—such as a rule
extracting any noun phrase with determiner “this” as in the Conan Doyle example,
and rules extracting pronouns like she, he, hers, him, as in the poet example.

The lexical answer type (shown in blue above) is a word or words which tell
us something about the semantic type of the answer. Because of the wide variety
of questions in Jeopardy!, DeepQA chooses a wide variety of words to be answer
types, rather than a small set of named entities. These lexical answer types are again
extracted by rules: the default rule is to choose the syntactic headword of the focus.
Other rules improve this default choice. For example additional lexical answer types
can be words in the question that are coreferent with or have a particular syntactic
relation with the focus, such as headwords of appositives or predicative nominatives
of the focus. In some cases even the Jeopardy! category can act as a lexical answer
type, if it refers to a type of entity that is compatible with the other lexical answer
types. Thus in the first case above, he, poet, and clerk are all lexical answer types. In
addition to using the rules directly as a classifier, they can instead be used as features
in a logistic regression classifier that can return a probability as well as a lexical
answer type. These answer types will be used in the later ‘candidate answer scoring’
phase as a source of evidence for each candidate. Relations like the following are
also extracted:

authorof(focus,“Songs of a sourdough™)
publish (el, he, “Songs of a sourdough™)
in (e2, el, 1907)
temporallink(publish(...), 1907)

Finally the question is classified by type (definition question, multiple-choice,
puzzle, fill-in-the-blank). This is generally done by writing pattern-matching regular
expressions over words or parse trees.

Candidate Answer Generation Next we combine the processed question with ex-
ternal documents and other knowledge sources to suggest many candidate answers
from both text documents and structured knowledge bases. We can query structured
resources like DBpedia or IMDB with the relation and the known entity, just as we
saw in Section 23.4. Thus if we have extracted the relation authorof(focus, "Songs
of a sourdough"), we can query a triple store with authorof(?x, "Songs of a
sourdough™) to return an author.

To extract answers from text DeepQA uses simple versions of Retrieve and Read.
For example for the IR stage, DeepQA generates a query from the question by elimi-
nating stop words, and then upweighting any terms which occur in any relation with
the focus. For example from this query:

MOVIE-“ING”: Robert Redford and Paul Newman starred in this depression-
era grifter flick. (Answer: “The Sting”)

24 CHAPTER 23 ¢ QUESTION ANSWERING

anchor texts

the following weighted query might be passed to a standard IR system:
(2.0 Robert Redford) (2.0 Paul Newman) star depression era grifter (1.5 flick)

DeepQA also makes use of the convenient fact that the vast majority of Jeopardy!
answers are the title of a Wikipedia document. To find these titles, we can do a
second text retrieval pass specifically on Wikipedia documents. Then instead of
extracting passages from the retrieved Wikipedia document, we directly return the
titles of the highly ranked retrieved documents as the possible answers.

Once we have a set of passages, we need to extract candidate answers. If the
document happens to be a Wikipedia page, we can just take the title, but for other
texts, like news documents, we need other approaches. Two common approaches
are to extract all anchor texts in the document (anchor text is the text between <a>
and used to point to a URL in an HTML page), or to extract all noun phrases
in the passage that are Wikipedia document titles.

Candidate Answer Scoring Next DeepQA uses many sources of evidence to
score each candidate. This includes a classifier that scores whether the candidate
answer can be interpreted as a subclass or instance of the potential answer type.
Consider the candidate “difficulty swallowing” and the lexical answer type “man-
ifestation”. DeepQA first matches each of these words with possible entities in
ontologies like DBpedia and WordNet. Thus the candidate “difficulty swallowing”
is matched with the DBpedia entity “Dysphagia”, and then that instance is mapped
to the WordNet type “Symptom”. The answer type “manifestation” is mapped to the
WordNet type “Condition”. The system looks for a hyponymy, or synonymy link, in
this case finding hyponymy between “Symptom” and “Condition”.

Other scorers are based on using time and space relations extracted from DBpe-
dia or other structured databases. For example, we can extract temporal properties
of the entity (when was a person born, when died) and then compare to time expres-
sions in the question. If a time expression in the question occurs chronologically
before a person was born, that would be evidence against this person being the an-
swer to the question.

Finally, we can use text retrieval to help retrieve evidence supporting a candidate
answer. We can retrieve passages with terms matching the question, then replace the
focus in the question with the candidate answer and measure the overlapping words
or ordering of the passage with the modified question.

The output of this stage is a set of candidate answers, each with a vector of
scoring features.

Answer Merging and Scoring DeepQA finally merges equivalent candidate an-
swers. Thus if we had extracted two candidate answers J.F.K. and John F. Kennedy,
this stage would merge the two into a single candidate, for example using the anchor
dictionaries described above for entity linking, which will list many synonyms for
Wikipedia titles (e.g., JFK, John F. Kennedy, Senator John F. Kennedy, President
Kennedy, Jack Kennedy). We then merge the evidence for each variant, combining
the scoring feature vectors for the merged candidates into a single vector.

Now we have a set of candidates, each with a feature vector. A classifier takes
each feature vector and assigns a confidence value to this candidate answer. The
classifier is trained on thousands of candidate answers, each labeled for whether it
is correct or incorrect, together with their feature vectors, and learns to predict a
probability of being a correct answer. Since, in training, there are far more incorrect
answers than correct answers, we need to use one of the standard techniques for
dealing with very imbalanced data. DeepQA uses instance weighting, assigning an

23.7 ¢ EVALUATION OF FACTOID ANSWERS 25

instance weight of .5 for each incorrect answer example in training. The candidate
answers are then sorted by this confidence value, resulting in a single best answer.

DeepQA’s fundamental intuition is thus to propose a very large number of candi-
date answers from both text-based and knowledge-based sources and then use a rich
variety of evidence features for scoring these candidates. See the papers mentioned
at the end of the chapter for more details.

23.7 Evaluation of Factoid Answers

mean
reciprocal rank

MRR

Factoid question answering is commonly evaluated using mean reciprocal rank, or
MRR (Voorhees, 1999). MRR is designed for systems that return a short ranked
list of answers or passages for each test set question, which we can compare against
the (human-labeled) correct answer. First, each test set question is scored with the
reciprocal of the rank of the first correct answer. For example if the system returned
five answers to a question but the first three are wrong (so the highest-ranked correct
answer is ranked fourth), the reciprocal rank for that question is %. The score for
questions that return no correct answer is 0. The MRR of a system is the average of
the scores for each question in the test set. In some versions of MRR, questions with
a score of zero are ignored in this calculation. More formally, for a system returning
ranked answers to each question in a test set O, (or in the alternate version, let Q be
the subset of test set questions that have non-zero scores). MRR is then defined as

[4

1 1
MRR = — —_— (23.34)
0| ; rank;

Reading comprehension systems on datasets like SQuAD are evaluated (first ignor-
ing punctuation and articles like a, an, the) via two metrics (Rajpurkar et al., 2016):

* Exact match: The % of predicted answers that match the gold answer exactly.

* F; score: The average word/token overlap between predicted and gold an-
swers. Treat the prediction and gold as a bag of tokens, and compute F; for
each question, then return the average F; over all questions.

A number of test sets are available for question answering. Early systems used
the TREC QA dataset: https://trec.nist.gov/data/qa/t8_qgadata.html.
More recent competitions uses the datasets described in Section 23.2.1. Other recent
datasets include the AI2 Reasoning Challenge (ARC) (Clark et al., 2018) of multiple
choice questions designed to be hard to answer from simple lexical methods, like this
question

Which property of a mineral can be determined just by looking at it?
(A) luster [correct] (B) mass (C) weight (D) hardness

in which the correct answer luster is unlikely to co-occur frequently with phrases
like looking at it, while the word mineral is highly associated with the incorrect
answer hardness.

https://trec.nist.gov/data/qa/t8_qadata.html

26 CHAPTER 23 °* QUESTION ANSWERING

Bibliographical and Historical Notes

LUNAR

Question answering was one of the earliest NLP tasks, and early versions of the text-
based and knowledge-based paradigms were developed by the very early 1960s. The
text-based algorithms generally relied on simple parsing of the question and of the
sentences in the document, and then looking for matches. This approach was used
very early on (Phillips, 1960) but perhaps the most complete early system, and one
that strikingly prefigures modern relation-based systems, was the Protosynthex sys-
tem of Simmons et al. (1964). Given a question, Protosynthex first formed a query
from the content words in the question, and then retrieved candidate answer sen-
tences in the document, ranked by their frequency-weighted term overlap with the
question. The query and each retrieved sentence were then parsed with dependency
parsers, and the sentence whose structure best matches the question structure se-
lected. Thus the question What do worms eat? would match worms eat grass: both
have the subject worms as a dependent of eat, in the version of dependency grammar
used at the time, while birds eat worms has birds as the subject:

ol ey e

What do worms eat Worms eat grass Birds eat worms

The alternative knowledge-based paradigm was implemented in the BASEBALL
system (Green et al., 1961). This system answered questions about baseball games
like “Where did the Red Sox play on July 7” by querying a structured database of
game information. The database was stored as a kind of attribute-value matrix with
values for attributes of each game:

Month = July
Place = Boston
Day =7
Game Serial No. = 96
(Team = Red Sox, Score 5)
(Team = Yankees, Score = 3)

Each question was constituency-parsed using the algorithm of Zellig Harris’s
TDAP project at the University of Pennsylvania, essentially a cascade of finite-state
transducers (see the historical discussion in Joshi and Hopely 1999 and Karttunen
1999). Then in a content analysis phase each word or phrase was associated with a
program that computed parts of its meaning. Thus the phrase “Where’ had code to
assign the semantics Place = ?, with the result that the question “Where did the
Red Sox play on July 7 was assigned the meaning

Place = 7
Team = Red Sox
Month = July
Day = 7

The question is then matched against the database to return the answer. Simmons
(1965) summarizes other early QA systems.

Another important progenitor of the knowledge-based paradigm for question-
answering is work that used predicate calculus as the meaning representation lan-
guage. The LUNAR system (Woods et al. 1972, Woods 1978) was designed to be

EXERCISES 27

a natural language interface to a database of chemical facts about lunar geology. It
could answer questions like Do any samples have greater than 13 percent aluminum
by parsing them into a logical form
(TEST (FOR SOME X16 / (SEQ SAMPLES) : T ; (CONTAIN’ X16
(NPR* X17 / (QUOTE AL203)) (GREATERTHAN 13 PCT))))

By a couple decades later, drawing on new machine learning approaches in NLP,
Zelle and Mooney (1996) proposed to treat knowledge-based QA as a semantic pars-
ing task, by creating the Prolog-based GEOQUERY dataset of questions about US
geography. This model was extended by Zettlemoyer and Collins (2005) and 2007.
By a decade later, neural models were applied to semantic parsing (Dong and Lap-
ata 2016, Jia and Liang 2016), and then to knowledge-based question answering by
mapping text to SQL (Iyer et al., 2017).

Meanwhile, the information-retrieval paradigm for question answering was in-
fluenced by the rise of the web in the 1990s. The U.S. government-sponsored TREC
(Text REtrieval Conference) evaluations, run annually since 1992, provide a testbed
for evaluating information-retrieval tasks and techniques (Voorhees and Harman,
2005). TREC added an influential QA track in 1999, which led to a wide variety of
factoid and non-factoid systems competing in annual evaluations.

At that same time, Hirschman et al. (1999) introduced the idea of using chil-
dren’s reading comprehension tests to evaluate machine text comprehension algo-
rithms. They acquired a corpus of 120 passages with 5 questions each designed for
3rd-6th grade children, built an answer extraction system, and measured how well
the answers given by their system corresponded to the answer key from the test’s
publisher. Their algorithm focused on word overlap as a feature; later algorithms
added named entity features and more complex similarity between the question and
the answer span (Riloff and Thelen 2000, Ng et al. 2000).

The DeepQA component of the Watson Jeopardy! system was a large and so-
phisticated feature-based system developed just before neural systems became com-
mon. It is described in a series of papers in volume 56 of the IBM Journal of Re-
search and Development, e.g., Ferrucci (2012).

Neural reading comprehension systems drew on the insight common to early
systems that answer finding should focus on question-passage similarity. Many of
the architectural outlines of these modern neural systems were laid out in Hermann
et al. (2015), Chen et al. (2017), and Seo et al. (2017). These systems focused on
datasets like Rajpurkar et al. (2016) and Rajpurkar et al. (2018) and their successors,
usually using separate IR algorithms as input to neural reading comprehension sys-
tems. Some recent systems include the IR component as part of a single end-to-end
architecture (Lee et al., 2019).

Other question-answering tasks include Quiz Bowl, which has timing consid-
erations since the question can be interrupted (Boyd-Graber et al., 2018). Question
answering is also an important function of modern personal assistant dialog systems;
see Chapter 24.

Exercises

28 Chapter 23 + Question Answering

Alberti, C., K. Lee, and M. Collins. 2019. A BERT base-
line for the natural questions. http://arxiv.org/abs/
1901.08634.

Berant, J., A. Chou, R. Frostig, and P. Liang. 2013. Semantic
parsing on freebase from question-answer pairs. EMNLP.

Bizer, C., J. Lehmann, G. Kobilarov, S. Auer, C. Becker,
R. Cyganiak, and S. Hellmann. 2009. DBpedia—A crys-
tallization point for the Web of Data. Web Semantics:
science, services and agents on the world wide web,
7(3):154-165.

Bollacker, K., C. Evans, P. Paritosh, T. Sturge, and J. Taylor.
2008. Freebase: a collaboratively created graph database
for structuring human knowledge. SIGMOD 2008.

Bordes, A., N. Usunier, S. Chopra, and J. Weston. 2015.
Large-scale simple question answering with memory net-
works. ArXiv preprint arXiv:1506.02075.

Boyd-Graber, J., S. Feng, and P. Rodriguez. 2018. Human-
computer question answering: The case for quizbowl. In
Sergio Escalera and Markus Weimer, editors, The NIPS
’17 Competition: Building Intelligent Systems. Springer.

Chen, D., A. Fisch, J. Weston, and A. Bordes. 2017. Reading
Wikipedia to answer open-domain questions. ACL.

Clark, J. H., E. Choi, M. Collins, D. Garrette,
T. Kwiatkowski, V. Nikolaev, and J. Palomaki. 2020.
TyDi QA: A benchmark for information-seeking ques-
tion answering in typologically diverse languages. ArXiv
preprint arXiv:2003.05002.

Clark, P, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal,
C. Schoenick, and O. Tafjord. 2018. Think you have
solved question answering? Try ARC, the AI2 reasoning
challenge. ArXiv preprint arXiv:1803.05457.

Clark, P., O. Etzioni, D. Khashabi, T. Khot, B. D.
Mishra, K. Richardson, A. Sabharwal, C. Schoenick,
O. Tafjord, N. Tandon, S. Bhakthavatsalam, D. Groen-
eveld, M. Guerquin, and M. Schmitz. 2019. From 'F’ to
A’ on the NY Regents Science Exams: An overview of
the Aristo project. ArXiv preprint arXiv:1909.01958.

Cucerzan, S. 2007. Large-scale named entity disambiguation
based on Wikipedia data. EMNLP/CoNLL.

Deerwester, S. C., S. T. Dumais, T. K. Landauer, G. W. Fur-
nas, and R. A. Harshman. 1990. Indexing by latent se-
mantics analysis. JASIS, 41(6):391-407.

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova. 2019.
BERT: Pre-training of deep bidirectional transformers for
language understanding. NAACL HLT.

Dong, L. and M. Lapata. 2016. Language to logical form
with neural attention. ACL.

Dua, D., Y. Wang, P. Dasigi, G. Stanovsky, S. Singh, and
M. Gardner. 2019. DROP: A reading comprehension
benchmark requiring discrete reasoning over paragraphs.
NAACL HLT.

Ferragina, P. and U. Scaiella. 2011. Fast and accurate anno-
tation of short texts with wikipedia pages. IEEE Software,
29(1):70-75.

Ferrucci, D. A. 2012. Introduction to “This is Watson”. IBM
Journal of Research and Development, 56(3/4):1:1-1:15.

Furnas, G. W., T. K. Landauer, L. M. Gomez, and S. T.
Dumais. 1987. The vocabulary problem in human-

system communication. Communications of the ACM,
30(11):964-971.

Green, B. F, A. K. Wolf, C. Chomsky, and K. Laughery.
1961. Baseball: An automatic question answerer. Pro-
ceedings of the Western Joint Computer Conference 19.

Hermann, K. M., T. Kocisky, E. Grefenstette, L. Espeholt,
W. Kay, M. Suleyman, and P. Blunsom. 2015. Teaching
machines to read and comprehend. NeurIPS.

Hirschman, L., M. Light, E. Breck, and J. D. Burger. 1999.
Deep Read: A reading comprehension system. ACL.

Iyer, S., I. Konstas, A. Cheung, J. Krishnamurthy, and
L. Zettlemoyer. 2017. Learning a neural semantic parser
from user feedback. ACL.

Ji, H. and R. Grishman. 2011. Knowledge base population:
Successful approaches and challenges. ACL.

Jia, R. and P. Liang. 2016. Data recombination for neural
semantic parsing. ACL.

Jiang, K., D. Wu, and H. Jiang. 2019. FreebaseQA: A new
factoid QA data set matching trivia-style question-answer
pairs with Freebase. NAACL HLT.

Johnson, J., M. Douze, and H. Jégou. 2017. Billion-
scale similarity search with GPUs. ArXiv preprint
arXiv:1702.08734.

Joshi, A. K. and P. Hopely. 1999. A parser from antiquity.
In Andras Kornai, editor, Extended Finite State Models of
Language, pages 6—15. Cambridge University Press.

Joshi, M., E. Choi, D. S. Weld, and L. Zettlemoyer. 2017.
Triviaqa: A large scale distantly supervised challenge
dataset for reading comprehension. ACL.

Jurafsky, D. 2014. The Language of Food. W. W. Norton,
New York.

Kamphuis, C., A. P. de Vries, L. Boytsov, and J. Lin. 2020.
Which bm25 do you mean? a large-scale reproducibility
study of scoring variants. European Conference on Infor-
mation Retrieval.

Karpukhin, V., B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov,
D. Chen, and W.-t. Yih. 2020. Dense passage retrieval for
open-domain question answering. EMNLP.

Karttunen, L. 1999. Comments on Joshi. In Andras Kornai,
editor, Extended Finite State Models of Language, pages
16-18. Cambridge University Press.

Kwiatkowski, T., J. Palomaki, O. Redfield, M. Collins,
A. Parikh, C. Alberti, D. Epstein, I. Polosukhin, J. De-
vlin, K. Lee, K. Toutanova, L. Jones, M. Kelcey, M.-W.
Chang, A. M. Dai, J. Uszkoreit, Q. Le, and S. Petrov.
2019. Natural questions: A benchmark for question an-
swering research. TACL, 7:452-466.

Lee, K., M.-W. Chang, and K. Toutanova. 2019. Latent re-
trieval for weakly supervised open domain question an-
swering. ACL.

Li, B. Z., S. Min, S. Iyer, Y. Mehdad, and W.-t. Yih. 2020.
Efficient one-pass end-to-end entity linking for questions.
EMNLP.

Lin, J., R. Nogueira, and A. Yates. 2020. Pretrained trans-
formers for text ranking: BERT and beyond. ArXiv
preprint arXiv:2010.06467.

Liu, C.-W., R. T. Lowe, 1. V. Serban, M. Noseworthy,
L. Charlin, and J. Pineau. 2016. How NOT to evalu-
ate your dialogue system: An empirical study of unsu-
pervised evaluation metrics for dialogue response gener-
ation. EMNLP.

http://arxiv.org/abs/1901.08634
http://arxiv.org/abs/1901.08634
https://www.aclweb.org/anthology/D13-1160
https://www.aclweb.org/anthology/D13-1160
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://www.aclweb.org/anthology/D07-1074
https://www.aclweb.org/anthology/D07-1074
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.3115/1034678.1034731
https://doi.org/10.18653/v1/P17-1089
https://doi.org/10.18653/v1/P17-1089
https://www.aclweb.org/anthology/P11-1115
https://www.aclweb.org/anthology/P11-1115
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
https://www.aclweb.org/anthology/N19-1028
https://www.aclweb.org/anthology/N19-1028
https://www.aclweb.org/anthology/N19-1028
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://www.aclweb.org/anthology/Q19-1026
https://www.aclweb.org/anthology/Q19-1026
https://www.aclweb.org/anthology/P19-1612
https://www.aclweb.org/anthology/P19-1612
https://www.aclweb.org/anthology/P19-1612
https://doi.org/10.18653/v1/2020.emnlp-main.522
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230

Exercises 29

Lukovnikov, D., A. Fischer, and J. Lehmann. 2019. Pre-
trained transformers for simple question answering over
knowledge graphs. International Semantic Web Confer-
ence.

Manning, C. D., P. Raghavan, and H. Schiitze. 2008. Intro-
duction to Information Retrieval. Cambridge.

Mihalcea, R. and A. Csomai. 2007. Wikify!: Linking docu-
ments to encyclopedic knowledge. CIKM 2007.

Milne, D. and I. H. Witten. 2008. Learning to link with wiki-
pedia. CIKM 2008.

Ng, H. T, L. H. Teo, and J. L. P. Kwan. 2000. A ma-
chine learning approach to answering questions for read-
ing comprehension tests. EMNLP.

Oren, I., J. Herzig, N. Gupta, M. Gardner, and J. Berant.
2020. Improving compositional generalization in seman-
tic parsing. Findings of EMNLP.

Phillips, A. V. 1960. A question-answering routine. Techni-
cal Report 16, MIT AI Lab.

Rajpurkar, P, R. Jia, and P. Liang. 2018. Know what you
don’t know: Unanswerable questions for SQuAD. ACL.

Rajpurkar, P., J. Zhang, K. Lopyrev, and P. Liang. 2016.
SQuAD: 100,000+ questions for machine comprehension
of text. EMNLP.

Riloff, E. and M. Thelen. 2000. A rule-based ques-
tion answering system for reading comprehension tests.
ANLP/NAACL workshop on reading comprehension tests.

Roberts, A., C. Raffel, and N. Shazeer. 2020. How much
knowledge can you pack into the parameters of a lan-
guage model? ArXiv preprint arXiv:2002.08910.

Robertson, S., S. Walker, S. Jones, M. M. Hancock-
Beaulieu, and M. Gatford. 1995. Okapi at TREC-3.
Overview of the Third Text REtrieval Conference (TREC-
3).

Salton, G. 1971. The SMART Retrieval System: Experiments
in Automatic Document Processing. Prentice Hall.

Seo, M., A. Kembhavi, A. Farhadi, and H. Hajishirzi. 2017.
Bidirectional attention flow for machine comprehension.
ICLR.

Simmons, R. F. 1965. Answering English questions by com-
puter: A survey. CACM, 8(1):53-70.

Simmons, R. F., S. Klein, and K. McConlogue. 1964. In-
dexing and dependency logic for answering English ques-
tions. American Documentation, 15(3):196-204.

Sorokin, D. and I. Gurevych. 2018. Mixing context granu-
larities for improved entity linking on question answering
data across entity categories. *SEM.

Sparck Jones, K. 1972. A statistical interpretation of term
specificity and its application in retrieval. Journal of Doc-
umentation, 28(1):11-21.

Su, Y., H. Sun, B. Sadler, M. Srivatsa, I. Giir, Z. Yan, and
X. Yan. 2016. On generating characteristic-rich question
sets for QA evaluation. EMNLP.

Talmor, A. and J. Berant. 2018. The web as a knowledge-
base for answering complex questions. NAACL HLT.
Voorhees, E. M. 1999. TREC-8 question answering track

report. Proceedings of the 8th Text Retrieval Conference.

Voorhees, E. M. and D. K. Harman. 2005. TREC: Experi-
ment and Evaluation in Information Retrieval. MIT Press.

Vrandecié, D. and M. Krotzsch. 2014. Wikidata: a free col-
laborative knowledge base. CACM, 57(10):78-85.

Wolfson, T., M. Geva, A. Gupta, M. Gardner, Y. Goldberg,
D. Deutch, and J. Berant. 2020. Break it down: A ques-
tion understanding benchmark. TACL, 8:183-198.

Woods, W. A. 1978. Semantics and quantification in nat-
ural language question answering. In M. Yovits, editor,
Advances in Computers, pages 2—64. Academic.

Woods, W. A., R. M. Kaplan, and B. L. Nash-Webber. 1972.

The lunar sciences natural language information system:
Final report. Technical Report 2378, BBN.

Wu, L., F. Petroni, M. Josifoski, S. Riedel, and L. Zettle-
moyer. 2019. Zero-shot entity linking with dense entity
retrieval. ArXiv preprint arXiv:1911.03814.

Yang, Z., P. Qi, S. Zhang, Y. Bengio, W. Cohen, R. Salakhut-
dinov, and C. D. Manning. 2018. HotpotQA: A dataset
for diverse, explainable multi-hop question answering.
EMNLP.

Yih, W.-t., M. Richardson, C. Meek, M.-W. Chang, and
J. Suh. 2016. The value of semantic parse labeling for
knowledge base question answering. ACL.

Zelle, J. M. and R. J. Mooney. 1996. Learning to parse
database queries using inductive logic programming.
AAAL

Zettlemoyer, L. and M. Collins. 2005. Learning to map
sentences to logical form: Structured classification with
probabilistic categorial grammars. Uncertainty in Artifi-
cial Intelligence, UAI’0S5.

Zettlemoyer, L. and M. Collins. 2007. Online learning
of relaxed CCG grammars for parsing to logical form.
EMNLP/CoNLL.

https://doi.org/10.3115/1117794.1117810
https://doi.org/10.3115/1117794.1117810
https://doi.org/10.3115/1117794.1117810
https://doi.org/10.18653/v1/2020.findings-emnlp.225
https://doi.org/10.18653/v1/2020.findings-emnlp.225
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://www.aclweb.org/anthology/W00-0603
https://www.aclweb.org/anthology/W00-0603
https://www.microsoft.com/en-us/research/publication/okapi-at-trec-3/
https://www.aclweb.org/anthology/S18-2007
https://www.aclweb.org/anthology/S18-2007
https://www.aclweb.org/anthology/S18-2007
https://www.aclweb.org/anthology/D16-1054
https://www.aclweb.org/anthology/D16-1054
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.1162/tacl_a_00309
https://doi.org/10.1162/tacl_a_00309
https://www.aclweb.org/anthology/D18-1259
https://www.aclweb.org/anthology/D18-1259
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://www.aclweb.org/anthology/D07-1071
https://www.aclweb.org/anthology/D07-1071

	Question Answering
	Information Retrieval
	Term weighting and document scoring
	Document Scoring
	Inverted Index
	Evaluation of Information-Retrieval Systems
	IR with Dense Vectors

	IR-based Factoid Question Answering
	IR-based QA: Datasets
	IR-based QA: Reader (Answer Span Extraction)

	Entity Linking
	Linking based on Anchor Dictionaries and Web Graph
	Neural Graph-based linking

	Knowledge-based Question Answering
	Knowledge-Based QA from RDF triple stores
	QA by Semantic Parsing

	Using Language Models to do QA
	Classic QA Models
	Evaluation of Factoid Answers
	Bibliographical and Historical Notes
	Exercises

