## Emotion, Sentiment, and Keyword Search

Zixiaofan Yang and Julia Hirschberg COMS 6998 April 19, 2019

# Outline

- Emotion recognition in speech
- Sentiment and emotion in text
- Situation Frame (SF) detection
- Homework 4: emotion recognition

# **Emotion Recognition in Speech**

# What is Emotion?

- Two families of theories of emotion
  - Categorical approach
    - Emotions are categories
    - Limited number of basic emotions
  - **Dimensional** approach
    - Emotions are dimensions
    - Limited number of labels but unlimited number of emotions

# **Emotion - Categorical Approach**

[Ekman et al., 1987]

- Discrete 'basic emotions'
- Originate from facial expressions



## Anger Sadne

Sadness Disgust Happiness

# **Emotion - Categorical Approach**

[Ekman et al., 1987]

- Discrete 'basic emotions'
- Originate from facial expressions



# **Emotion - Dimensional Approach**

[Russell and Barrett, 1999]

- Continuous Arousal-Valence space
- Common physiological system



# Why Study Emotional Speech?

- Recognition
  - Anger/frustration in call centers
  - Confidence/uncertainty in online tutoring systems
  - "Hot spots" in meetings
- Generation
  - TTS for virtual assistants, computer games, etc.
- Other applications: Speaker State
  - Deception, Charisma, Sleepiness, Interest...
- Some emotional clues are only in speech

# **Emotion in Speech**

## **Acted speech**



Easier to collect & control



- Mostly categorical approach
- **Examples:** (Emotional Prosody Speech)
- Happy, Sad, Angry, Bored

#### **Spontaneous speech**

- X Harder to collect & annotate
- Subtle changes in emotion
- Both categorical & dimensional approach
- **Example:** (AT&T "How May I Help You?" System)
  - Neutral -> frustrated -> angry
  - Arousal  $\uparrow$ , Valence  $\downarrow$

# Emotional Speech Corpora - Acted & Categorical (EmoDB)











# Bored

Sad

# $\begin{array}{c} & \text{Descent be a constructive of the second second$

## Frightened



## Acted & Categorical Speech: Actors vs Students (Emotional Prosody Speech) (Mandarin Affective Speech)

Sad Happy Angry Bored Interested

....

Anger Elation Neutral Panic Sadness

## **Spontaneous Speech with Dimensional Annotations** (SEMAINE database)

- The goal of the operator is to engage the user in emotional conversations • 6-8 annotators. Annotations range from -1 to 1 with 20ms intervals.

- Valence score : -0.88
- Valence score : 0.58
- Valence score : 0.83



# Spontaneous Speech with Dimensional Annotations (RECOLA database)

- 3 hours of audio, visual, and physiological recordings of between 46 French speaking participants
- Participants were asked to reach consensus on how to survive in a disaster scenario
- 6 annotators. Annotations range from -1 to 1 with 40ms intervals.



# Partial List of the Existing Emotion Corpora

- Lack of naturalness
- Unbalanced emotional content
- Limited size of corpora, limited number of speakers

| Corpus            | Size          | # Spkr | Туре   | Lang.   |
|-------------------|---------------|--------|--------|---------|
| IEMOCAP [10]      | 12h26m        | 10     | acted  | English |
| MSP-IMPROV [19]   | 9h35m         | 12     | acted  | English |
| CREMA-D [2]       | 7,442 samples | 91     | acted  | English |
| Chen Bimodal [20] | 9,900 samples | 100    | acted  | English |
| Emo-DB [6]        | 22m           | 10     | acted  | German  |
| GEMEP [21]        | 1,260 samples | 10     | acted  | -       |
| VAM-Audio [15]    | 48m           | 47     | spont. | German  |
| TUM AVIC [22]     | 10h23m        | 21     | spont. | English |
| SEMAINE [13]      | 6h21m         | 20     | spont. | English |
| FAU-AIBO [14]     | 9h12m         | 51     | spont. | German  |
| RECOLA [11]       | 2h50m         | 46     | spont. | French  |

# **MSP-Podcast corpus**

- Retrieve potential segments from podcast recordings
- Annotations
  - Dimensional descriptors
    - Activation, dominance and valence
  - Categorical labels
    - other
- Version 1.1 has 22,630 speaking turns (data collection is still ongoing)
- The largest speech emotional corpus in the community

• Anger, happiness, sadness, disgust, surprised, fear, contempt, neutral and

# Features for Emotional Speech - Pitch

### Different Valence / Different Arousal



# Features for Emotional Speech - Pitch

#### Different Valence / Same Arousal



## Pitch Contour Differences



# Features for Emotional Speech



# **Emotion Recognition in Speech**

## **Categorical Approach**

- Discrete 'basic emotions'
- Classification problem

## **Dimensional Approach**

- Continuous Arousal Valence space
- Regression problem

# **Emotion Recognition - Categorical**

(Liscombe et al. 2003)

- Acoustic-prosodic features:
  - Pitch, energy, speaking rate
  - Nuclear accent, pitch contour

| Emotion     | Baseline | Accuracy |
|-------------|----------|----------|
| angry       | 69.32%   | 77.27%   |
| confident   | 75.00%   | 75.00%   |
| happy       | 57.39%   | 80.11%   |
| interested  | 69.89%   | 74.43%   |
| encouraging | 52.27%   | 72.73%   |
| sad         | 61.93%   | 80.11%   |
| anxious     | 55.68%   | 71.59%   |
| bored       | 66.48%   | 78.98%   |
| friendly    | 59.09%   | 73.86%   |
| frustrated  | 59.09%   | 73.86%   |

# **Emotion Recognition - Categorical**

(Mao et al. 2014)

- Learning emotion from spectrograms
- Evaluation on 4 datasets:
  - anger, disgust, fear, happiness, sadness, surprise, and neutral
  - anger, disgust, fear, joy, sadness,
     boredom, and neutral
  - anger, joy, surprise, sadness, and neutral
  - anger, joy, surprise, sadness, and disgust





# **Emotion Recognition in Speech**

## **Categorical Approach**

- Discrete 'basic emotions'
- Classification problem

## **Dimensional Approach**

- Continuous Arousal Valence space
- Regression problem
- High granularity in time and value
- Suitable for deep learning models



(Trigeorgis et al. 2014)

- Learning emotion (valence-arousal) from waveforms directly
- Convolutional layers:
  - Extracting spectral information
  - Extracting long-term characteristics 2.
- Recurrent layers: modeling the context





(Trigeorgis et al. 2014)

- Evaluation metric: Concordance correlation coefficient
   Valence: 0.686, arousal: 0.261
- Some cells learn acoustic features automatically
  - Range of RMS energy ( $\rho = 0.81$ )
  - Loudness ( $\rho = 0.73$ )
  - Mean of fundamental frequency  $(\rho = 0.72)$



#### Spectrogram



# Do spectrograms and waveforms contain complementary information for emotion recognition in speech?

#### Waveform



- Input: raw waveform and spectrogram
- Model: convolutional recurrent neural networks
- Task: Predict arousal and valence

• Results:

Continuous in both time and value

|  | Corpus  | Model    | Results (C |   |  |
|--|---------|----------|------------|---|--|
|  | Corpus  | Widdei   | Arousal    | V |  |
|  |         | Baseline | 0.376      |   |  |
|  | SEMAINE | W Only   | 0.675      |   |  |
|  |         | S Only   | 0.656      |   |  |
|  |         | W + S    | 0.680      |   |  |
|  |         | Baseline | 0.317      |   |  |
|  | RECOLA  | W Only   | 0.674      |   |  |
|  |         | S Only   | 0.651      |   |  |
|  |         | W + S    | 0.692      |   |  |



# **Example Analysis - Dimensional**

Arousal





Local Interpretable Modelagnostic Explanations (LIME)



# Sentiment and Emotion in Text

# **English Sentiment Lexicon**

- The General Inquirer (Stone et al. 1966) – Positive (1915), Negative (2291), Strong vs Weak, Pleasure, Pain, etc.
- LIWC (Linguistic Inquiry and Word Count) Negative emotion (anxiety, anger, sadness); Positive emotion
- MPQA Subjectivity Cues Lexicon
  - 2718 positive, 4912 negative
- Bing Liu Opinion Lexicon
  - 2006 positive, 4783 negative
- SentiWordNet

WordNet synsets automatically labeled with positivity, negativity, and objectiveness

# Polyglot (Multilingual text processing toolkit)

- Sentiment polarity lexicons for 136 languages
  - 7,741,544 high-frequency words from 136 languages in Wikipedia
  - Use Bing Liu Opinion Lexicon (English) as seed
  - Wiktionary + Google Translation + Transliteration + WordNet to generate edges between words
  - Propagate sentiment labels through the edges

| 1.  | Turkmen               | 2.  | Thai               | 3.  | Latvian        |        |
|-----|-----------------------|-----|--------------------|-----|----------------|--------|
| 4.  | Zazaki                | 5.  | Tagalog            | 6.  | Tamil          |        |
| 7.  | Tajik                 | 8.  | Telugu             | 9.  | Luxembourgish, | Letzeb |
| 10. | Alemannic             | 11. | Latin              | 12. | Turkish        |        |
| 13. | Limburgish, Limburgan | 14. | Egyptian Arabic    | 15. | Tatar          |        |
| 16. | Lithuanian            | 17. | Spanish; Castilian | 18. | Basque         |        |
| 19. | Estonian              | 20. | Asturian           | 21. | Greek, Modern  |        |
| 22. | Esperanto             | 23. | English            | 24. | Ukrainian      |        |
| 25. | Marathi (Marāṭhī)     | 26. | Maltese            | 27. | Burmese        |        |
| 28. | Kapampangan           | 29. | Uighur, Uyghur     | 30. | Uzbek          |        |
| 31. | Malagasy              | 32. | Yiddish            | 33. | Macedonian     |        |
| 34. | Urdu                  | 35. | Malayalam          | 36. | Mongolian      |        |
| 37. | Breton                | 38. | Bosnian            | 39. | Bengali        |        |
|     |                       |     |                    |     |                |        |

# Plutchick's wheel of emotion

- 8 basic emotions in four opposing pairs
  - joy–sadness
  - anger–fear
  - trust–disgust
  - anticipation—surprise



# **NRC Word-Emotion Association Lexicon**

(Mohammad and Turney 2011)

- Categorical approach of emotion
- 10k words chosen mainly from earli
- Labeled by Amazon Mechanical Tur
  - Joy, sadness, anger, fear, trust, disg

surnrise nositive negative Q4. How much is *startle* associated with the emotion joy? (F strongly associated with joy.)

- *startle* is not associated with joy
- *startle* is weakly associated with joy
- *startle* is moderately associated with joy
- *startle* is strongly associated with joy

|                                              | EmoLex                            | # of terms      | % of the Union |  |  |
|----------------------------------------------|-----------------------------------|-----------------|----------------|--|--|
|                                              | EmoLex-Uni:                       |                 |                |  |  |
|                                              | Unigrams from Ma                  | cquarie Thesaur | us             |  |  |
|                                              | adjectives                        | 200             | 2.0%           |  |  |
|                                              | adverbs                           | 200             | 2.0%           |  |  |
| iorlavicanc                                  | nouns                             | 200             | 2.0%           |  |  |
| Ier iexicons                                 | verbs                             | 200             | 2.0%           |  |  |
|                                              | EmoLex-Bi:                        |                 |                |  |  |
|                                              | Bigrams from Mac                  | quarie Thesauru | S              |  |  |
|                                              | adjectives                        | 200             | 2.0%           |  |  |
|                                              | adverbs                           | 187             | 1.8%           |  |  |
| gust anticipation                            | nouns                             | 200             | 2.0%           |  |  |
| Sast, anticipation,                          | verbs                             | 200             | 2.0%           |  |  |
|                                              | EmoLex-GI:                        |                 |                |  |  |
|                                              | Terms from Genera                 | al Inquirer     |                |  |  |
| For example, <i>happy</i> and <i>fun</i> are | negative terms                    | 2119            | 20.8%          |  |  |
| 1 / 110 0                                    | neutral terms                     | 4226            | 41.6%          |  |  |
|                                              | positive terms                    | 1787            | 17.6%          |  |  |
|                                              | EmoLex-WAL:                       |                 |                |  |  |
|                                              | Terms from WordNet Affect Lexicon |                 |                |  |  |
|                                              | anger terms                       | 165             | 1.6%           |  |  |
|                                              | disgust terms                     | 37              | 0.4%           |  |  |
|                                              | fear terms                        | 100             | 1.0%           |  |  |
|                                              | joy terms                         | 165             | 1.6%           |  |  |
|                                              | sadness terms                     | 120             | 1.2%           |  |  |
|                                              | surprise terms                    | 53              | 0.5%           |  |  |
|                                              | Union                             | 10170           | 100%           |  |  |

 $\mathbf{n}$ 

# Lexicon of Valence, Arousal, and Dominance

(Warriner at al. 2013)

- Dimensional approach of emotion
- AMT Ratings for 14,000 words for emotional dimensions
  - Valence (the pleasantness of the stimulus)
  - Arousal (the intensity of emotion provoked by the stimulus)
  - Dominance (the degree of control exerted by the stimulus)

| nge 1-9) | Valence   |      | Arousal  |      | Dominance  |      |
|----------|-----------|------|----------|------|------------|------|
|          | vacation  | 8.53 | rampage  | 7.56 | self       | 7.74 |
|          | happy     | 8.47 | tornado  | 7.45 | incredible | 7.74 |
|          | whistle   | 5.7  | zucchini | 4.18 | skillet    | 5.33 |
|          | conscious | 5.53 | dressy   | 4.15 | concur     | 5.29 |
|          | torture   | 1.4  | dull     | 1.67 | earthquake | 2.14 |

• Examples: (ra



# **Detecting Sentiment/Emotion in Text**

- Simplest unsupervised method
  - Sum the weights of each positive word in the document
  - Sum the weights of each negative word in the document
  - Choose whichever value (positive or negative) has higher sum
- Simplest supervised method
  - Use "counts of lexicon categories" as features (e.g. LIWC)
  - Baseline: use all unigram/bigram counts + POS tags
  - Hard to beat, but only works if the training and test sets are very similar

# Sentiment in Twitter:) (Go et al. 2009)

• Use emoticons to find tweets with sentiment

| Emoticons mapped to :) | Emoticons mapped to :( |
|------------------------|------------------------|
| :)                     | :(                     |
| :-)                    | :-(                    |
| : )                    | : (                    |
| :D                     |                        |
| =)                     |                        |

- Training set:

  - Seed emoticons are stripped off before training
- Test set: 359 tweets manually annotated
- Accuracy: ~80%

800k tweets with positive emoticons, and 800k tweets with negative emoticons
## Sentiment in Twitter #thingsilike (Kouloumpis et al. 2011)

| Positive | #iloveitwhen, #thingsilike, #be        |
|----------|----------------------------------------|
|          | ing, #bestfeelingever, #omgthatss      |
|          | #imthankfulfor, #thingsilove, #succes  |
| Negative | #fail, #epicfail, #nevertrust, #       |
|          | #worse, #worstlies, #imtiredof, #      |
|          | tokay, #worstfeeling, #notcute, #som   |
|          | gaintright, #somethingsnotright, #ihat |
| Neutral  | #job, #tweetajob, #omgfacts, #news     |
|          | teningto, #lastfm, #hiring, #cnn       |





• Number of training data (in *millions*)



• Output: probability of emoji labels

| I love mom's cooking                | <b>%</b><br>49.1%  |
|-------------------------------------|--------------------|
| I love how you never reply back     | <b>77</b><br>14.0% |
| I love cruising with my homies      | <b></b><br>34.0%   |
| I love messing with yo mind!!       | 😜<br>17.2%         |
| I love you and now you're just gone | <b>\$</b><br>39.1% |
| This is shit                        | <b>)</b><br>7.0%   |
| This is the shit                    | 10.9%              |

| <b>3</b><br>49.1%  | 8.8%                | 3.1%                    | <b>3</b> .0%         | 2 |
|--------------------|---------------------|-------------------------|----------------------|---|
| 97<br>14.0%        | <del></del><br>8.3% | <b>)</b><br>6.3%        | <u></u><br>5.4%      | 5 |
| <b></b><br>34.0%   | <b>d</b><br>6.6%    | <b>6</b> 5.7%           | <del>©</del><br>4.1% | 3 |
| <b>e</b><br>17.2%  | <b>U</b><br>11.8%   | <ul> <li>50%</li> </ul> | 😳<br>6.4%            | 5 |
| <b>\$</b><br>39.1% | 😔<br>11.0%          | <b>~~</b><br>7.3%       | <b>~~</b><br>5.3%    | 4 |
| <b>7.0%</b>        | <b>5</b> .4%        | <b>~~</b><br>6.0%       | <b>6.0%</b>          | 5 |
| ())<br>10.9%       | <b>55</b><br>9.7%   | <b>d</b><br>6.5%        | <b>5</b> .7%         | 4 |



 $\heartsuit$ .9%



• DeepMoji model architecture



| ax   | 1 x C    |
|------|----------|
| on   | 1 x 2304 |
| N    | T x 1024 |
| N    | T x 1024 |
| ling | T x 256  |

#### **Attention Modeling for Targeted Sentiment** (Liu and Zhang 2017)

Targeted Sentiment



# BERT in Sentiment Analysis (Google Al Language)

BERT: Bidirectional Encoder Representations from Transformers

 Transformer: stacked self-attention blocks



Training: mask part of the input tok tokens

• Training: mask part of the input tokens at random, then predict those masked

# **BERT in Sentiment Analysis**

• Fine-tuning for single sentence classification task Add a classification layer on the output of [CLS] token



Accuracy on the Stanford Sentiment Treebank dataset: 94.9%

Single Sentence

## Text Sentiment Analysis Dataset

- Product reviews on Amazon
  - <u>Multidomain sentiment analysis dataset</u>
  - Amazon product data, 143 million reviews
- Movie reviews on IMDB
  - Cornell movie review data, labeled with sentiment polarity, scale, and subjectivity
  - <u>Large Movie Review Dataset v1.0</u>, 25k movie reviews
  - IMDB Movie Reviews Dataset, 50k movie reviews
  - <u>Bag of Words Meets Bags of Popcorn</u>, 50k movie reviews
- Reviews from Rotten Tomatoes
  - <u>Stanford Sentiment Treebank</u>, 11k reviews

## Text Sentiment Analysis Dataset

- Tweets with emoticon
  - <u>Sentiment140</u>, 160k tweets
- Twitter data on US airlines
- Paper reviews
  - <u>Paper Reviews</u>

#### - <u>Twitter US Airline Sentiment</u>, with negative reasons (e.g. "rude service")

# Situation Frame (SF) Detection

# LORELEI Project

- Low Resource Languages for Emergent Incidents (LORELEI)
- Develop language technologies quickly to help first responders understand text and speech information
  - Using speech features to detect whether the speaker is talking about an incident
  - Keyword search in low-resource languages

# SF Speech - Overview

- Document-level situation frame (SF): - Type , Place , Status , and Confidence
- 11 SF Types:
  - Evacuation, food, water, medicine, infrastructure, shelter, rescue, utilities, crime, terrorism, regime change
- Two sub-tasks
  - Relevance layer: Does the segment contain at least 1 frame of any type? - Type layer: Which SF types (if any) are contained in the segment?

# SF Speech - Overview

- Available speech packs in 27 languages
  - Afro-Asiatic: AMH, SOM, ARA, HAU, IL5(Tigrinya), IL6 (Oromo)
  - Turkic: TUR, UZB, IL3(Uyghur)
  - Austronesian: TGL, IND
  - Niger–Congo: AKA, SWA, WOL, YOR, ZUL
  - Indo-European: BEN, FAS, HIN, RUS, SPA, USE
  - Sino-Tibetan: CHN
  - Uralic: HUN
  - Austroasiatic: VIE
  - Dravidian: TAM
  - Tai–Kadai: THA
- Incident languages (IL) for SF evaluation in 2018
  - IL9(Kinyarwanda), IL10(Sinhala)



# SF Speech – Relevance layer

- Binary classification
- Baseline model
  - openSMILE feature set
    - 384 hand-engineered features
  - Random forest model
    - limit the maximum depth to prevent overfitting
- End-to-end deep neural networks
  - CNN + LSTM
    - Adapt the model from speech emotion recognition task

# **Cross-Language Experiments**

• Higher accuracy for language pairs within the same language family

|     | Afro-Asiatic |      |      |      |      | Turkic |      |      | Austrone<br>sian |      |      |
|-----|--------------|------|------|------|------|--------|------|------|------------------|------|------|
|     | AMH          | SOM  | ARA  | HAU  | IL5  | IL6    | TUR  | UZB  | IL3              | IND  | TGL  |
| AMH | ١            | 0.62 | 0.62 | 0.59 | 0.56 | 0.66   | 0.62 | 0.67 | 0.66             | 0.66 | 0.58 |
| SOM | 0.65         | ١    | 0.61 | 0.56 | 0.59 | 0.61   | 0.64 | 0.68 | 0.64             | 0.61 | 0.53 |
| ARA | 0.65         | 0.58 | ١    | 0.59 | 0.58 | 0.65   | 0.72 | 0.73 | 0.62             | 0.67 | 0.63 |
| HAU | 0.68         | 0.59 | 0.65 | ١    | 0.64 | 0.6    | 0.67 | 0.65 | 0.54             | 0.58 | 0.58 |
| IL5 | 0.53         | 0.56 | 0.57 | 0.6  | ١    | 0.65   | 0.67 | 0.62 | 0.56             | 0.56 | 0.49 |
| IL6 | 0.63         | 0.54 | 0.61 | 0.55 | 0.6  | ١      | 0.75 | 0.71 | 0.61             | 0.64 | 0.62 |
| TUR | 0.64         | 0.57 | 0.65 | 0.57 | 0.6  | 0.68   | ١    | 0.74 | 0.6              | 0.65 | 0.62 |
| UZB | 0.59         | 0.55 | 0.65 | 0.53 | 0.59 | 0.65   | 0.76 | ١    | 0.63             | 0.65 | 0.6  |
| IL3 | 0.69         | 0.57 | 0.61 | 0.56 | 0.59 | 0.64   | 0.73 | 0.72 | ١                | 0.64 | 0.64 |
| IND | 0.62         | 0.58 | 0.64 | 0.56 | 0.57 | 0.67   | 0.76 | 0.72 | 0.61             | ١    | 0.65 |
| TGL | 0.63         | 0.52 | 0.61 | 0.53 | 0.58 | 0.63   | 0.69 | 0.63 | 0.61             | 0.66 | ١    |

# SF Speech – Relevance layer

- Challenges
  - Coarse-grained annotation
    - 1 label for each utterance(up to 2 minutes)
  - Data from different sources in different languages
    - Tigrinya VOA ; Oromo local news
    - Hard to learn useful pattern across languages
- End-to-end deep neural networks
  - Tend to overfit training data
  - No significant improvement over baseline model

- Traditional method
  - Generate ASR transcript in the incident language
  - Translate into English
  - SF type detection in English
- Error propagation through the stages
  - English translation might be unintelligible
- Our method
  - Skip the ASR part
  - Query-by-example spoken term detection

- Step 1
  - Generate English keywords for each SF type
- Step 2
  - Ask the NI to translate and read the keywords in IL
  - Or use CMU TTS in IL to synthesize pronunciation
- Step 3
  - Find the IL keywords from speech segments
  - Calculate confidence scores for each SF type by the keyword search result

he keywords in IL

- Step 1 : Generate keywords for each SF type
- Method
  - Collect high frequency words for each type from SF annotated text data
  - Select related words manually
    - Remove incident-specific words in the training data – e.g. September (time), Turkey (place)
    - crime, rescue, etc.)
  - NI has to translate and read the words in 2 hours
    - 75 words in English

• Delete overlapping words between types (e.g. injury appears in medicine,

- Step 2 : Collect spoken keywords in IL from NI
- Method
  - 1 or 2 translations in IL for each English word
    - 108 words for Kinyarwanda; 122 words for Sinhala
  - Read/record the list 5 times
- Issue
  - Prosody, rising tone in list intonation
    - Ask NI: try to pretend this is not a list; multiple reminders
  - Background sounds
    - The NIs in both ILs have babies crying, people walking, cooking? in background

- Step 3: Find keywords from speech
- Method
  - Generate acoustic embeddings for spoken words
  - Calculate the similarity between the embeddings of IL keywords and the embeddings of evaluation utterances
    - 2s sliding window, 0.5s stride on evaluation utterances
  - The confidence score of each SF in each utterance is the aggregation of similarity scores of all keywords that are related to that SF

• Base structure: generate embeddings for spoken words





Embeddings

- Triplet Loss Function: (anchor, positive, negative)  $Loss(x_a, x_p, x_n) = max\{0, m+d(x_a, x_p)-d(x_a, x_n)\}$ 
  - Bring the Anchor (current instance) close to the Positive (another instance of the same word) as far as possible from the Negative (an instance of a different word)





- In each triplet:
  - Anchor: current word
  - Positive: another sample of the same word
  - Negative: the nearest among 5 randomly chosen different word
- A problem in this commonly used approach:
  - Whether two words are the 'same word' or 'different word' depends on their exact orthographic representations
  - 'terrorist' and 'terrorism' will be encourage to have dissimilar embeddings, even if they share the same stem and are pronounced similarly



# Improving Acoustic Word Embeddings

- Observation:
  - Both IL9 (Kinyarwanda) and IL10 (Sinhala) are morphologically rich languages • IL9: kwica (crime), kwicana (criminal)

    - නුස්නවාදියා • IL10: terrorist නුස්තවාදය terrorism
- If the embedding method can map words like this together, we may not need to collect all possible inflections

# Improving Acoustic Word Embeddings

- Clustering words by their **stems** 1.
  - In each triplet:
    - Anchor: current sample
    - Positive: another sample of the same stem
    - Negative: the nearest among 5 samples of different **stems**
- 2. Learning **pronunciation distance**

 $Loss(x_1, x_2) = (d(x_1, x_2) - d_{edit}(phone_1, phone_2))^2$ 

# Low-resource Setting Experiments

- Using a subset of Switchboard (English)
  - 10k, 11k and 11k samples on the train, dev, and test
  - Less than 2 hours of speech for training
- Evaluation metrics: average precision on word-pairs (Word AP); average precision on stem-pairs (Stem AP); the correlation of embedding distance with phonetic similarity (Phonetic Sim).

| Model              | Word AP | Stem AP | Phonetic Sim |
|--------------------|---------|---------|--------------|
| Word Triplet       | 44.5    | 47.8    | 23.3         |
| Stem Triplet       | 42.3    | 54.1    | 21.7         |
| Pronunciation Dist | 26.8    | 27.3    | 38.8         |

# **Zero-resource Setting Experiments**

- Train on full Switchboard dataset

  - Select: all words with duration 0.5s to 2.0s & appearing at least 2 times • 205270 samples, 11409 unique words
- Test on IL10 (Sinhala) keywords: 610 samples, 121 unique words
- Note: In these metrics, acoustically similar words in IL10 such as 'terrorist' and 'terrorism' are treated as **different** words

Model

Word Triplet Stem Triplet **Pronunciation Dist** 

| Word AP             | Word P@4     |
|---------------------|--------------|
| 57.2                | 81.6         |
| <b>60.3</b><br>24.4 | 81.1<br>76.1 |

### Results on IL10 keywords

#### t-Distributed Stochastic Neighbor Embedding (t-SNE)



## Results on IL10 keywords

#### t-Distributed Stochastic Neighbor Embedding (t-SNE)



## Results on IL10 keywords

#### t-Distributed Stochastic Neighbor Embedding (t-SNE)



# Homework 4 - Emotion Recognition

# Homework 4 - Overview

- Emotion recognition in speech
- Dataset: the Emotional Prosody Speech and Transcript
  - 7 speakers: 4 female, 3 male

  - 2324 speech utterances
  - Acted speech
  - Speech contents are semantically neutral

- 15 emotions: neutral, interest, anxiety, pride, boredom, panic, cold-anger, hot-anger, contempt, elation, happy, shame, disgust, sadness, despair

# Homework 4 - Feature Analysis

- Extract six features from each speech segment:
  - The min, max, mean of pitch
  - The min, max, mean of intensity
- Praat or Parselmouth

  - Pitch range 75~600 Hz; autocorrelation as pitch analysis method Use only the left channel (channel 1)
- Normalization
  - Z-score normalization over the individual speaker
  - Normalizing by each speaker's neutral utterances

# Homework 4 - Feature Analysis

- Plots of the mean and standard deviation of each feature across all emotion classes
  - 12 figures (6 before normalization, 6 after normalization)
  - 15 bars in each figure (with error bars for std)
- Report and discuss at least 5 observations

# Homework 4 - Classification Experiments

- Extract a feature set using openSMILE toolkit
  - SMILExtract -C config/a\_feature\_set.conf -I speech.wav -O feature.csv
  - No need to write your own configuration file
  - Use the provided configuration files in ./config
    - Recommend: The INTERSPEECH 2009 Emotion Challenge feature set (IS09\_emotion.conf)
      - 384 features

      - Acoustic features (e.g. pitch, energy, voicing probability, MFCCs) - Functions (e.g. min, max, range, stddev, slope of linear approximation)
## Homework 4 - Classification Experiments

- Experiments
  - Leave-one-speaker-out cross validation
    - 7 multiclass classification experiments
  - Report the average of precision, average of recall, and average of F1 for each emotion class (averaging across experiments)
- Also report the average score over all emotions and all experiments sklearn.metrics.classification\_report()

precisio

- 0.5 class 1 0.0
- class 2 1.00

| n | recall | f1-score |
|---|--------|----------|
| 0 | 1.00   | 0.67     |
| 0 | 0.00   | 0.00     |
| 0 | 0.67   | 0.80     |

## Homework 4 - Error analysis

Analyze the errors made by your best performing experiment.

- Which class(es) were easiest to predict? Why do you think they were easy?
- Which were most difficult? Why do you think they were difficult?
- Based on this analysis, what ideas do you have to further improve your classifier?

## Homework 4 - What to submit

- **Code:** Feature extraction and classification experiments
- Data: You don't have to submit any data, but please make sure that all features used in the experiments can be reproduced by running the code.
- **Report:** (1) feature analysis, (2) classification experiments, (3) error analysis • **README:** Documentation of your code

## Thank you!