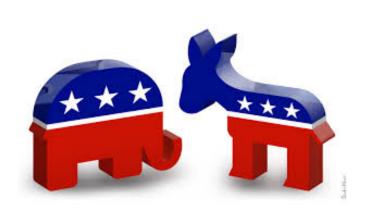
Deception and Trust in Spoken Dialogue

Sarah Ita Levitan & Julia Hirschberg COMS 6998 April 12, 2019

Today

- Deception
 - Detection from text and speech
- Trust
 - Trust and mistrust in deceptive dialogue
 - LieCatcher game for trust annotation
 - Trust in news articles

Motivation



Human performance at deception detection (Aamodt & Mitchell, 2004)

Group	# Studies	# Subjects	Accuracy %
Criminals	1	52	65.40
Secret service	1	34	64.12
Psychologists	4	508	61.56
Judges	2	194	59.01
Cops	8	511	55.16
Federal officers	4	341	54.54
Students	122	8,876	54.20
Detectives	5	341	51.16
Parole officers	1	32	40.42

Prior work

Body posture and gestures (Burgoon et al, '94) Facial expressions (Ekman, '76; Frank, '03) Biometric factors (Horvath, '73) Brain imaging technologies (Bles & Haynes, '08) Language-based Text (Adams, '96, Pennebaker et al., '01, Choudhury, '14)

Speech (Enos, '09)

Language-based deception detection

Practitioners

Statement analysis (Adams, 1996) SCAN (Smith, 2001) Reid & Associates (Buckley, 2000)

Forensic linguists

Text Bachenko et al. (2008) Ott et al. (2011) Perez-Rosas & Mihalcea (2015)

Speech

Voice Stress Analysis (Horvath, 1982) Streeter et al. (1977) Ekman et al. (1991) Enos (2009)

Challenges

Data

Ground truth annotation

Laboratory vs. real-world deception

Individual and cultural differences

Related work

Case studies Intuition Partial automation Few speakers Small amounts of data Almost all text-based Limited domains Some pseudo-science No stakes

Current work

Large scale speech: 120 hrs, 340 speakers Automatically extracted features Machine learning Statistical methods Speech + text Gender, culture, personality differences Dialogue Fake resume paradigm **Financial incentive**

Research Goals

Increase scientific understanding of deceptive behavior

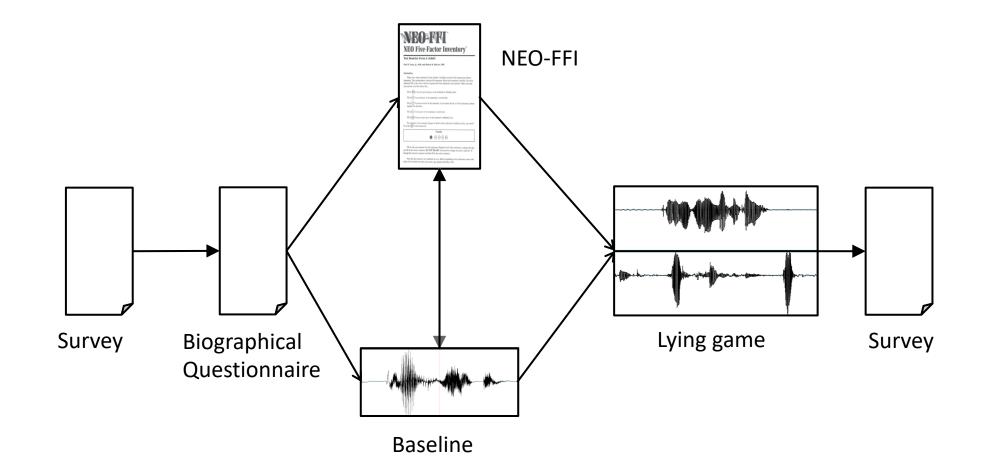
- What are the acoustic-prosodic and linguistic characteristics of deceptive speech?
- How do cues to deception differ across gender, culture, and personality types?

Develop automated methods to detect deceptive language

Contributions

- Large-scale corpus of deceptive dialogues
- Acoustic-prosodic and linguistic cues to deception
- Automatic deception classification
- Study of entrainment in deceptive dialogue
- Individual differences in cues to deception
- Deception classification leveraging speaker differences

Columbia X-Cultural Deception Corpus



Columbia X-Cultural Deception Corpus

>120 hours of subject speech 340 subjects Native speakers of MC and SAE Fake resume paradigm **NEO-FFI** personality scores **Baseline sample Financial incentive** Deception production and perception Global and local deception labels

Units of analysis

IPU Pause-free segment of speech from a single speaker

Turn Sequence of speech from one speaker without intervening speech from the other speaker

Question response Interviewee turn following an interviewer biographical question

Question chunk Set of interviewee turns responding to an interviewer biographical question and subsequent follow-up questions

Units of analysis

Unit	Interviewer	Interviewee	Total
IPU	81536	111428	192964
Turn	41768	43673	85459
Question Response	8092	8092	16184
Question Chunk	8092	8092	16184

"Have you ever tweeted?"

TRUE or FALSE?

"Have you ever tweeted?"

Deception Detection from Text and Speech

Research questions:

- 1. What are the acoustic-prosodic and linguistic characteristics of deceptive and truthful speech?
- 2. Can we train machine learning classifiers to automatically distinguish between truthful and deceptive speech?

Acoustic-prosodic and linguistic characteristics of deception and truth

Four feature sets

- Acoustic-prosodic (Praat; Boersma et al., 2002)
- Linguistic Deception Indicators (LDI)
- Linguistic Inquiry and Word Count (LIWC; Pennebaker et al., 2015)
- Complexity (Lu, 2010)

Two units of analysis

- Question response
- Question chunk

Paired t-tests; FDR correction, α =0.05

152 features

Acoustic-prosodic (8) pitch {max, mean}, intensity {max, mean}, speaking rate, jitter, shimmer NHR

LDI (28) hedge words, filled pauses, contractions, denials, laughter, DAL (Dictionary of Affect in Language; Whissel et al., 1986), specificity (Li & Nenkova, 2015)

LIWC (93) word counts for semantic classes – linguistic, markers of psychological processes, punctuation, formality

Complexity (23) measures of syntactic complexity (e.g. clauses per sentence, coordinate phrases per clause)

Acoustic-prosodic characteristics

Pitch max

Pitch mean

Intensity max

Intensity mean

Speaking rate

Jitter

Shimmer

NHR

Acoustic-prosodic characteristics

Pitch max

Pitch mean

Intensity max

Intensity mean

Speaking rate

Jitter

Shimmer

NHR

Acoustic-prosodic characteristics

Pitch max Pitch mean Intensity max Intensity mean Speaking rate Jitter Shimmer NHR

<u>Increased pitch</u> Ekman et al. (1976) Streeter et al. (1977) DePaulo et al. (2003)

<u>Increased intensity</u> DePaulo et al. (2003) – no effect

hasAbsolutelyReally hasContraction hasl hasWe hasYes hasNAposT hasNo hasNot isJustYes

isJustNo noYesORNo specificDenial thirdPersonPronouns hasFalseStart hasFilledPause numFilledPauses hasCuePhrase numCuePhrases

hasAbsolutelyReally hasContraction hasl hasWe hasYes hasNAposT hasNo hasNot isJustYes

isJustNo noYesOrNo specificDenial thirdPersonPronouns hasFalseStart hasFilledPause numFilledPauses hasCuePhrase numCuePhrases

hasAbsolutelyReally hasContraction hasl hasWe hasYes hasNAposT hasNo hasNot isJustYes

isJustNo noYesOrNo specificDenial thirdPersonPronouns hasFalseStart hasFilledPause numFilledPauses hasCuePhrase numCuePhrases

hasAbsolutelyReally hasContraction hasl hasWe hasYes hasNAposT hasNo hasNot isJustYes

isJustNo noYesOrNo specificDenial thirdPersonPronouns hasFalseStart hasFilledPause numFilledPauses hasCuePhrase numCuePhrases

hasAbsolutelyReally hasContraction hasl hasWe hasYes hasNAposT hasNo hasNot isJustYes

isJustNo noYesOrNo specificDenial thirdPersonPronouns hasFalseStart hasFilledPause numFilledPauses hasCuePhrase numCuePhrases

Adj	Auxverb	Family	Netspeak	Social
Adverb	Bio	Focuspast	Nonflu	Space
Affect	Clout	Focuspres	Number	tentat
Affiliation	Cogproc	Function	Posemo	Time
Analytic	Compare	Ι	Ppron	Tone
Apostro	Conj	Informal	Prep	Verb
Article	Dic	Insight	Pronoun	Wc
Assent	Differ	Ipron	Relative	Work
Authentic	Drives	Negate	Sixltr	WPS

Adj	Auxverb	Family	Netspeak	Social
Adverb	Bio	Focuspast	Nonflu	Space
Affect	Clout	Focuspres	Number	tentat
Affiliation	Cogproc	Function	Posemo	Time
Analytic	Compare	I	Ppron	Tone
Apostro	Conj	Informal	Prep	Verb
Article	Dic	Insight	Pronoun	WC
Assent	Differ	Ipron	Relative	Work
Authentic	Drives	Negate	Sixltr	WPS

Adj	Auxverb	Family	Netspeak	Social
Adverb	Bio	Focuspast	Nonflu	Space
Affect	Clout	Focuspres	Number	tentat
Affiliation	Cogproc	Function	Posemo	Time
Analytic	Compare	I	Ppron	Tone
Apostro	Conj	Informal	Prep	Verb
Article	Dic	Insight	Pronoun	WC
Assent	Differ	Ipron	Relative	Work
Authentic	Drives	Negate	Sixltr	WPS

Adj Adverb Affect Affiliation Analytic Apostro Article Assent Authentic

Auxverb Bio Clout Cogproc Compare Conj Dic Differ Drives

Family Focuspast Focuspres Function Informal Insight Ipron Negate

Netspeak Social Nonflu Space Number tentat Posemo Time Ppron Tone Verb Prep Pronoun WC Relative Work Sixltr **WPS**

Complexity

 \boldsymbol{W} words

VP verb phrase

 \boldsymbol{C} clauses

T t-units

DC dep. clause

CT complex t-unit

CP coordinate phrase CN complex nominal MLS mean length sentence MLT mean length t-unit MLC mean length clause C.S clauses/sentence VP.T verb phrases/t-unit C.T clauses/t-unit DC.C dep clauses/clause DC.T dep clauses/t-unit

T.S t-units/sentence CT.T complex t-units/t-unit CP.T coord phrases/t-unit CP.C coord phrases/clause CN.T complex nom/t-unit CN.C complex nom/clause

Complexity

W words

 $VP \ \text{verb phrase}$

C clauses

T t-units

DC dep. clause

CT complex t-unit

CP coordinate phrase

CN complex nominal

MLS mean length sentence MLT mean length t-unit MLC mean length clause C.S clauses/sentence **VP.T** verb phrases/t-unit C.T clauses/t-unit DC.C dep clauses/clause DC.T dep clauses/t-unit

T.S t-units/sentence CT.T complex t-units/t-unit CP.T coord phrases/t-unit CP.C coord phrases/clause CN.T complex nom/t-unit CN.C complex nom/clause Summary: acoustic-prosodic and linguistic characteristics of deception and truth

Deception

Increased pitch & intensity max

Poor speech planning

Descriptive, detailed

Complex

Hedge

Entrainment

Truth Negation Cue phrases Cognitive process Function words

Automatic deception detection

Four units of analysis:

IPU, turn, question response, question chunk

Four statistical classifiers: Random Forest, Logistic Regression, SVM, Naïve Bayes

Three neural network classifiers: DNN, LSTM, Hybrid

Six feature sets (all segmentations):

Praat, ISO9, LDI, LIWC, complexity, n-grams

Six syntactic feature sets (question response, question chunk):

POS, word+POS, PR-unlex, PR-lex, GPR-unlex, GPR-lex (Feng et al. 2010)

Evaluation:

$$F_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

Baselines:

Random: 50% accuracy

Human: 56.75% accuracy (question chunk units)

Combined features

Acoustic

Praat, IS09

Lexical

LIWC, LDI, n-grams

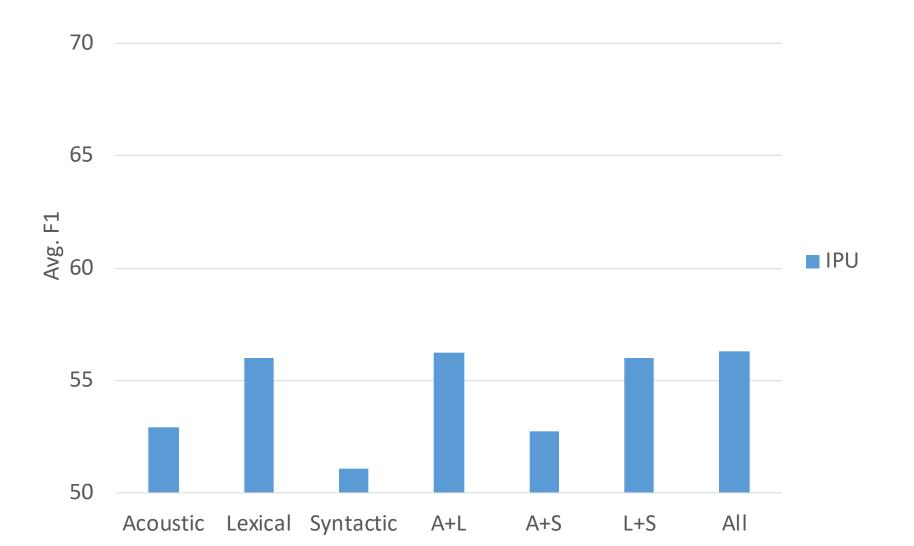
Syntactic

IPU, turn: complexity

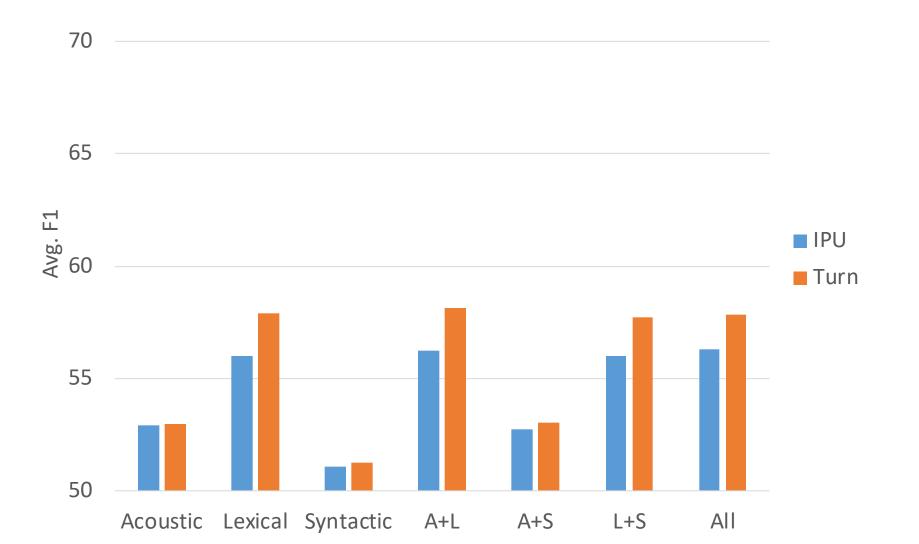
Question response, question chunk: complexity, POS, word+POS, prod rules

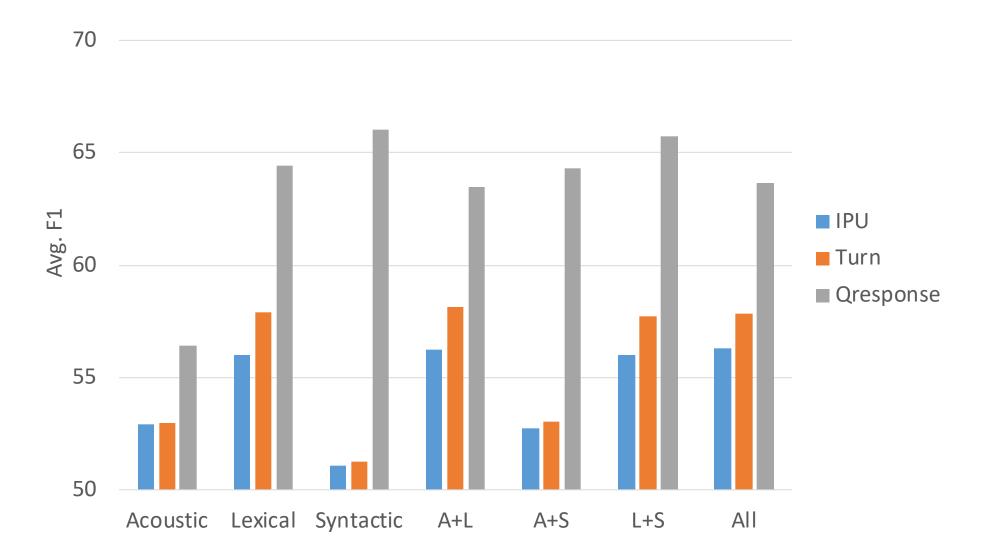
Feature selection

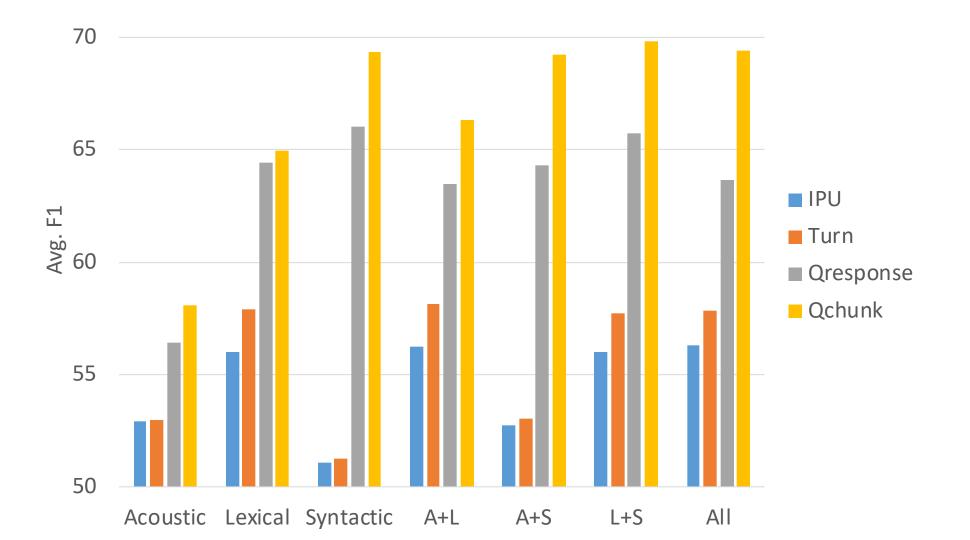
selectKBest – ANOVA F-value

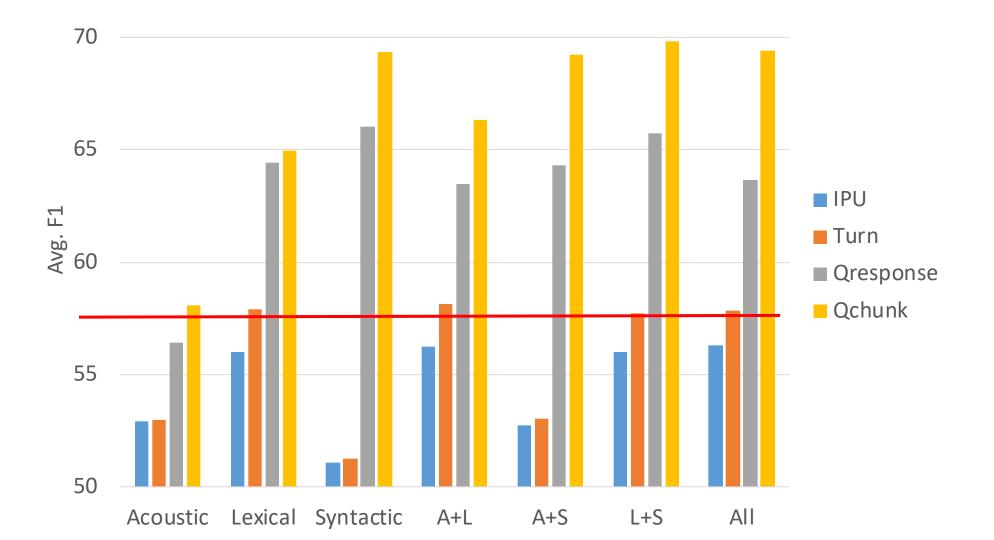


37





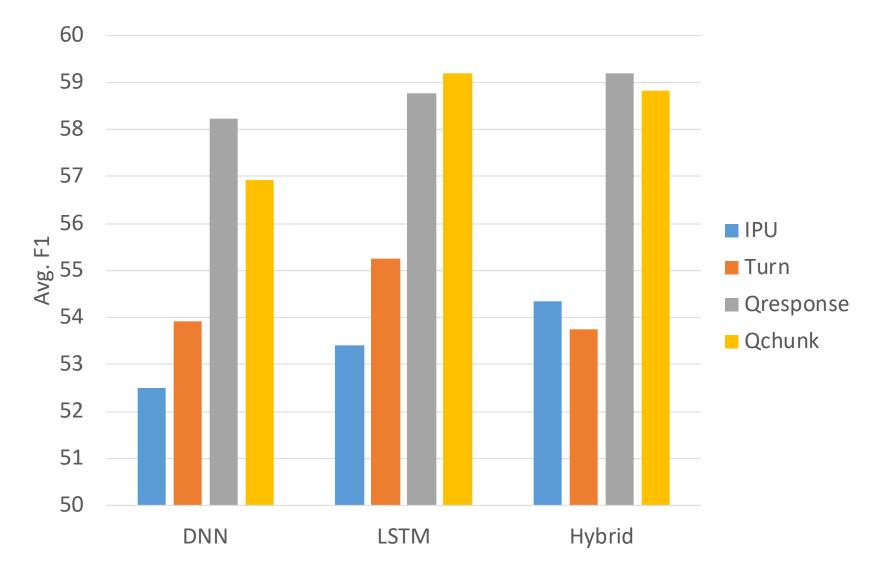




Neural network models

DNN – ISO9 openSMILE features LSTM – GloVe word embeddings Hybrid – DNN+LSTM

Neural network models



Human vs. machine performance

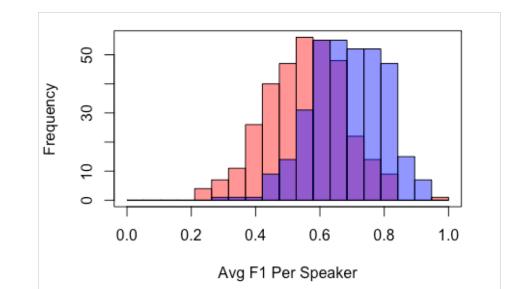
Are there particular groups of **speakers** that are easier/harder to judge?

Gender, native language, personality

Are there particular kinds of **segments** that are easier/harder to judge?

Duration, question type

Human vs. machine performance



Judge	Mean	SD	Min	25%	50%	75%	Max
CLF	68.48	11.17	31.25	60.79	69.42	77.22	91.66
Human	55.33	12.50	22.57	46.67	54.17	64.26	100.00

Are classifier and human judgments related?

Speaker-level – not related

r(340)=-0.02, p=0.73

Segment-level – strongly related

Human vs. machine **judgments** $X^{2}(1, N=7772) = 94.65, p \approx 0$ Human vs. machine **performance** $X^{2}(1, N=7772) = 32.17, p \approx 0$

What kinds of **speakers** are easy/hard to classify?

No effect of **gender** or **native language** Significant effect of **Conscientiousness** on classifier performance: F(2,337)=3.99, p=0.02

Classifier performed better at detecting deception for speakers who were **low** in Conscientiousness

What kinds of **segments** are easy/hard to classify?

Response characteristics:

duration, follow-up questions

question number, question type

Segment characteristics

Judge	Feature	Judgments					Perfo	ormance	
		t	df	р	Sig.	t	df	р	Sig.
CLF	Duration	35.48	7772	0	***	1.09	7772	0.28	NS
	Follow-up	27.48	7772	0	***	1.31	7772	0.18	NS
Human	Duration	6.19	7772	0	***	0.43	7772	0.67	NS
	Follow-up	5.19	7772	0	***	0.09	7772	0.93	NS

Segment characteristics

Judge	Feature	Judgments				Performance			
		t	df	р	Sig.	t	df	р	Sig.
CLF	Duration	35.48	7772	0	***	1.09	7772	0.28	NS
	Follow-up	27.48	7772	0	***	1.31	7772	0.18	NS
Human	Duration	6.19	7772	0	***	0.43	7772	0.67	NS
	Follow-up	5.19	7772	0	***	0.09	7772	0.93	NS

Segment characteristics

Judge	Feature	Judgments					Perfo	ormance	
		t	t df p Sig. t				df	р	Sig.
CLF	Duration Follow-up	35.48 27.48	7772 7772	0 0	*** ***	1.09 1.31	7772 7772	0.28 0.18	NS NS
Human	Duration Follow-up	6.1977720***5.1977720***				0.43 0.09	7772 7772	0.67 0.93	NS NS

Human vs. machine performance per question

```
Strong correlation: r(24) = 0.69, p=0.0002
```

Easy

Question #5: Have your parents divorced?

Question #13: Have you ever gotten into trouble with the police?

Question # 16: What is the most you have ever spent on a pair of shoes?

Hard

Question #8: Have you ever stayed overnight in the hospital as a patient?

Easy for classifier, hard for humans

Question #6: Have you ever broken a bone?

Summary: deception detection

Trained automatic classifiers for deception detection IPU 56.3 F1 (LR acoustic+lexical+syntactic) Turn 58.1 F1 (LR acoustic+lexical) Question response 66 F1 (SVM syntactic) Question chunk 69.8 F1 (NB lexical+syntactic)

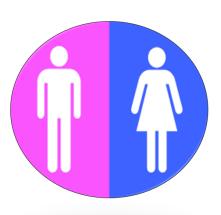
Human vs. machine performance

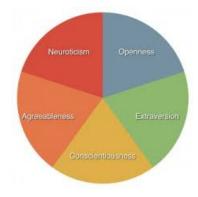
Significant variation across speakers and segments Human and CLF judgments correlated at the segment level, not speaker level Speaker traits: slight effect of personality (C-score) on CLF performance Segment characteristics: **duration**, **question number**, **question type** affect human and classifier judgments and performance

Individual differences in deceptive behavior

Research goals:

- Identify differences in cues to deception across gender, native language, and personality
- 2. Leverage speaker differences in deception classification





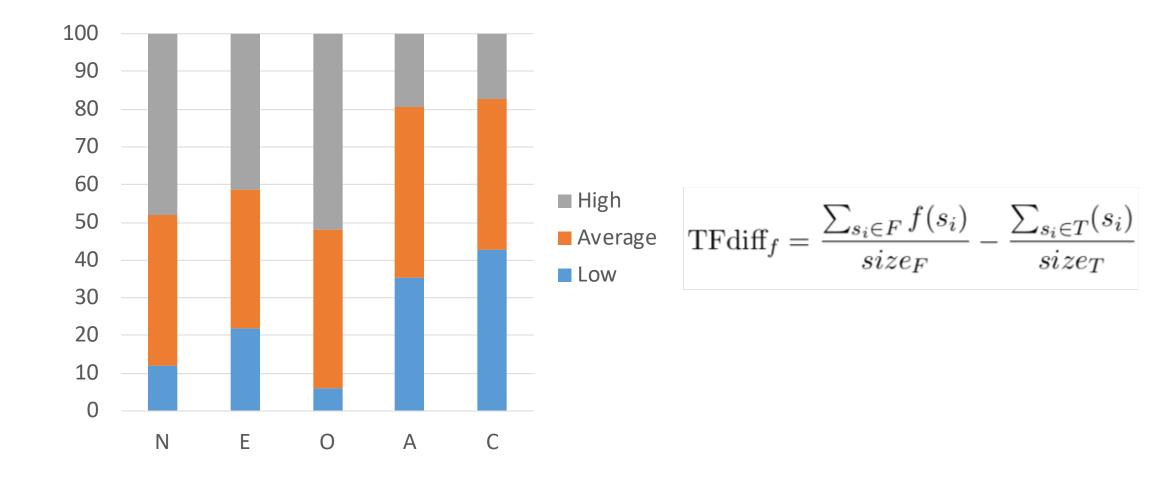
Male vs. female cues to deception

			Male		Fe	emale
Acoustic	Pitch m	ean			Intensity mean	
LDI			hasWe numHedgePhrases	hasNot		DAL.wc hasContraction
LIWC	Conj Focusp nonflu Prep	oast Re	noun lativ ace		netspeak	Adj allPunc Apostro
Complexity	W DC CT CP	CN MLS DC.C DC.T	CT.T CP.T CP.C CN.T		CN.C	

Native English vs. Mandarin cues to deception

	Engli	ish	Mai	ndarin
Acoustic	Intensity mean	jitter shimmer	Pitch mean	Speaking rate
LDI	hasHedgePhrase hasI hasLaugh numLaugh thirdPersonPronouns	DAL.wc hasCuePhrase hasNot	hasFalseStart hasYes	
LIWC	AdverbPosemoConjPpronIPronounnetspeakSocialNonfluTone	Focuspresent	space	Cogproc
Complexity	DCCNCT.TCTDC.CCN.TCPDC.TCN.C			56

Personality bin distribution



Personality differences in cues to deception

	N Neuroticism	E Extroversion	O Openness	A Agreeableness	C Conscientiousness
Acoustic	Intensity max	shimmer			NHR
LDI	specScores	hasWe	hasYes isJustYes numFilledPauses specScores	specificDenial	
LIWC	Authentic relativ space	focuspast	work	informal	
Complexity	VP C.S C VP.T DC C.T MLT DC.T				

Classification leveraging speaker differences

Three approaches:

- 1. Classification with individual traits as features
- 2. Classification with homogenous data
- 3. Classification with speaker dependent features

Classification experiments

Generic: session features

Speaker-dependent: session – baseline features

Combined: generic + speaker-dependent features

Summary: speaker differences

Identified group differences in cues to deception

- **Gender** male speakers increased pitch mean when lying, female speakers increased intensity mean when lying
- Native language signs of increased cognitive load for native Chinese speakers; complexity features only useful for native English speakers Personality most differences for Neuroticism
- Classification leveraging speaker differences
 - Speaker-dependent features may improve performance

Trust

Acoustic-Prosodic Indicators of Deception and Trust in Interview Dialogues

What are the acoustic-prosodic characteristics of **truthful** and **deceptive** speech?

What are the acoustic-prosodic characteristics of **trusted** and **mistrusted** speech?

Are there universal characteristics and/or **individual differences** in production and perception of deception?

Can we **automatically classify** deceptive speech using acoustic-prosodic features?

Truthful vs. Deceptive Interviewee Responses

Deception/Mistrust Truth/Trust

Feature	Deception	Trust
Pitch Max		
Pitch Mean		
Intensity Max		
Intensity Mean		
Speaking Rate		
Jitter		
Shimmer		
NHR		

Gender and Native Language Analysis

Deception Truth

Feature	Male	Female	English	Chinese	All
Pitch Max					
Pitch Mean		-			
Intensity Max					
Intensity Mean					
Speaking Rate					
Jitter					
Shimmer					
NHR					

Gender and Native Language: Analysis of Interviewee Traits

Mistrusted Trusted

Feature	Male	Female	English	Chinese	All
Pitch Max					
Pitch Mean					
Intensity Max					
Intensity Mean					
Speaking Rate					
Jitter					
Shimmer					
NHR					

Gender and Native Language: Analysis of Interviewer Traits

Mistrusted Trusted

Feature	Male	Female	English	Chinese	All
Pitch Max					
Pitch Mean					
Intensity Max					
Intensity Mean					
Speaking Rate					
Jitter					
Shimmer					
NHR					

Questions

- Can we use this information to:
 - Automatically detect trustworthy speech?
 - Create trustworthy synthesized speech?

Speech Corpus Annotation

- Experts
- Crowdsourcing
- Games with a purpose (GWAP)

Games With A Purpose (GWAP)

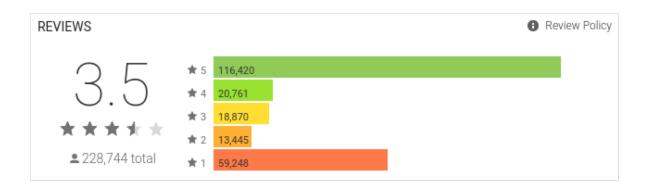
Idea: Motivate people to solve computational problems by presenting the problem as a series of simple steps in an enjoyable game format.

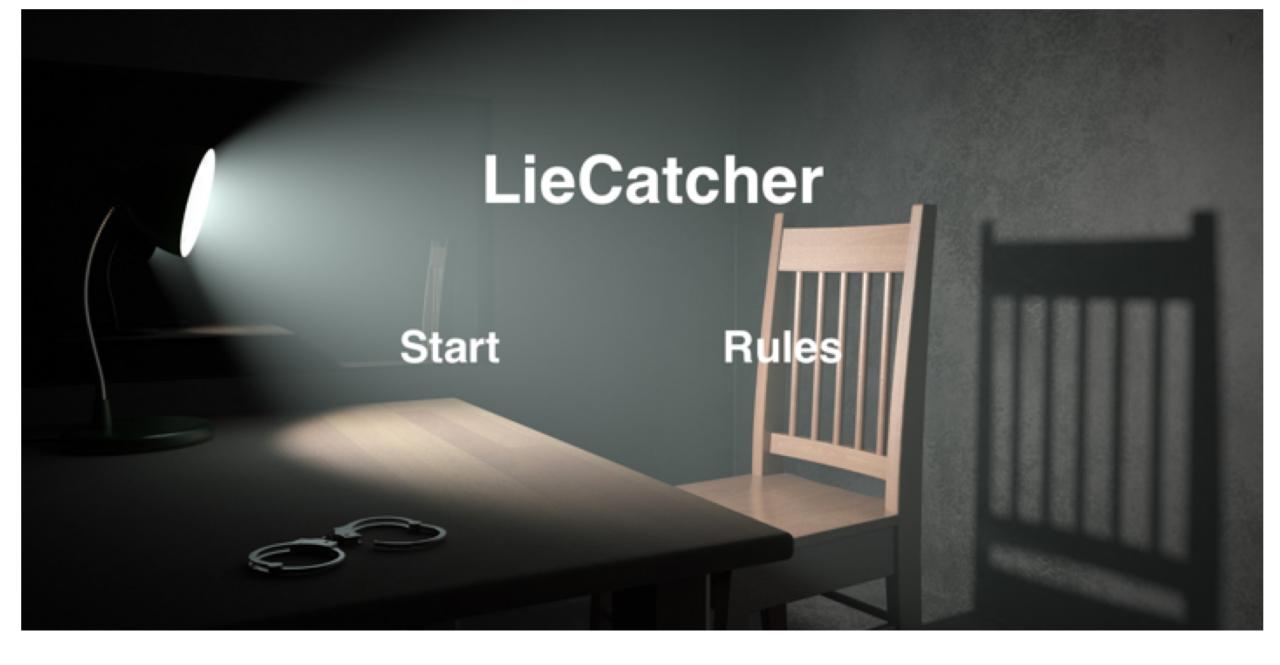
GWAP Advantages

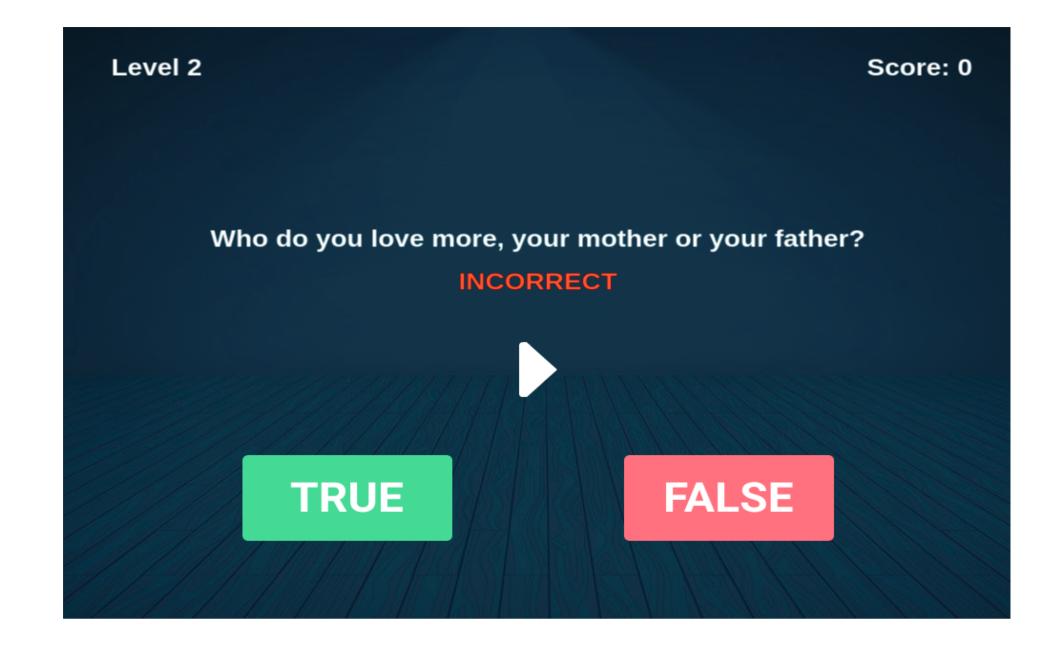
- More engaging format than monotonous annotation tasks
- Built-in incentives
- Affordable/free annotation
- Easy to distribute, accessible

Lie Detection Games

- Amusing to assess lie detection ability
- Popular lie detection app:
 - "Lie Detector Simulator Fun"
 - 10,000,000+ installs on Google Play alone
 - 3.5/5 rating, 228,744 reviews







Pilot Study

- Early feedback about game design
- 40 student participants
- Pre and post game surveys
- 2 levels with and without instant feedback
- Quality control questions

Survey Responses

- Positive feedback!
 - 85% found game easy to use
 - 75% might or would definitely recommend to friend
 - 73% preferred level 2 with instant feedback
 - 70% liked the premise of the game

Player Behavior

- Player accuracy: 49.86%
 - Level 1: 45.66%
 - Level 2: 54.44%
- 100% correct answer for quality control questions
- Some questions were "easier" than others
- Some samples were more "trusted" than others
 - But no clear consensus on "mistrusted" segments
- Gender differences

Ongoing work

- Incorporate feedback from pilot study
- Distribute game to wide audience (initial study with Amazon Mechanical Turk)
- Study acoustic-prosodic characteristics of trustworthy speech

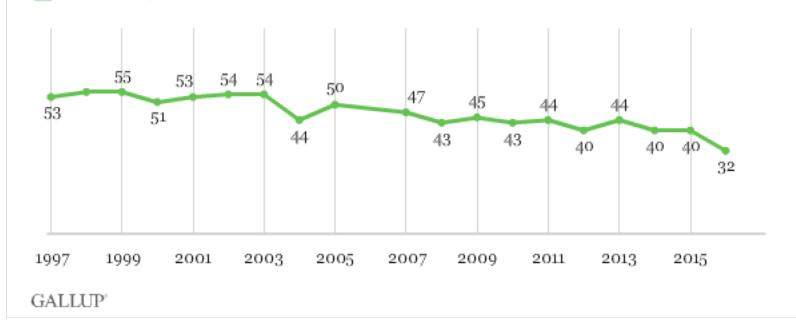
Linguistic Indicators of Trust in Media

Americans' trust in media is at an all-time low

Americans' Trust in the Mass Media

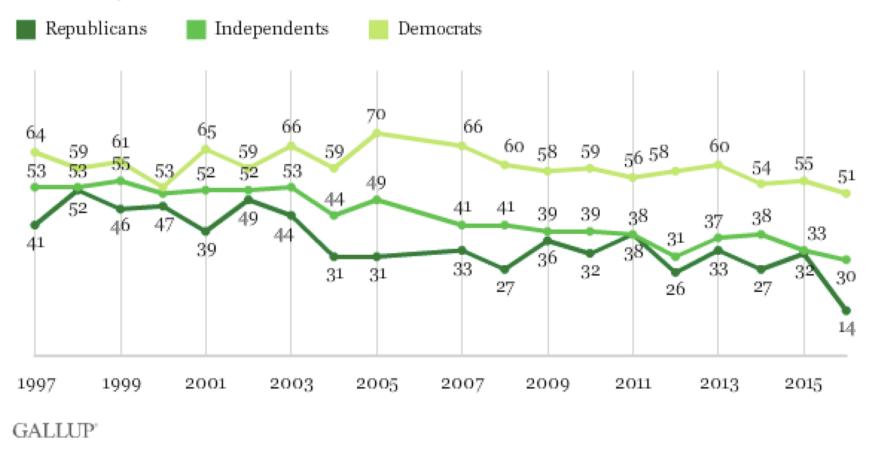
In general, how much trust and confidence do you have in the mass media -- such as newspapers, TV and radio -- when it comes to reporting the news fully, accurately and fairly -- a great deal, a fair amount, not very much or none at all?

% Great deal/Fair amount



Trust in Mass Media, by Party

% Great deal/Fair amount of trust

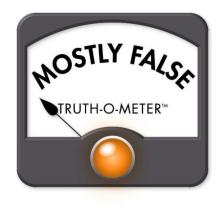


It is difficult to distinguish between real and fake news stories

- People often believe and spread fake news
- People question and mistrust accurate reports

Fake news detection

- Fact-checking data (Potthast et al., 2017; Wang, 2017)
- Crowd-sourced data (Perez-Rosas et al., 2017)
- Satirical vs. legitimate news (Rubin et al., 2016)



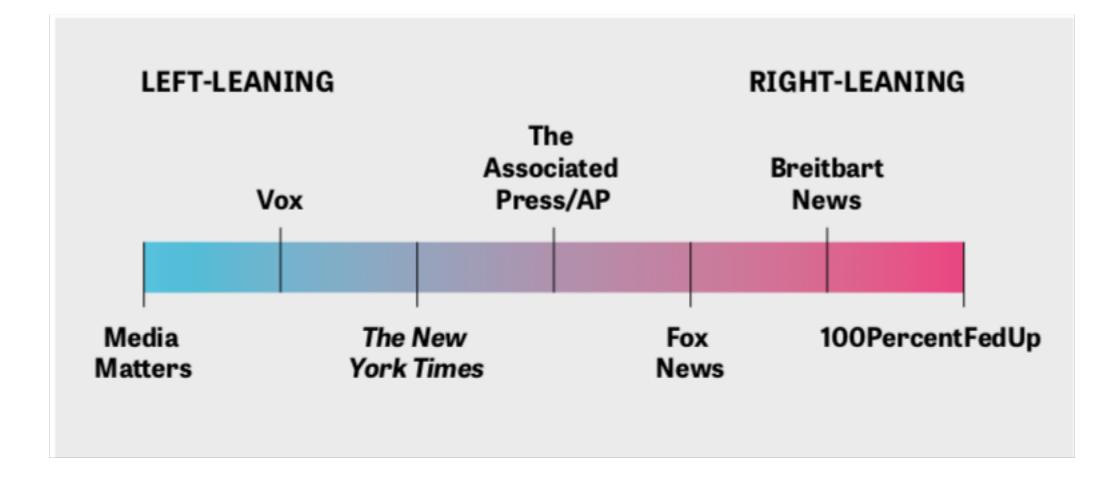
Our Goal: Trusted News Detection

- What are the linguistic characteristics of trustworthy and untrustworthy news?
- Are there differences in perception of trust across **demographic** groups?

Trusted News Corpus

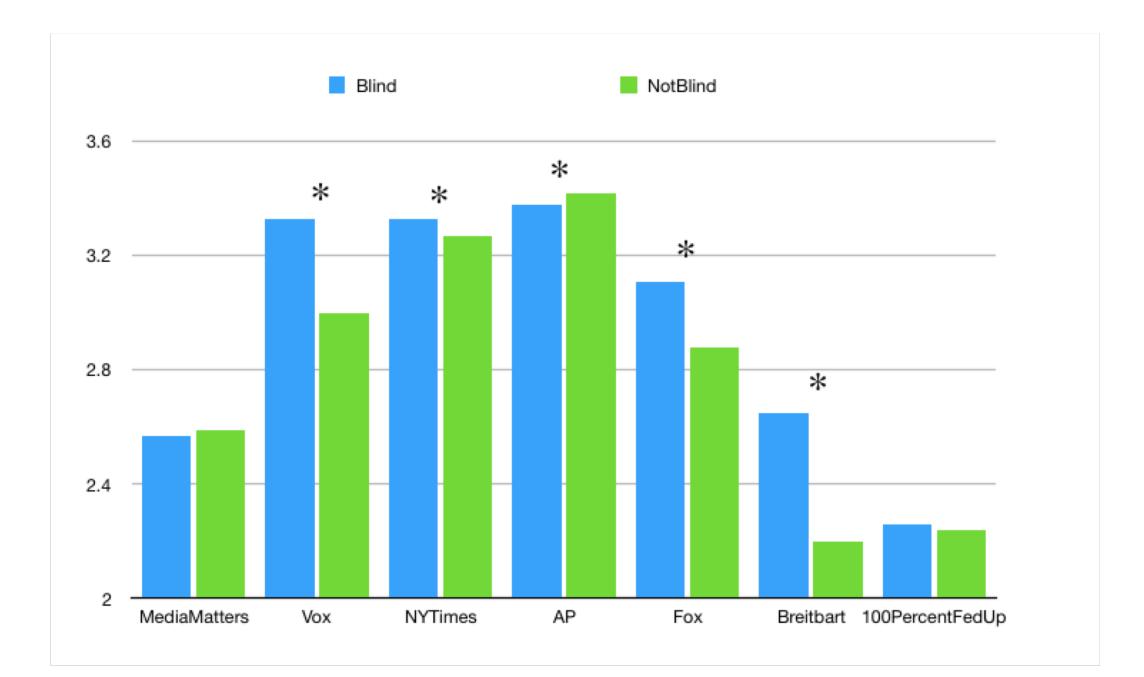
- Built by Gallup an Knight Foundation
- Online experimental platform, participants recruited from the Gallup Panel
- Trust ratings on a scale from 1-5
- Blind (B) vs. Not-blind (NB) conditions

Trusted News Corpus



Trusted News Corpus

- 1,914 news articles
- Categories: politics, economics, science
- 3,420 readers
- 66,597 judgments



Features

- LIWC
 - Custom lexicons: hedge, bias (Recasens et al., 2013)
- Syntactic complexity
- Dictionary of Affect in Language
- N-grams

Characteristics of Trusted News

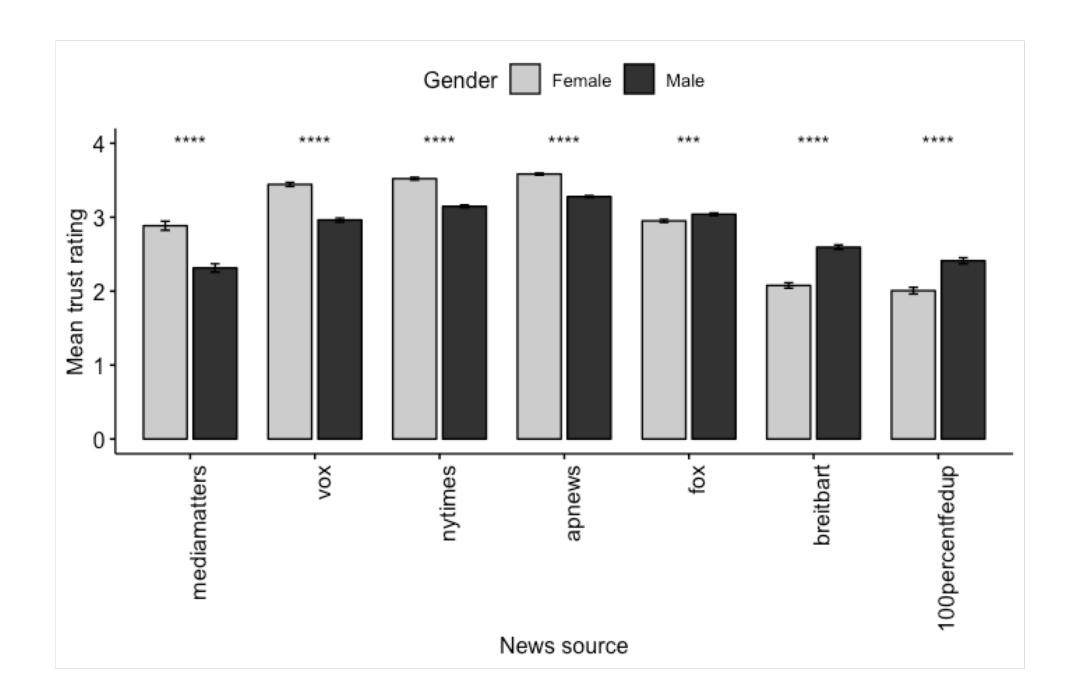
- Correlate linguistic features with trust ratings
- Analyze blind ratings only
- Headline vs. body

- BREAKING NEWS: NFL Reporter Says Colin Kaepernick Will STAND For National Anthem If NFL Team Will Give Him A Job
- Nations to work on curbing climate change despite Trump
- Canadian Professor Says 'Romanticized' Concept of Debate Breeds Anti-Abortion Activists
- Commander of 1st flight of space shuttle Challenger dies
- Paul Singer-Funded Washington Free Beacon Behind Initial Fusion GPS Trump Effort
- Domestic Abusers Are Barred From Gun Ownership, but Often Escape the Law

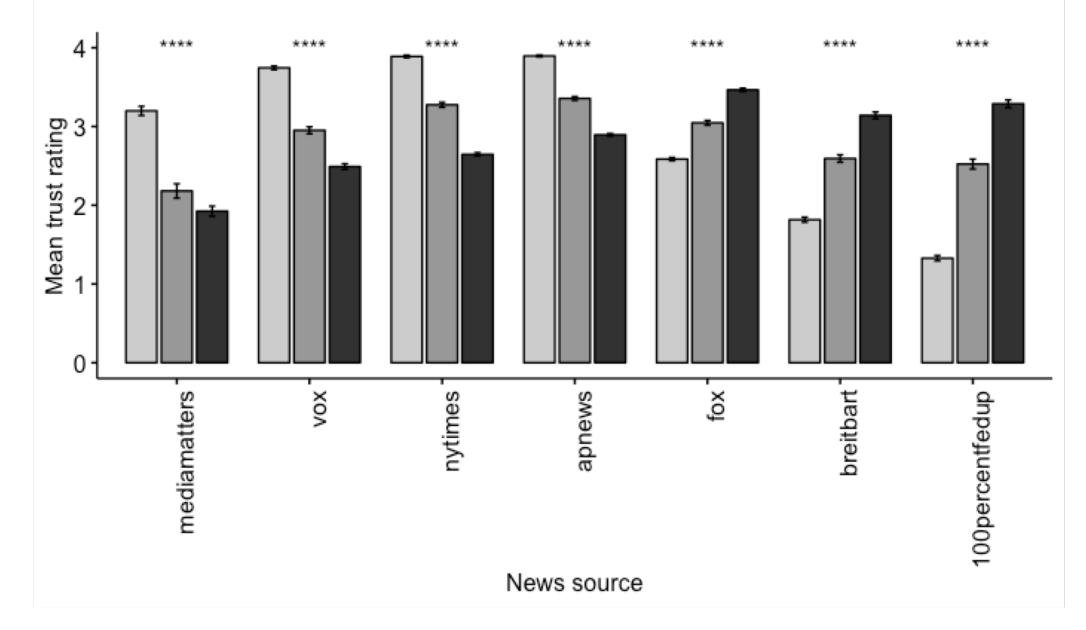
- BREAKING NEWS: NFL Reporter Says Colin Kaepernick Will STAND For National Anthem If NFL Team Will Give Him A Job
- Nations to work on curbing climate change despite Trump
- Canadian Professor Says 'Romanticized' Concept of Debate Breeds Anti-Abortion Activists
- Commander of 1st flight of space shuttle Challenger dies
- Paul Singer-Funded Washington Free Beacon Behind Initial Fusion GPS Trump Effort
- Domestic Abusers Are Barred From Gun Ownership, but Often Escape the Law

Headline analysis

Features	Trusted	Mistrusted
LIWC	Dic, we, ipron, prep, interrog, sad, in-	WC, WPS, ppron, shehe, they, auxverb,
(*custom)	sight, bio, body, health, ingest, achieve,	verb, bias*, social, friend, female,
	reward, relativ, motion, space, time,	male, discrep, certain, differ, percept,
	home, death, Comma, SemiC	see, hear, feel, sexual, focuspresent,
		leisure, money, relig, informal, netspeak,
		AllPunc, Period, Colon, Exclam, Quote,
		Apostro, Parenth, OtherP
Complexity		W, S, VP, C, T, DC, CT, CP, CN, MLS,
		MLT, MLC, C.S, VP.T, C.T, DC.C, DC.T,
		CT.T, CP.T, CP.C, CN.T, CN.C
DAL	pleasant, activate, imagery	
N-gram	puerto rico, white house, wants to, in	tax reform, tax cuts, steve bannon, tax
	puerto, we know, know about, to know,	cut, hillary clinton, donald trump, fox
	paris climate, need to, public health, on	news, fake news, tax bill, social me-
	trump, here s what, in august, things to,	dia, republican tax, president trump, in
	opioid epidemic, end of, a new	virginia, gun control, to keep, against
		trump, sexual misconduct, fox friends,
		tried to, breaking news, new jersey, on
		tax, senate candidate



Political Affiliation D P R



	Democrat	Republican
Trusted	LIWC WC, WPS, percept, see, risk, fo- cuspast, time, home Complexity W, VP, C, DC, CT, CP, CN, MLS, MLT, MLC, C.S, VPT, C.T, DC.C, DC.T, CT.T, CPT, CN.T DAL activate N-gram the white house, in a statement, the associated press, the university of, part of the, going to be, at the university, is going to, the first time, in puerto rico, said in a state- ment, at the university of	LIWC Sixltr, We, They, posemo Com- plexity CP.C DAL pleasant N-gram one of the, a lot of, in the us, the end of, the washington post, at the time, the depart- ment of, in order to, president of the, is expected to
Mistrusted	LIWC they, conj, sad, cogproc, cause, discrep, sexual, power, reward, focusfu- ture, money, nonflu N-gram one of the, according to the, be able to, at the time, in order to, the end of the	LIWC WPS, tentat, differ, percept, hear, risk Complexity MLS, MLT, C.S, VPT, C.T, DC.C, DC.T, CT.T, CN.T DAL ac- tivate N-gram president donald trump, the trump administration, the new york, the federal government, the first time, the new york times

Summary

- Deception detection from text and speech
- Characteristics of trustworthy speech
- Game framework for annotating trust
- Trust in news media

Thank you!

Julia Hirschberg Michelle Levine Andrew Rosenberg Guozhen An **Bingyan Hu Gideon Mendels Angel Maredia** Jessica Xiang Kai-Zhan Lee Zoe Baker-Peng

James Shin Ivy Chen Meredith Cox Gauri Narayan Mandi Wang Leighanne Hsu **Yocheved Levitan** Grace Ulinski Arthur Shen Nishi Cestero

Jennifer Senior Yvonne Missry Molly Scott William Wang

