
Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright c© 2018. All

rights reserved. Draft of August 12, 2018.

CHAPTER

25 Dialog Systems and Chatbots

Les lois de la conversation sont en général de ne s’y appesantir sur aucun ob-
jet, mais de passer légèrement, sans effort et sans affectation, d’un sujet à un
autre ; de savoir y parler de choses frivoles comme de choses sérieuses

The rules of conversation are, in general, not to dwell on any one subject,
but to pass lightly from one to another without effort and without affectation;
to know how to speak about trivial topics as well as serious ones;

The 18th C. Encyclopedia of Diderot, start of the entry on conversation

The literature of the fantastic abounds in inanimate objects magically endowed with
sentience and the gift of speech. From Ovid’s statue of Pygmalion to Mary Shelley’s
Frankenstein, there is something deeply moving about creating something and then
having a chat with it. Legend has it that after finishing his
sculpture Moses, Michelangelo thought it so lifelike that
he tapped it on the knee and commanded it to speak. Per-
haps this shouldn’t be surprising. Language is the mark
of humanity and sentience, and conversation or dialogconversation

dialog is the most fundamental and specially privileged arena
of language. It is the first kind of language we learn as
children, and for most of us, it is the kind of language
we most commonly indulge in, whether we are ordering
curry for lunch or buying spinach, participating in busi-
ness meetings or talking with our families, booking air-
line flights or complaining about the weather.

This chapter introduces the fundamental algorithms of conversational agents,conversational
agent

or dialog systems. These programs communicate with users in natural languagedialog system

(text, speech, or even both), and generally fall into two classes.
Task-oriented dialog agents are designed for a particular task and set up to

have short conversations (from as little as a single interaction to perhaps half-a-
dozen interactions) to get information from the user to help complete the task. These
include the digital assistants that are now on every cellphone or on home controllers
(Siri, Cortana, Alexa, Google Now/Home, etc.) whose dialog agents can give travel
directions, control home appliances, find restaurants, or help make phone calls or
send texts. Companies deploy goal-based conversational agents on their websites to
help customers answer questions or address problems. Conversational agents play
an important role as an interface to robots. And they even have applications for
social good. DoNotPay is a “robot lawyer” that helps people challenge incorrect
parking fines, apply for emergency housing, or claim asylum if they are refugees.

Chatbots are systems designed for extended conversations, set up to mimic the

2 CHAPTER 25 • DIALOG SYSTEMS AND CHATBOTS

unstructured conversational or ‘chats’ characteristic of human-human interaction,
rather than focused on a particular task like booking plane flights. These systems
often have an entertainment value, such as Microsoft’s XiaoIce (Little Bing 小冰)
system (Microsoft, 2014), which chats with people on text messaging platforms.
Chatbots are also often attempts to pass various forms of the Turing test (introduced
in Chapter 1). Yet starting from the very first system, ELIZA (Weizenbaum, 1966),
chatbots have also been used for practical purposes, such as testing theories of psy-
chological counseling.

Note that the word ‘chatbot’ is often used in the media and in industry as a
synonym for conversational agent. In this chapter we will instead follow the usage
in the natural language processing community, limiting the designation chatbot to
this second subclass of systems designed for extended, casual conversation.

Let’s see some examples of dialog systems. One dimension of difference across
systems is how many turns they can deal with. A dialog consists of multiple turns,turn

each a single contribution to the dialog (the terminology is as if dialog is a game in
which I take a turn, then you take a turn, then me, and so on). A turn can consist
of a sentence, although it might be as short as a single word or as long as multiple
sentences. The simplest such systems generally handle a single turn from the user,
acting more like question-answering or command-and-control systems. This is espe-
cially common with digital assistants. For example Fig. 25.1 shows screen captures
from an early version of Apple’s Siri personal assistant from 2014, demonstrating
this kind of single-query behavior.

(a) (b)

Figure 25.1 Two sets of interactions with Siri in 2014. (a) A question (”Find restaurants near me”) returns
restaurants, but the system was unable to interpret a follow-up question (“Are any of them Italian?”). (b) An
alternative followup (“Tell me more about the second one”) similarly fails. This early system’s confusion at
follow-up questions suggests that it is mainly designed for a single interaction.

By contrast, Fig. 25.2 shows that a 2017 version of the Siri digital assistant can
handle slightly longer dialogs, handling a second turn with a follow-up question.

While spoken dialogs with mobile phone digital assistants tend to be short, some
tasks do require longer dialogs. One such task is travel planning and management,
a key concern of dialog systems since the very influential GUS system for planning
airline travel (Bobrow et al., 1977); we’ll see an example in the next section.

Dialog systems can even be used for much more complex domains like automatic
tutoring. Figure 25.3 shows part of a dialog from the adaptive ITSPOKE dialog
system (Forbes-Riley and Litman, 2011). In this example the system detects the
hesitancy of the student’s first response (“Is it 19.6 m/s?”), and, even though the

3

(a) (b)

Figure 25.2 The same follow-up questions that Siri couldn’t answer in 2014 receive appropriate responses
when posed to Siri in 2017.

answer is correct, decides to explain the answer and ask a follow-up question before
moving on.

Tutor: What will the velocity of the object be a second after that (where the initial
velocity is 9.8 m/s and the acceleration is 9.8 m/s2)?

Student: Is it 19.6 m/s?
Tutor: Good. A second later, its velocity will be 9.8m/s + 9/8 m/s = 19.6 m/s This is

because its acceleration tells us that every second, its velocity increases by 9.8
m/s. So what’ll its velocity be, a second after that?

Student: Um. I’m thinking. 29.4 m/s
Tutor: Right. Now back to the man and his keys. We’ve shown that they both have an

acceleration of 9.8 m/ss. So, how do their velocities compare with each other, at
every second during the fall?

Figure 25.3 The tutoring domain: An excerpt from a tutorial interaction between a physics
student and the ITSPOKE system of Forbes-Riley and Litman (2011) based on the Why2-
Atlas text-based tutoring system (VanLehn et al., 2002).

Finally, conversational agents can be purely for fun, like the agents designed for
simple chit-chat like Cleverbot, an IR-based chatbot capable of carrying on the kinds
of conversations shown in Fig. 25.4.

User: Do you like Doctor Who?
Cleverbot: Yes, so funny.
User: What’s your favorite show?
Cleverbot: I don’t have one.
User: What’s your name?
Cleverbot: Jason I already told you.
User: No your real name.
Cleverbot: Stephanie IS my real name.
User: I thought it was Jason?
Cleverbot: How did you come to that conclusion.
User: Because you said so.
Cleverbot: I have to do my homework.
Figure 25.4 Chatbots: A conversation between a user and Cleverbot, an IR-based chatbot
(Carpenter, 2017).

4 CHAPTER 25 • DIALOG SYSTEMS AND CHATBOTS

We begin in the next section with chatbots, introducing the three major chatbot
architectures: rule-based systems, information retrieval systems, and transduction
models. We then turn to task-oriented dialog, introducing the frame-based architec-
ture (the GUS architecture) that underlies most modern task-based dialog systems,
the VoiceXML system that is a simple industrial instantiation of the architecture,
and information on designing and evaluating these systems.

25.1 Chatbots

Chatbots are systems that can carry on extended conversations with the goal ofchatbot

mimicking the unstructured conversational or ‘chats’ characteristic of human-human
interaction,

These systems often have an entertainment value, such as Microsoft’s XiaoIce
(Little Bing小冰) system (Microsoft, 2014), which chats with people on text mes-
saging platforms. Yet starting from the very first system, ELIZA (Weizenbaum,
1966), chatbots have also been used for practical purposes, such as testing theories
of psychological counseling.

Like practically everything else in language processing, chatbot architectures
fall into two classes: rule-based systems and corpus-based systems. Rule-based
systems include the early influential ELIZA and PARRY systems. Corpus-based
systems mine large datasets of human-human conversations, which can be done by
using information retrieval (IR-based systems simply copy a human’s response from
a previous conversation) or by using a machine translation paradigm such as neural
network sequence-to-sequence systems, to learn to map from a user utterance to a
system response.

25.1.1 Rule-based chatbots: ELIZA and PARRY
ELIZA (Weizenbaum, 1966) is the most important chatbot dialog system in the his-
tory of the field, and so we take some time here to describe its algorithm in detail.
ELIZA was designed to simulate a Rogerian psychologist, based on a branch of
clinical psychology whose methods involve drawing the patient out by reflecting pa-
tient’s statements back at them. Rogerian psychology is the rare type of conversation
in which, as Weizenbaum points out, one can “assume the pose of knowing almost
nothing of the real world”. If a patient says “I went for a long boat ride” and the
psychiatrist says “Tell me about boats”, you don’t assume she didn’t know what a
boat is, but rather assume she had some conversational goal. Most chatbots trying to
pass Turing test choose a domain with similar properties.

Let’s look at the most famous ELIZA conversation, excerpted (deleting some
material with ...) from a full interaction given in the original paper:

Men are all alike.

IN WHAT WAY

They’re always bugging us about something or other.

CAN YOU THINK OF A SPECIFIC EXAMPLE

Well my boyfriend made me come here.

YOUR BOYFRIEND MADE YOU COME HERE

He says I’m depressed much of the time.

I AM SORRY TO HEAR YOU ARE DEPRESSED

..

25.1 • CHATBOTS 5

..

WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU?

My father

YOUR FATHER

You are like my father in some ways.

WHAT RESEMBLANCE DO YOU SEE

You are not very aggressive but I think you don’t want me to notice that.

WHAT MAKES YOU THINK I AM NOT AGGRESSIVE

You don’t argue with me.

WHY DO YOU THINK I DON’T ARGUE WITH YOU

You are afraid of me.

DOES IT PLEASE YOU TO BELIEVE I’M AFRAID OF YOU

My father is afraid of everybody.

WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER

Bullies.

DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR BOYFRIEND MADE YOU COME HERE

As we summarized briefly in Chapter 1, ELIZA worked by pattern/transform
rules like the following one:

(0 YOU 0 ME) [pattern]

->

(WHAT MAKES YOU THINK I 3 YOU) [transform]

In the ELIZA pattern, 0 means Kleene*, and in the transform rules the numbers
are the index of the constituent in the pattern. Thus the number 3 refers to the second
0 in the first pattern. This rule would transfer

You hate me

into:

WHAT MAKES YOU THINK I HATE YOU

Each ELIZA pattern/rule is linked to a keyword that might occur in a user sen-
tence.

The architecture is summarized in Fig. 25.5.
Keywords are associated with a rank, with specific words being more highly

ranked, and more general words ranking lower. Consider the following user sen-
tence:

I know everybody laughed at me

Because it has the word “I”, this sentence could match the following rule whose
keyword is I:

(I *) -> (You say you 2)

producing:

YOU SAY YOU KNOW EVERYBODY LAUGHED AT YOU

But as Weizenbaum points out, “I” is a very general word and its keywords lead
to very general responses. Instead the keyword “everybody” is much more interest-
ing, since someone using universals like everybody or always is probably “referring
to some quite specific event or person”. Therefore, ELIZA prefers to respond with
the pattern associated with the more specific keyword everybody (implementing by
just assigning ”everybody” rank 5 and ”I” rank 0 in the lexicon), whose rule thus
transforms the sentence to:

6 CHAPTER 25 • DIALOG SYSTEMS AND CHATBOTS

function ELIZA GENERATOR(user sentence) returns response

Find the word w in sentence that has the highest keyword rank
if w exists

Choose the highest ranked rule r for w that matches sentence
response←Apply the transform in r to sentence
if w = ’my’

future←Apply a transformation from the ‘memory’ rule list to sentence
Push future onto memory stack

else (no keyword applies)
either

response←Apply the transform for the NONE keyword to sentence
or

response←Pop the top response from the memory stack
return(response)

Figure 25.5 A simplified sketch of the ELIZA algorithm. The power of the algorithm
comes from the particular transforms associated with each keyword.

WHO IN PARTICULAR ARE YOU THINKING OF?

If no keyword matches, ELIZA chooses a non-commital response like “PLEASE
GO ON”, “THAT’S VERY INTERESTING”, or “I SEE”.

Finally, ELIZA has a clever memory trick that accounts for the very last sen-
tence of the conversation above. Whenever the word “my” is the highest ranked
keyword, ELIZA will randomly select a transform on the MEMORY list, apply it to
the sentence, and store it on the stack:

(MEMORY MY

(0 MY 0 = LETS DISCUSS FURTHER WHY YOUR 3)

(0 MY 0 = EARLIER YOU SAID YOUR 3)

(0 MY 0 = DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR 3

Later, if no keyword matches a sentence, ELIZA will return the top of the MEM-
ORY queue instead. 1

People became deeply emotionally involved with the program. Weizenbaum
tells the story of one of his staff who would ask Weizenbaum to leave the room
when she talked with ELIZA. When Weizenbaum suggested that he might want to
store all the ELIZA conversations for later analysis, people immediately pointed
out the privacy implications, which suggested that they were having quite private
conversations with ELIZA, despite knowing that it was just software.

Eliza’s framework is still used today; modern chatbot system tools like ALICE
are based on updated versions of ELIZA’s pattern/action architecture.

A few years after ELIZA, another chatbot with a clinical psychology focus,
PARRY (Colby et al., 1971), was used to study schizophrenia. In addition to ELIZA-
like regular expressions, the PARRY system including a model of its own mental
state, with affect variables for the agent’s levels of fear and anger; certain topics of
conversation might lead PARRY to become more angry or mistrustful. If PARRY’s
anger variable is high, he will choose from a set of “hostile” outputs. If the input
mentions his delusion topic, he will increase the value of his fear variable and then
begin to express the sequence of statements related to his delusion. Parry was the

1 Fun fact: because of its structure as a queue, this MEMORY trick is the earliest known hierarchical
model of discourse in natural language processing.

25.1 • CHATBOTS 7

first known system to pass the Turing test (in 1972!); psychiatrists couldn’t distin-
guish text transcripts of interviews with PARRY from transcripts of interviews with
real paranoids (Colby et al., 1972).

25.1.2 Corpus-based chatbots
Corpus-based chatbots, instead of using hand-built rules, mine conversations of
human-human conversations, or sometimes mine the human responses from human-
machine conversations. Serban et al. (2017) summarizes some such available cor-
pora, such as conversations on chat platforms, on Twitter, or in movie dialog, which
is available in great quantities and has been shown to resemble natural conversation
(Forchini, 2013). Chatbot responses can even be extracted from sentences in corpora
of non-dialog text.

There are two common architectures for corpus-based chatbots: information re-
trieval, and machine learned sequence transduction. Like rule-based chatbots (but
unlike frame-based dialog systems), most corpus-based chatbots do very little mod-
eling of the conversational context. Instead they focus on generating a single re-
sponse turn that is appropriate given the user’s immediately previous utterance. For
this reason they are often called response generation systems. Corpus-based chat-response

generation
bots thus have some similarity to question answering systems, which focus on single
responses while ignoring context or larger conversational goals.

IR-based chatbots

The principle behind information retrieval based chatbots is to respond to a user’s
turn X by repeating some appropriate turn Y from a corpus of natural (human) text.
The differences across such systems lie in how they choose the corpus, and how they
decide what counts as an appropriate human turn to copy.

A common choice of corpus is to collect databases of human conversations.
These can come from microblogging platforms like Twitter or any Weibo (微博).
Another approach is to use corpora of movie dialog. Once a chatbot has been put
into practice, the turns that humans use to respond to the chatbot can be used as
additional conversational data for training.

Given the corpus and the user’s sentence, IR-based systems can use any retrieval
algorithm to choose an appropriate response from the corpus. The two simplest
methods are the following:
1. Return the response to the most similar turn: Given user query q and a con-
versational corpus C, find the turn t in C that is most similar to q (for example has
the highest cosine with q) and return the following turn, i.e. the human response to t
in C:

r = response
(

argmax
t∈C

qT t
||q||t||

)
(25.1)

The idea is that we should look for a turn that most resembles the user’s turn, and re-
turn the human response to that turn (Jafarpour et al. 2009, Leuski and Traum 2011).
2. Return the most similar turn: Given user query q and a conversational corpus
C, return the turn t in C that is most similar to q (for example has the highest cosine
with q):

r = argmax
t∈C

qT t
||q||t||

(25.2)

The idea here is to directly match the users query q with turns from C, since a good
response will often share words or semantics with the prior turn.

8 CHAPTER 25 • DIALOG SYSTEMS AND CHATBOTS

In each case, any similarity function can be used, most commonly cosines com-
puted either over words (using tf-idf) or over embeddings.

Although returning the response to the most similar turn seems like a more in-
tuitive algorithm, returning the most similar turn seems to work better in practice,
perhaps because selecting the response adds another layer of indirection that can
allow for more noise (Ritter et al. 2011, Wang et al. 2013).

The IR-based approach can be extended by using more features than just the
words in the q (such as words in prior turns, or information about the user), and
using any full IR ranking approach. Commercial implementations of the IR-based
approach include Cleverbot (Carpenter, 2017) and Microsoft’s XiaoIce (Little Bing
小冰) system (Microsoft, 2014).

Instead of just using corpora of conversation, the IR-based approach can be used
to draw responses from narrative (non-dialog) text. For example, the pioneering
COBOT chatbot (Isbell et al., 2000) generated responses by selecting sentences from
a corpus that combined the Unabomber Manifesto by Theodore Kaczynski, articles
on alien abduction, the scripts of “The Big Lebowski” and “Planet of the Apes”.
Chatbots that want to generate informative turns such as answers to user questions
can use texts like Wikipedia to draw on sentences that might contain those answers
(Yan et al., 2016).

Sequence to sequence chatbots

An alternate way to use a corpus to generate dialog is to think of response generation
as a task of transducing from the user’s prior turn to the system’s turn. This is
basically the machine learning version of Eliza; the system learns from a corpus to
transduce a question to an answer.

This idea was first developed by using phrase-based machine translation (Ritter
et al., 2011) to translate a user turn to a system response. It quickly became clear,
however, that the task of response generation was too different from machine trans-
lation. In machine translation words or phrases in the source and target sentences
tend to align well with each other; but in conversation, a user utterance may share
no words or phrases with a coherent response.

Instead, (roughly contemporaneously by Shang et al. 2015, Vinyals and Le 2015,
and Sordoni et al. 2015) transduction models for response generation were modeled
instead using encoder-decoder (seq2seq) models (Chapter 23), as shown in Fig. 25.6.

How are you ?

I’m fine . EOS

Encoding Decoding

EOS I’m fine .

Figure 25.6 A sequence to sequence model for neural response generation in dialog.

A number of modifications are required to the basic seq2seq model to adapt it for
the task of response generation. For example basic seq2seq models have a tendency
to produce predictable but repetitive and therefore dull responses like “I’m OK” or
“I don’t know” that shut down the conversation. This can be addressed by changing
the objective function for seq2seq model training to a mutual information objective,
or by modifying a beam decoder to keep more diverse responses in the beam (Li

25.2 • FRAME BASED DIALOG AGENTS 9

et al., 2016a).
Another problem with the simple SEQ2SEQresponse generation architecture is

its inability to model the longer prior context of the conversation. This can be done
by allowing the model to see prior turns, such as by using a hierarchical model that
summarizes information over multiple prior turns (Lowe et al., 2017b).

Finally, SEQ2SEQresponse generators focus on generating single responses, and
so don’t tend to do a good job of continuously generating responses that cohere
across multiple turns. This can be addressed by using reinforcement learning, as
well as techniques like adversarial networks, to learn to choose responses that make
the overall conversation more natural (Li et al. 2016b, Li et al. 2017).

Fig. 25.7 shows some sample responses generated by a vanilla SEQ2SEQmodel,
and from a model trained by an adversarial algorithm to produce responses that are
harder to distinguish from human responses (Li et al., 2017).

Input tell me ... how long have you had this falling sickness ?
Vanilla-SEQ2SEQ i’m not a doctor.
Adversarial a few months, i guess .

Input so i had the doctors test sammy ’s response to conditioning .
Vanilla-SEQ2SEQ sammy wrote the test sammy wrote the test .
Adversarial so he took the pills .

Input they didn ’t have much success with this problem commander .
Vanilla-SEQ2SEQ they ’re not the only ones who have been in the system .
Adversarial can we find someone else ?

Figure 25.7 Sample responses generated by a SEQ2SEQmodel trained either with a vanilla
maximum likelihood objective, or adversarially trained to produce sentences that are hard for
an adversary to distinguish from human sentences (Li et al., 2017).

Evaluating Chatbots

Chatbots are generally evaluated by humans. The slot-filling evaluations used for
task-based dialog (Section 25.2.3) aren’t appropriate for this task (Artstein et al.,
2009), and word-overlap metrics like BLEU for comparing a chatbot’s response to a
human response turn out to correlate very poorly with human judgments (Liu et al.,
2016). BLEU performs poorly because there are so many possible responses to any
given turn; word-overlap metrics work best when the space of responses is small and
lexically overlapping, as is the case in machine translation.

While human evaluation is therefore required for evaluating chatbots, there are
beginning to be models for automatic evaluation. The ADEM (Lowe et al., 2017a)
classifier is trained on a set of responses labeled by humans with how appropriate
they are, and learns to predict this label from the dialog context and the words in the
system response.

Another paradigm is adversarial evaluation (Bowman et al. 2016, Kannan andadversarial
evaluation

Vinyals 2016, Li et al. 2017), inspired by the Turing test. The idea is to train a
“Turing-like” evaluator classifier to distinguish between human-generated responses
and machine-generated responses. The more successful a response generation sys-
tem is at fooling this evaluator, the better the system.

25.2 Frame Based Dialog Agents

Modern task-based dialog systems are based on a domain ontology, a knowledgedomain
ontology

10 CHAPTER 25 • DIALOG SYSTEMS AND CHATBOTS

structure representing the kinds of intentions the system can extract from user sen-
tences. The ontology defines one or more frames, each a collection of slots, andframe

slot defines the values that each slot can take. This frame-based architecture was first
introduced in 1977 in the influential GUS system for travel planning (Bobrow et al.,
1977), and has been astonishingly long-lived, underlying most modern commercial
digital assistants. Figure 25.8 shows a conversation with the original GUS system.

GUS: Hello. My name is GUS. I can help you plan a simple trip by air. Where do you
want to go ?

Client: I want to go to San Diego on May 28
GUS: What time do you want to leave?
Client: I must be in San Diego before 10 am
GUS: Would you like P.S.A. flight 102 that arrives at 9.15 am ?
Client: What is the next flight ?
GUS: Air California flight 310 that leaves at 8.30am and arrives at 10.00am
Client: I’ll take the first one
GUS: In what name should I make a reservation, please?
Client: Dan Bobrow
GUS: I have confirmed the following flight: P.S.A. flight 102 on Wednesday May 28

from San Jose to San Diego that leaves at 7.30 am and arrives at 9.15 am.
GUS: What date do you want to return on ?
Client: On Friday in the evening.
GUS: Would you like the flight that leaves at 7.45 pm ?
Client: That’s fine.
GUS: I have confirmed the following flight: P.S.A. flight 307 on Friday May 30 from

San Diego to San Jose that leaves at 7.45 pm and arrives at 9.30 pm Thank you
for calling. Goodbye

Figure 25.8 The travel domain: A transcript of an actual dialog with the GUS system of
Bobrow et al. (1977). P.S.A. and Air California were airlines of that period.

The set of slots in a GUS-style frame specifies what the system needs to know,
and the filler of each slot is constrained to values of a particular semantic type. In
the travel domain, for example, a slot might be of type city (hence take on values
like San Francisco, or Hong Kong) or of type date, airline, or time:

Slot Type
ORIGIN CITY city
DESTINATION CITY city
DEPARTURE TIME time
DEPARTURE DATE date
ARRIVAL TIME time
ARRIVAL DATE date

Types in GUS, as in modern frame-based dialog agents, may have hierarchical
structure; for example the date type in GUS is itself a frame with slots with types
like integer or members of sets of weekday names:

DATE

MONTH NAME

DAY (BOUNDED-INTEGER 1 31)

YEAR INTEGER

WEEKDAY (MEMBER (SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY))

25.2 • FRAME BASED DIALOG AGENTS 11

25.2.1 Control structure for frame-based dialog
The control architecture of frame-based dialog systems is designed around the frame.
The goal is to fill the slots in the frame with the fillers the user intends, and then per-
form the relevant action for the user (answering a question, or booking a flight).
Most frame-based dialog systems are based on finite-state automata that are hand-
designed for the task by a dialog designer.

What city are you leaving from?

Do you want to go from
 <FROM> to <TO> on <DATE>?

Yes

Where are you going?

What date do you want to leave?

Is it a one-way trip?

What date do you want to return?

Do you want to go from <FROM> to <TO>
on <DATE> returning on <RETURN>?

No

No Yes

Yes
No

Book the flight

Figure 25.9 A simple finite-state automaton architecture for frame-based dialog.

Consider the very simple finite-state control architecture shown in Fig. 25.9,
implementing a trivial airline travel system whose job is to ask the user for the
information for 4 slots: departure city, a destination city, a time, and whether the trip
is one-way or round-trip. Let’s first associate with each slot a question to ask the
user:

Slot Question
ORIGIN CITY “From what city are you leaving?”
DESTINATION CITY “Where are you going?”
DEPARTURE TIME “When would you like to leave?”
ARRIVAL TIME “When do you want to arrive?”

Figure 25.9 shows a sample dialog manager for such a system. The states of
the FSA correspond to the slot questions, user, and the arcs correspond to actions
to take depending on what the user responds. This system completely controls the
conversation with the user. It asks the user a series of questions, ignoring (or misin-
terpreting) anything that is not a direct answer to the question and then going on to
the next question.

The speaker in control of any conversation is said to have the initiative in theinitiative

conversation. Systems that completely control the conversation in this way are thus
called system-initiative. By contrast, in normal human-human dialog, initiativesystem-

initiative
shifts back and forth between the participants (Bobrow et al. 1977, Walker and Whit-
taker 1990).

The single-initiative finite-state dialog architecture has the advantage that the
system always knows what question the user is answering. This means the system
can prepare the speech recognizer with a language model tuned to answers for this

12 CHAPTER 25 • DIALOG SYSTEMS AND CHATBOTS

question, and also makes natural language understanding easier. Most finite-state
systems also allow universal commands that can be said anywhere in the dialog,universal

like help, to give a help message, and start over (or main menu), which returns
the user to some specified main start state,. Nonetheless such a simplistic finite-state
architecture is generally applied only to simple tasks such as entering a credit card
number, or a name and password.

For most applications, users need a bit more flexibility. In a travel-planning
situation, for example, a user may say a sentence that fills multiple slots at once:

(25.3) I want a flight from San Francisco to Denver one way leaving after five
p.m. on Tuesday.

Or in cases where there are multiple frames, a user may say something to shift
frames, for example from airline reservations to reserving a rental car:

(25.4) I’d like to book a rental car when I arrive at the airport.

The standard GUS architecture for frame-based dialog systems, used in various
forms in modern systems like Apple’s Siri, Amazon’s Alexa, and the Google Assis-
tant, therefore follows the frame in a more flexible way. The system asks questions
of the user, filling any slot that the user specifies, even if a user’s response fills mul-
tiple slots or doesn’t answer the question asked. The system simply skips questions
associated with slots that are already filled. Slots may thus be filled out of sequence.
The GUS architecture is thus a kind of mixed initiative, since the user can take atmixed initiative

least a bit of conversational initiative in choosing what to talk about.
The GUS architecture also has condition-action rules attached to slots. For ex-

ample, a rule attached to the DESTINATION slot for the plane booking frame, once
the user has specified the destination, might automatically enter that city as the de-
fault StayLocation for the related hotel booking frame.

Once the system has enough information it performs the necessary action (like
querying a database of flights) and returns the result to the user.

We mentioned in passing the linked airplane and travel frames. Many domains,
of which travel is one, require the ability to deal with multiple frames. Besides
frames for car or hotel reservations, we might need frames with general route in-
formation (for questions like Which airlines fly from Boston to San Francisco?),
information about airfare practices (for questions like Do I have to stay a specific
number of days to get a decent airfare?).

In addition, once we have given the user options (such as a list of restaurants),
we can even have a special frame for ‘asking questions about this list’, whose slot is
the particular restaurant the user is asking for more information about, allowing the
user to say ‘the second one’ or ‘the Italian one’.

Since users may switch from frame to frame, the system must be able to disam-
biguate which slot of which frame a given input is supposed to fill and then switch
dialog control to that frame.

Because of this need to dynamically switch control, the GUS architecture is a
production rule system. Different types of inputs cause different productions to
fire, each of which can flexibly fill in different frames. The production rules can
then switch control according to factors such as the user’s input and some simple
dialog history like the last question that the system asked.

Commercial dialog systems provide convenient interfaces or libraries to make
it easy to build systems with these kinds of finite-state or production rule systems,
for example providing graphical interfaces to allow dialog modules to be chained
together.

25.2 • FRAME BASED DIALOG AGENTS 13

25.2.2 Natural language understanding for filling slots
The goal of the natural language understanding component is to extract three things
from the user’s utterance. The first task is domain classification: is this user fordomain

classification
example talking about airlines, programming an alarm clock, or dealing with their
calendar? Of course this 1-of-n classification tasks is unnecessary for single-domain
systems that are focused on, say, only calendar management, but multi-domain di-
alog systems are the modern standard. The second is user intent determination:intent

determination
what general task or goal is the user trying to accomplish? For example the task
could be to Find a Movie, or Show a Flight, or Remove a Calendar Appointment.
Finally, we need to do slot filling: extract the particular slots and fillers that the userslot filling

intends the system to understand from their utterance with respect to their intent.
From a user utterance like this one:

Show me morning flights from Boston to San Francisco on Tuesday

a system might want to build a representation like:

DOMAIN: AIR-TRAVEL

INTENT: SHOW-FLIGHTS

ORIGIN-CITY: Boston

ORIGIN-DATE: Tuesday

ORIGIN-TIME: morning

DEST-CITY: San Francisco

while an utterance like

Wake me tomorrow at 6

should give an intent like this:

DOMAIN: ALARM-CLOCK

INTENT: SET-ALARM

TIME: 2017-07-01 0600-0800

The task of slot-filling, and the simpler tasks of domain and intent classification,
are special cases of the task of semantic parsing discussed in Chapter 16. Dialog
agents can thus extract slots, domains, and intents from user utterances by applying
any of the semantic parsing approaches discussed in that chapter.

The method used in the original GUS system, and still quite common in indus-
trial applications, is to use hand-written rules, often as part of the condition-action
rules attached to slots or concepts.

For example we might just define a regular expression consisting of a set strings
that map to the SET-ALARM intent:

wake me (up) | set (the|an) alarm | get me up

We can build more complex automata that instantiate sets of rules like those
discussed in Chapter 17, for example extracting a slot filler by turning a string
like Monday at 2pm into an object of type date with parameters (DAY, MONTH,
YEAR, HOURS, MINUTES).

Rule-based systems can be even implemented with full grammars. Research sys-
tems like the Phoenix system (Ward and Issar, 1994) consists of large hand-designed
semantic grammars with thousands of rules. A semantic grammar is a context-freesemantic

grammar
grammar in which the left-hand side of each rule corresponds to the semantic entities
being expressed (i.e., the slot names) as in the following fragment:

14 CHAPTER 25 • DIALOG SYSTEMS AND CHATBOTS

SHOW → show me | i want | can i see|...
DEPART TIME RANGE → (after|around|before) HOUR |

morning | afternoon | evening
HOUR → one|two|three|four...|twelve (AMPM)
FLIGHTS → (a) flight | flights
AMPM → am | pm
ORIGIN → from CITY
DESTINATION → to CITY
CITY → Boston | San Francisco | Denver |Washington

Semantic grammars can be parsed by any CFG parsing algorithm (see Chap-
ter 11), resulting in a hierarchical labeling of the input string with semantic node
labels, as shown in Fig. 25.10.

S

DEPARTTIME

morning

DEPARTDATE

Tuesdayon

DESTINATION

FranciscoSanto

ORIGIN

Bostonfrom

FLIGHTS

flights

SHOW

meShow

Figure 25.10 A semantic grammar parse for a user sentence, using slot names as the internal parse tree nodes.

Whether regular expressions or parsers are used, it remains only to put the fillers
into some sort of canonical form, for example by normalizing dates as discussed in
Chapter 17.

A number of tricky issues have to be dealt with. One important issue is negation;
if a user specifies that they “can’t fly Tuesday morning”, or want a meeting ”any time
except Tuesday morning”, a simple system will often incorrectly extract “Tuesday
morning” as a user goal, rather than as a negative constraint.

Speech recognition errors must also be dealt with. One common trick is to make
use of the fact that speech recognizers often return a ranked N-best list of hypoth-N-best list

esized transcriptions rather than just a single candidate transcription. The regular
expressions or parsers can simply be run on every sentence in the N-best list, and
any patterns extracted from any hypothesis can be used.

As we saw earlier in discussing information extraction, the rule-based approach
is very common in industrial applications. It has the advantage of high precision,
and if the domain is narrow enough and experts are available, can provide sufficient
coverage as well. On the other hand, the hand-written rules or grammars can be both
expensive and slow to create, and hand-written rules can suffer from recall problems.

A common alternative is to use supervised machine learning. Assuming a train-
ing set is available which associates each sentence with the correct semantics, we
can train a classifier to map from sentences to intents and domains, and a sequence
model to map from sentences to slot fillers.

For example given the sentence:

I want to fly to San Francisco on Monday afternoon please

we might first apply a simple 1-of-N classifier (logistic regression, neural network,
etc.) that uses features of the sentence like word N-grams to determine that the
domain is AIRLINE and and the intent is SHOWFLIGHT.

Next to do slot filling we might first apply a classifier that uses similar features
of the sentence to predict which slot the user wants to fill. Here in addition to

25.2 • FRAME BASED DIALOG AGENTS 15

word unigram, bigram, and trigram features we might use named entity features or
features indicating that a word is in a particular lexicon (such as a list of cities, or
airports, or days of the week) and the classifer would return a slot name (in this case
DESTINATION, DEPARTURE-DAY, and DEPARTURE-TIME). A second classifier can
then be used to determine the filler of the named slot, for example a city classifier that
uses N-grams and lexicon features to determine that the filler of the DESTINATION
slot is SAN FRANCISCO.

An alternative is to use a sequence model (MEMMs, CRFs, RNNs) to directly
assign a slot label to each word in the sequence, following the method used for other
information extraction models in Chapter 17 (Pieraccini et al. 1991, Raymond and
Riccardi 2007, Mesnil et al. 2015, Hakkani-Tür et al. 2016). Once again we would
need a supervised training test, with sentences paired with sequences of IOB labelsIOB

like the following:

O O O O O B-DES I-DES O B-DEPTIME I-DEPTIME O

I want to fly to San Francisco on Monday afternoon please

Recall from Chapter 17 that in IOB tagging we introduce a tag for the beginning
(B) and inside (I) of each slot label, and one for tokens outside (O) any slot label.
The number of tags is thus 2n+1 tags, where n is the number of slots.

Any IOB tagger sequence model can then be trained on a training set of such
labels. Feature-based sequence models (MEMM, CRF) make use of features like
word embeddings, word unigrams and bigrams, lexicons (for example lists of city
names), and slot transition features (perhaps DESTINATION is more likely to follow
ORIGIN than the other way around) to map a user’s utterance to the slots. An MEMM
(Chapter 8) for example, combines these features of the input word wi, its neighbors
within l words wi+l

i−l , and the previous k slot tags si−1
i−k to compute the most likely slot

label sequence S from the word sequence W as follows:

Ŝ = argmax
S

P(S|W)

= argmax
S

∏
i

P(si|wi+l
i−l ,s

i−1
i−k)

= argmax
S

∏
i

exp

(∑
i

wi fi(si,wi+l
i−l ,s

i−1
i−k)

)
∑

s′∈slotset
exp

(∑
i

wi fi(s′,wi+l
i−l , t

i−1
i−k)

) (25.5)

The Viterbi algorithm is used to decode the best slot sequence Ŝ.
Neural network architectures mostly eschew the feature extraction step, instead

using the bi-LSTM architecture introduced in Chapter 9, and applied to IOB-style
named entity tagging in Chapter 17. A typical LSTM-style architecture is shown in
Fig. 25.11. Here the input is a series of words w1...wn, and the output is a series
of IOB tags s1...sn. In the architecture as introduced in Chapter 17, the input words
are converted into two embeddings: standard word2vec or GloVe embeddings, and
a character-based embedding, which are concatenated together and passed through a
bi-LSTM. The output of the bi-LSTM can be passed to a softmax choosing an IOB
tag for each input word, or to a CRF layer which uses Viterbi to find the best series
of IOB tags. In addition, neural systems can combine the domain-classification and
intent-extraction tasks with slot-filling simply by adding a domain concatenated with
an intent as the desired output for the final EOS token.

16 CHAPTER 25 • DIALOG SYSTEMS AND CHATBOTS

San Francisco on Monday

Embeddings

LSTM1 LSTM1 LSTM1 LSTM1

LSTM2 LSTM2 LSTM2 LSTM2

Concatenation

Right-to-left LSTM

Left-to-right LSTM

B-DES I-DES O B-DTIMECRF Layer

…

d+i

<EOS>

LSTM1

LSTM2

Figure 25.11 An LSTM architecture for slot filling, mapping the words in the input to a
series of IOB tags plus a final state consisting of a domain concatenated with an intent.

Once the sequence labeler has tagged the user utterance, a filler string can be ex-
tracted for each slot from the tags (e.g., ”San Francisco”), and these word strings
can then be normalized to the correct form in the ontology (perhaps the airport
code‘SFO’). This normalization can take place by using homonym dictionaries (spec-
ifying, for example, that SF, SFO, and San Francisco are the same place).

In industrial contexts, machine learning-based systems for slot-filling are often
bootstrapped from rule-based systems in a semi-supervised learning manner. A rule-
based system is first built for the domain, and a test-set is carefully labeled. As new
user utterances come in, they are paired with the labeling provided by the rule-based
system to create training tuples. A classifier can then be trained on these tuples, us-
ing the test-set to test the performance of the classifier against the rule-based system.
Some heuristics can be used to eliminate errorful training tuples, with the goal of in-
creasing precision. As sufficient training samples become available the resulting
classifier can often outperform the original rule-based system (Suendermann et al.,
2009), although rule-based systems may still remain higher-precision for dealing
with complex cases like negation.

25.2.3 Evaluating Slot Filling
An intrinsic error metric for natural language understanding systems for slot filling
is the Slot Error Rate for each sentence:

Slot Error Rate for a Sentence =
of inserted/deleted/subsituted slots
of total reference slots for sentence

(25.6)

Consider a system faced with the following sentence:

(25.7) Make an appointment with Chris at 10:30 in Gates 104

which extracted the following candidate slot structure:

Slot Filler
PERSON Chris
TIME 11:30 a.m.
ROOM Gates 104

Here the slot error rate is 1/3, since the TIME is wrong. Instead of error rate, slot
precision, recall, and F-score can also be used.

A perhaps more important, although less fine-grained, measure of success is an
extrinsic metric like task error rate. In this case, the task error rate would quantify
how often the correct meeting was added to the calendar at the end of the interaction.

25.3 • VOICEXML 17

25.2.4 Other components of frame-based dialog
We’ve focused on the natural language understanding component that is the core of
frame-based systems, but here we also briefly mention other modules.

The ASR (automatic speech recognition) component takes audio input from a
phone or other device and outputs a transcribed string of words, as discussed in
Chapter 27. Various aspects of the ASR system may be optimized specifically for
use in conversational agents.

Because what the user says to the system is related to what the system has just
said, language models in conversational agent depend on the dialog state. For ex-
ample, if the system has just asked the user “What city are you departing from?”,
the ASR language model can be constrained to just model answers to that one ques-
tion. This can be done by training an N-gram language model on answers to this
question. Alternatively a finite-state or context-free grammar can be hand written
to recognize only answers to this question, perhaps consisting only of city names or
perhaps sentences of the form ‘I want to (leave|depart) from [CITYNAME]’. Indeed,
many simple commercial dialog systems use only non-probabilistic language mod-
els based on hand-written finite-state grammars that specify all possible responses
that the system understands. We give an example of such a hand-written grammar
for a VoiceXML system in Section 25.3.

A language model that is completely dependent on dialog state is called a re-
strictive grammar, and can be used to constrain the user to only respond to therestrictive

grammar
system’s last utterance. When the system wants to allow the user more options, it
might mix this state-specific language model with a more general language model.

The language generation module of any dialog system produces the utteranceslanguage
generation

that the system says to the user. Frame-based systems tend to use template-based
generation, in which all or most of the words in the sentence to be uttered to thetemplate-based

generation
user are prespecified by the dialog designer. Sentences created by these templates
are often called prompts. Templates might be completely fixed (like ‘Hello, howprompt

can I help you?’), or can include some variables that are filled in by the generator,
as in the following:

What time do you want to leave CITY-ORIG?
Will you return to CITY-ORIG from CITY-DEST?

These sentences are then passed to the TTS (text-to-speech) component (see
Chapter 28). More sophisticated statistical generation strategies will be discussed in
Section ?? of Chapter 26.

25.3 VoiceXML

There are many commercial systems that allow developers to implement frame-
based dialog systems, including the user-definable skills in Amazon Alexa or the
actions in Google Assistant. These systems provide libraries for defining the rules
for detecting user intents and filling in slots, and for expressing the architecture for
controlling which frames and actions the system should take at which times.

Instead of focusing on a commercial engine, we introduce here a simple declar-
ative formalism that has similar capabilities to each of them: VoiceXML, the VoiceVoiceXML

Extensible Markup Language (http://www.voicexml.org/), an XML-based di-
alog design language for creating simple frame-based dialogs. Although VoiceXML
is simpler than a full commercial frame-based system (it’s deterministic, and hence

http://www.voicexml.org/

18 CHAPTER 25 • DIALOG SYSTEMS AND CHATBOTS

only allows non-probabilistic grammar-based language models and rule-based se-
mantic parsers), it’s still a handy way to get a hands-on grasp of frame-based dialog
system design.

A VoiceXML document contains a set of dialogs, each a menu or a form. A form
is a frame, whose slots are called fields. The VoiceXML document in Fig. 25.12
shows three fields for specifying a flight’s origin, destination, and date. Each field
has a variable name (e.g., origin) that stores the user response, a prompt, (e.g.,prompt

Which city do you want to leave from), and a grammar that is passed to the speech
recognition engine to specify what is allowed to be recognized. The grammar for
the first field in Fig. 25.12 allows the three phrases san francisco, barcelona, and
new york. The VoiceXML interpreter walks through a form in document order,
repeatedly selecting each item in the form, and each field in order.

<noinput>
I’m sorry, I didn’t hear you. <reprompt/>
</noinput>

<nomatch>
I’m sorry, I didn’t understand that. <reprompt/>
</nomatch>

<form>
<block> Welcome to the air travel consultant. </block>
<field name="origin">

<prompt> Which city do you want to leave from? </prompt>
<grammar type="application/x=nuance-gsl">
[(san francisco) barcelona (new york)]

</grammar>
<filled>
<prompt> OK, from <value expr="origin"/> </prompt>

</filled>
</field>
<field name="destination">

<prompt> And which city do you want to go to? </prompt>
<grammar type="application/x=nuance-gsl">
[(san francisco) barcelona (new york)]

</grammar>
<filled>
<prompt> OK, to <value expr="destination"/> </prompt>

</filled>
</field>
<field name="departdate" type="date">

<prompt> And what date do you want to leave? </prompt>
<filled>
<prompt> OK, on <value expr="departdate"/> </prompt>

</filled>
</field>
<block>

<prompt> OK, I have you are departing from <value expr="origin"/>
to <value expr="destination"/> on <value expr="departdate"/>

</prompt>
send the info to book a flight...

</block>
</form>

Figure 25.12 A VoiceXML script for a form with three fields, which confirms each field
and handles the noinput and nomatch situations.

The prologue of the example shows two global defaults for error handling. If the
user doesn’t answer after a prompt (i.e., silence exceeds a timeout threshold), the
VoiceXML interpreter will play the <noinput> prompt. If the user says something
that doesn’t match the grammar for that field, the VoiceXML interpreter will play the
<nomatch> prompt. VoiceXML provides a <reprompt/> command, which repeats
the prompt for whatever field caused the error.

The <filled> tag for a field is executed by the interpreter as soon as the field
has been filled by the user. Here, this feature is used to confirm the user’s input.

VoiceXML 2.0 specifies seven built-in grammar types: boolean, currency,
date, digits, number, phone, and time. By specifying the departdate field as

25.3 • VOICEXML 19

type date, a date-specific language model will be passed to the speech recognizer.

<noinput> I’m sorry, I didn’t hear you. <reprompt/> </noinput>

<nomatch> I’m sorry, I didn’t understand that. <reprompt/> </nomatch>

<form>
<grammar type="application/x=nuance-gsl">
<![CDATA[
Flight (?[

(i [wanna (want to)] [fly go])
(i’d like to [fly go])
([(i wanna)(i’d like a)] flight)

]
[
([from leaving departing] City:x) {<origin $x>}
([(?going to)(arriving in)] City:x) {<destination $x>}
([from leaving departing] City:x
[(?going to)(arriving in)] City:y) {<origin $x> <destination $y>}

]
?please

)
City [[(san francisco) (s f o)] {return("san francisco, california")}

[(denver) (d e n)] {return("denver, colorado")}
[(seattle) (s t x)] {return("seattle, washington")}

]
]]> </grammar>

<initial name="init">
<prompt> Welcome to the consultant. What are your travel plans? </prompt>

</initial>

<field name="origin">
<prompt> Which city do you want to leave from? </prompt>
<filled>
<prompt> OK, from <value expr="origin"/> </prompt>

</filled>
</field>
<field name="destination">
<prompt> And which city do you want to go to? </prompt>
<filled>
<prompt> OK, to <value expr="destination"/> </prompt>

</filled>
</field>
<block>
<prompt> OK, I have you are departing from <value expr="origin"/>

to <value expr="destination"/>. </prompt>
send the info to book a flight...

</block>
</form>

Figure 25.13 A mixed-initiative VoiceXML dialog. The grammar allows sentences that
specify the origin or destination cities or both. The user can respond to the initial prompt by
specifying origin city, destination city, or both.

Figure 25.13 gives a mixed initiative example, allowing the user to answer ques-
tions in any order or even fill in multiple slots at once. The VoiceXML interpreter
has a guard condition on fields, a test that keeps a field from being visited; the default
test skips a field if its variable is already set.

Figure 25.13 also shows a more complex CFG grammar with two rewrite rules,
Flight and City. The Nuance GSL grammar formalism uses parentheses () to
mean concatenation and square brackets [] to mean disjunction. Thus, a rule like
(25.8) means that Wantsentence can be expanded as i want to fly or i want
to go, and Airports can be expanded as san francisco or denver.

(25.8) Wantsentence (i want to [fly go])

Airports [(san francisco) denver]

VoiceXML grammars allow semantic attachments, such as the text string ("denver,
colorado") the return for the City rule, or a slot/filler , like the attachments for the
Flight rule which fills the slot (<origin> or <destination> or both) with the
value passed up in the variable x from the City rule.

20 CHAPTER 25 • DIALOG SYSTEMS AND CHATBOTS

TTS Performance Was the system easy to understand ?
ASR Performance Did the system understand what you said?
Task Ease Was it easy to find the message/flight/train you wanted?
Interaction Pace Was the pace of interaction with the system appropriate?
User Expertise Did you know what you could say at each point?
System Response How often was the system sluggish and slow to reply to you?
Expected Behavior Did the system work the way you expected it to?
Future Use Do you think you’d use the system in the future?

Figure 25.14 User satisfaction survey, adapted from Walker et al. (2001).

Because Fig. 25.13 is a mixed-initiative grammar, the grammar has to be ap-
plicable to any of the fields. This is done by making the expansion for Flight a
disjunction; note that it allows the user to specify only the origin city, the destination
city, or both.

25.4 Evaluating Dialog Systems

Evaluation is crucial in dialog system design. If the task is unambiguous, we can
simply measure absolute task success (did the system book the right plane flight, or
put the right event on the calendar).

To get a more fine-grained idea of user happiness, we can compute a user sat-
isfaction rating, having users interact with a dialog system to perform a task and
then having them complete a questionnaire. For example, Fig. 25.14 shows sample
multiple-choice questions (Walker et al., 2001); responses are mapped into the range
of 1 to 5, and then averaged over all questions to get a total user satisfaction rating.

It is often economically infeasible to run complete user satisfaction studies after
every change in a system. For this reason, it is useful to have performance evaluation
heuristics that correlate well with human satisfaction. A number of such factors and
heuristics have been studied, often grouped into two kinds of criteria: how well the
system allows users to accomplish their goals (maximizing task success) the least
problems (minimizing costs) :

Task completion success: Task success can be measured by evaluating the cor-
rectness of the total solution. For a frame-based architecture, this might be the per-
centage of slots that were filled with the correct values or the percentage of subtasks
that were completed. Interestingly, sometimes the user’s perception of whether they
completed the task is a better predictor of user satisfaction than the actual task com-
pletion success. (Walker et al., 2001).

Efficiency cost: Efficiency costs are measures of the system’s efficiency at helping
users. This can be measured by the total elapsed time for the dialog in seconds, the
number of total turns or of system turns, or the total number of queries (Polifroni
et al., 1992). Other metrics include the number of system non-responses and the
“turn correction ratio”: the number of system or user turns that were used solely
to correct errors divided by the total number of turns (Danieli and Gerbino 1995,
Hirschman and Pao 1993).

Quality cost: Quality cost measures other aspects of the interactions that affect
users’ perception of the system. One such measure is the number of times the
ASR system failed to return any sentence, or the number of ASR rejection prompts.
Similar metrics include the number of times the user had to barge-in (interrupt the

25.5 • DIALOG SYSTEM DESIGN 21

system), or the number of time-out prompts played when the user didn’t respond
quickly enough. Other quality metrics focus on how well the system understood and
responded to the user. The most important is the slot error rate described above,
but other components include the inappropriateness (verbose or ambiguous) of the
system’s questions, answers, and error messages or the correctness of each question,
answer, or error message (Zue et al. 1989, Polifroni et al. 1992).

25.5 Dialog System Design

The user plays a more important role in dialog systems than in most other areas of
speech and language processing, and thus this area of language processing is the one
that is most closely linked with the field of Human-Computer Interaction (HCI).

How does a dialog system developer choose dialog strategies, prompts, error
messages, and so on? This process is often called voice user interface design, andvoice user

interface
generally follows the user-centered design principles of Gould and Lewis (1985):

1. Study the user and task: Understand the potential users and the nature of the
task by interviews with users, investigation of similar systems, and study of related
human-human dialogs.

2. Build simulations and prototypes: A crucial tool in building dialog systems is
the Wizard-of-Oz system. In wizard systems, the users interact with what they thinkWizard-of-Oz

system
is a software agent but is in fact a human “wizard” disguised by a software interface
(Gould et al. 1983, Good et al. 1984, Fraser and Gilbert 1991). The name comes
from the children’s book The Wizard of Oz (Baum, 1900), in which the Wizard
turned out to be just a simulation controlled by a man behind a curtain or screen.

A Wizard-of-Oz system can be used to
test out an architecture before implementa-
tion; only the interface software and databases
need to be in place. The wizard gets input
from the user, has a graphical interface to a
database to run sample queries based on the
user utterance, and then has a way to output
sentences, either by typing them or by some
combination of selecting from a menu and
typing. The wizard’s linguistic output can be
disguised by a text-to-speech system or, more
frequently, by using text-only interactions.

The results of a wizard-of-oz system can
also be used as training data to training a pilot
dialog system. While wizard-of-oz systems
are very commonly used, they are not a per-
fect simulation; it is difficult for the wizard to
exactly simulate the errors, limitations, or time constraints of a real system; results
of wizard studies are thus somewhat idealized, but still can provide a useful first idea
of the domain issues.

3. Iteratively test the design on users: An iterative design cycle with embedded
user testing is essential in system design (Nielsen 1992, Cole et al. 1997, Yankelovich
et al. 1995, Landauer 1995). For example in a famous anecdote in dialog design his-

22 CHAPTER 25 • DIALOG SYSTEMS AND CHATBOTS

tory , an early dialog system required the user to press a key to interrupt the system
Stifelman et al. (1993). But user testing showed users barged in, which led to a re-
design of the system to recognize overlapped speech. The iterative method is also
important for designing prompts that cause the user to respond in normative ways.

There are a number of good books on conversational interface design (Cohen
et al. 2004, Harris 2005, Pearl 2017).

25.5.1 Ethical Issues in Dialog System Design

Ethical issues have long been understood to be crucial in the design of artificial
agents, predating the conversational agent itself. Mary Shelley’s classic discussion
of the problems of creating agents without a consideration of ethical and humanistic
concerns lies at the heart of her novel Frankenstein. One
important ethical issue has to do with bias. As we dis-
cussed in Section ??, machine learning systems of any
kind tend to replicate biases that occurred in the train-
ing data. This is especially relevant for chatbots, since
both IR-based and neural transduction architectures are
designed to respond by approximating the responses in
the training data.

A well-publicized instance of this occurred with Mi-
crosoft’s 2016 Tay chatbot, which was taken offline 16Tay

hours after it went live, when it began posting messages
with racial slurs, conspiracy theories, and personal attacks. Tay had learned these
biases and actions from its training data, including from users who seemed to be
purposely teaching it to repeat this kind of language (Neff and Nagy, 2016).

Henderson et al. (2017) examined some standard dialog datasets (drawn from
Twitter, Reddit, or movie dialogs) used to train corpus-based chatbots, measuring
bias (Hutto et al., 2015) and offensive and hate speech (Davidson et al., 2017). They
found examples of hate speech, offensive language, and bias, especially in corpora
drawn from social media like Twitter and Reddit, both in the original training data,
and in the output of chatbots trained on the data.

Another important ethical issue is privacy. Already in the first days of ELIZA,
Weizenbaum pointed out the privacy implications of people’s revelations to the chat-
bot. Henderson et al. (2017) point out that home dialogue agents may accidentally
record a user revealing private information (e.g. “Computer, turn on the lights –an-
swers the phone –Hi, yes, my password is...”), which may then be used to train a
conversational model. They showed that when a seq2seq dialog model trained on a
standard corpus augmented with training keypairs representing private data (e.g. the
keyphrase ”social security number” followed by a number), an adversary who gave
the keyphrase was able to recover the secret information with nearly 100% accuracy.

Finally, chatbots raise important issues of gender equality. Current chatbots are
overwhelmingly given female names, likely perpetuating the stereotype of a sub-
servient female servant (Paolino, 2017). And when users use sexually harassing
language, most commercial chatbots evade or give positive responses rather than
responding in clear negative ways (Fessler, 2017).

25.6 • SUMMARY 23

25.6 Summary

Conversational agents are a crucial speech and language processing application
that are already widely used commercially.

• Chatbots are conversational agents designed to mimic the appearance of in-
formal human conversation. Rule-based chatbots like ELIZA and its modern
descendants use rules to map user sentences into system responses. Corpus-
based chatbots mine logs of human conversation to learn to automatically map
user sentences into system responses.

• For task-based dialog, most commercial dialog systems use the GUS or frame-
based architecture, in which the designer specifies a domain ontology, a set
of frames of information that the system is designed to acquire from the user,
each consisting of slots with typed fillers

• A number of commercial systems allow developers to implement simple frame-
based dialog systems, such as the user-definable skills in Amazon Alexa or the
actions in Google Assistant. VoiceXML is a simple declarative language that
has similar capabilities to each of them for specifying deterministic frame-
based dialog systems.

• Dialog systems are a kind of human-computer interaction, and general HCI
principles apply in their design, including the role of the user, simulations
such as Wizard-of-Oz systems, and the importance of iterative design and
testing on real users.

Bibliographical and Historical Notes
The earliest conversational systems were chatbots like ELIZA (Weizenbaum, 1966)
and PARRY (Colby et al., 1971). ELIZA had a widespread influence on popular
perceptions of artificial intelligence, and brought up some of the first ethical ques-
tions in natural language processing —such as the issues of privacy we discussed
above as well the role of algorithms in decision-making— leading its creator Joseph
Weizenbaum to fight for social responsibility in AI and computer science in general.

Another early system, the GUS system (Bobrow et al., 1977) had by the late
1970s established the main frame-based paradigm that became the dominant indus-
trial paradigm for dialog systems for over 30 years.

In the 1990s, stochastic models that had first been applied to natural language
understanding began to be applied to dialog slot filling (Miller et al. 1994, Pieraccini
et al. 1991).

By around 2010 the GUS architecture finally began to be widely used commer-
cially in phone-based dialog systems like Apple’s SIRI (Bellegarda, 2013) and other
digital assistants.

The rise of the web and online chatbots brought new interest in chatbots and gave
rise to corpus-based chatbot architectures around the turn of the century, first using
information retrieval models and then in the 2010s, after the rise of deep learning,
with sequence-to-sequence models.

24 CHAPTER 25 • DIALOG SYSTEMS AND CHATBOTS

Exercises
25.1 Write a finite-state automaton for a dialogue manager for checking your bank

balance and withdrawing money at an automated teller machine.

25.2 A dispreferred response is a response that has the potential to make a persondispreferred
response

uncomfortable or embarrassed in the conversational context; the most com-
mon example dispreferred responses is turning down a request. People signal
their discomfort with having to say no with surface cues (like the word well),
or via significant silence. Try to notice the next time you or someone else
utters a dispreferred response, and write down the utterance. What are some
other cues in the response that a system might use to detect a dispreferred
response? Consider non-verbal cues like eye gaze and body gestures.

25.3 When asked a question to which they aren’t sure they know the answer, peo-
ple display their lack of confidence by cues that resemble other dispreferred
responses. Try to notice some unsure answers to questions. What are some
of the cues? If you have trouble doing this, read Smith and Clark (1993) and
listen specifically for the cues they mention.

25.4 Build a VoiceXML dialogue system for giving the current time around the
world. The system should ask the user for a city and a time format (24 hour,
etc) and should return the current time, properly dealing with time zones.

25.5 Implement a small air-travel help system based on text input. Your system
should get constraints from users about a particular flight that they want to
take, expressed in natural language, and display possible flights on a screen.
Make simplifying assumptions. You may build in a simple flight database or
you may use a flight information system on the Web as your backend.

25.6 Augment your previous system to work with speech input through VoiceXML.
(Or alternatively, describe the user interface changes you would have to make
for it to work via speech over the phone.) What were the major differences?

25.7 Design a simple dialogue system for checking your email over the telephone.
Implement in VoiceXML.

25.8 Test your email-reading system on some potential users. Choose some of the
metrics described in Section 25.4 and evaluate your system.

Exercises 25

Artstein, R., Gandhe, S., Gerten, J., Leuski, A., and Traum,
D. (2009). Semi-formal evaluation of conversational char-
acters. In Languages: From Formal to Natural, pp. 22–35.
Springer.

Baum, L. F. (1900). The Wizard of Oz. Available at Project
Gutenberg.

Bellegarda, J. R. (2013). Natural language technology in
mobile devices: Two grounding frameworks. In Mobile
Speech and Advanced Natural Language Solutions, pp.
185–196. Springer.

Bobrow, D. G., Kaplan, R. M., Kay, M., Norman, D. A.,
Thompson, H., and Winograd, T. (1977). GUS, A frame
driven dialog system. Artificial Intelligence, 8, 155–173.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefow-
icz, R., and Bengio, S. (2016). Generating sentences from
a continuous space. In CoNLL-16, pp. 10–21.

Carpenter, R. (2017). Cleverbot. http://www.cleverbot.com,
accessed 2017.

Cohen, M. H., Giangola, J. P., and Balogh, J. (2004). Voice
User Interface Design. Addison-Wesley.

Colby, K. M., Hilf, F. D., Weber, S., and Kraemer, H. C.
(1972). Turing-like indistinguishability tests for the valida-
tion of a computer simulation of paranoid processes. Arti-
ficial Intelligence, 3, 199–221.

Colby, K. M., Weber, S., and Hilf, F. D. (1971). Artificial
paranoia. Artificial Intelligence, 2(1), 1–25.

Cole, R. A., Novick, D. G., Vermeulen, P. J. E., Sutton, S.,
Fanty, M., Wessels, L. F. A., de Villiers, J. H., Schalkwyk,
J., Hansen, B., and Burnett, D. (1997). Experiments with a
spoken dialogue system for taking the US census. Speech
Communication, 23, 243–260.

Danieli, M. and Gerbino, E. (1995). Metrics for evaluating
dialogue strategies in a spoken language system. In Pro-
ceedings of the 1995 AAAI Spring Symposium on Empir-
ical Methods in Discourse Interpretation and Generation,
Stanford, CA, pp. 34–39. AAAI Press.

Davidson, T., Warmsley, D., Macy, M., and Weber, I. (2017).
Automated hate speech detection and the problem of offen-
sive language. In ICWSM 2017.

Fessler, L. (2017). We tested bots like Siri and Alexa to see
who would stand up to sexual harassment. In Quartz. Feb
22, 2017. https://qz.com/911681/.

Forbes-Riley, K. and Litman, D. J. (2011). Benefits and chal-
lenges of real-time uncertainty detection and adaptation in
a spoken dialogue computer tutor. Speech Communication,
53(9), 1115–1136.

Forchini, P. (2013). Using movie corpora to explore spoken
American English: Evidence from multi-dimensional anal-
ysis. In Bamford, J., Cavalieri, S., and Diani, G. (Eds.),
Variation and Change in Spoken and Written Discourse:
Perspectives from corpus linguistics, pp. 123–136. Ben-
jamins.

Fraser, N. M. and Gilbert, G. N. (1991). Simulating speech
systems. Computer Speech and Language, 5, 81–99.

Good, M. D., Whiteside, J. A., Wixon, D. R., and Jones, S. J.
(1984). Building a user-derived interface. Communications
of the ACM, 27(10), 1032–1043.

Gould, J. D., Conti, J., and Hovanyecz, T. (1983). Compos-
ing letters with a simulated listening typewriter. Communi-
cations of the ACM, 26(4), 295–308.

Gould, J. D. and Lewis, C. (1985). Designing for usability:
Key principles and what designers think. Communications
of the ACM, 28(3), 300–311.

Guindon, R. (1988). A multidisciplinary perspective on di-
alogue structure in user-advisor dialogues. In Guindon, R.
(Ed.), Cognitive Science and Its Applications for Human-
Computer Interaction, pp. 163–200. Lawrence Erlbaum.

Hakkani-Tür, D., Tür, G., Celikyilmaz, A., Chen, Y.-N.,
Gao, J., Deng, L., and Wang, Y.-Y. (2016). Multi-domain
joint semantic frame parsing using bi-directional rnn-lstm..
In INTERSPEECH, pp. 715–719.

Harris, R. A. (2005). Voice Interaction Design: Crafting the
New Conversational Speech Systems. Morgan Kaufmann.

Henderson, P., Sinha, K., Angelard-Gontier, N., Ke, N. R.,
Fried, G., Lowe, R., and Pineau, J. (2017). Ethical chal-
lenges in data-driven dialogue systems. In AAAI/ACM AI
Ethics and Society Conference.

Hirschman, L. and Pao, C. (1993). The cost of errors in a
spoken language system. In EUROSPEECH-93, pp. 1419–
1422.

Hutto, C. J., Folds, D., and Appling, S. (2015). Compu-
tationally detecting and quantifying the degree of bias in
sentence-level text of news stories. In HUSO 2015: The
First International Conference on Human and Social Ana-
lytics.

Isbell, C. L., Kearns, M., Kormann, D., Singh, S., and Stone,
P. (2000). Cobot in LambdaMOO: A social statistics agent.
In AAAI/IAAI, pp. 36–41.

Jafarpour, S., Burges, C., and Ritter, A. (2009). Filter, rank,
and transfer the knowledge: Learning to chat. In NIPS
Workshop on Advances in Ranking, Vancouver, Canada.

Kannan, A. and Vinyals, O. (2016). Adversarial evaluation
of dialogue models. In NIPS 2016 Workshop on Adversar-
ial Training.

Landauer, T. K. (Ed.). (1995). The Trouble with Computers:
Usefulness, Usability, and Productivity. MIT Press.

Leuski, A. and Traum, D. (2011). NPCEditor: Creating
virtual human dialogue using information retrieval tech-
niques. AI Magazine, 32(2), 42–56.

Li, J., Galley, M., Brockett, C., Gao, J., and Dolan, B.
(2016a). A diversity-promoting objective function for neu-
ral conversation models. In NAACL HLT 2016.

Li, J., Monroe, W., Ritter, A., Galley, M., Gao, J., and Juraf-
sky, D. (2016b). Deep reinforcement learning for dialogue
generation. In EMNLP 2016.

Li, J., Monroe, W., Shi, T., Ritter, A., and Jurafsky, D.
(2017). Adversarial learning for neural dialogue genera-
tion. In EMNLP 2017.

Liu, C.-W., Lowe, R. T., Serban, I. V., Noseworthy, M.,
Charlin, L., and Pineau, J. (2016). How NOT to evalu-
ate your dialogue system: An empirical study of unsuper-
vised evaluation metrics for dialogue response generation.
In EMNLP 2016.

Lowe, R. T., Noseworthy, M., Serban, I. V., Angelard-
Gontier, N., Bengio, Y., and Pineau, J. (2017a). Towards
an automatic Turing test: Learning to evaluate dialogue re-
sponses. In ACL 2017.

Lowe, R. T., Pow, N., Serban, I. V., Charlin, L., Liu, C.-
W., and Pineau, J. (2017b). Training end-to-end dialogue
systems with the ubuntu dialogue corpus. Dialogue & Dis-
course, 8(1), 31–65.

https://qz.com/911681/

26 Chapter 25 • Dialog Systems and Chatbots

Mesnil, G., Dauphin, Y., Yao, K., Bengio, Y., Deng, L.,
Hakkani-Tür, D., He, X., Heck, L., Tür, G., Yu, D., and
Zweig, G. (2015). Using recurrent neural networks for
slot filling in spoken language understanding. IEEE/ACM
Transactions on Audio, Speech and Language Processing
(TASLP), 23(3), 530–539.

Microsoft (2014). http://www.msxiaoice.com..

Miller, S., Bobrow, R. J., Ingria, R., and Schwartz, R. (1994).
Hidden understanding models of natural language. In ACL-
94, Las Cruces, NM, pp. 25–32.

Neff, G. and Nagy, P. (2016). Talking to bots: Symbiotic
agency and the case of Tay. International Journal of Com-
munication, 10, 4915–4931.

Nielsen, J. (1992). The usability engineering life cycle. IEEE
Computer, 25(3), 12–22.

Paolino, J. (2017). Google Home vs Alexa:
Two simple user experience design gestures that
delighted a female user. In Medium. Jan
4, 2017. https://medium.com/startup-grind/

google-home-vs-alexa-56e26f69ac77.

Pearl, C. (2017). Designing Voice User Interfaces: Princi-
ples of Conversational Experiences. O’Reilly.

Pieraccini, R., Levin, E., and Lee, C.-H. (1991). Stochastic
representation of conceptual structure in the ATIS task. In
Proceedings DARPA Speech and Natural Language Work-
shop, Pacific Grove, CA, pp. 121–124.

Polifroni, J., Hirschman, L., Seneff, S., and Zue, V. W.
(1992). Experiments in evaluating interactive spoken lan-
guage systems. In Proceedings DARPA Speech and Natural
Language Workshop, Harriman, NY, pp. 28–33.

Raymond, C. and Riccardi, G. (2007). Generative and dis-
criminative algorithms for spoken language understanding.
In INTERSPEECH-07, pp. 1605–1608.

Ritter, A., Cherry, C., and Dolan, B. (2011). Data-driven
response generation in social media. In EMNLP-11, pp.
583–593.

Serban, I. V., Lowe, R. T., Charlin, L., and Pineau, J. (2017).
A survey of available corpora for building data-driven dia-
logue systems.. arXiv preprint arXiv:1512.05742.

Shang, L., Lu, Z., and Li, H. (2015). Neural responding ma-
chine for short-text conversation. In ACL 2015, pp. 1577–
1586.

Smith, V. L. and Clark, H. H. (1993). On the course of an-
swering questions. Journal of Memory and Language, 32,
25–38.

Sordoni, A., Galley, M., Auli, M., Brockett, C., Ji, Y.,
Mitchell, M., Nie, J.-Y., Gao, J., and Dolan, B. (2015). A
neural network approach to context-sensitive generation of
conversational responses. In NAACL HLT 2015, pp. 196–
205.

Stifelman, L. J., Arons, B., Schmandt, C., and Hulteen, E. A.
(1993). VoiceNotes: A speech interface for a hand-held
voice notetaker. In Human Factors in Computing Systems:
INTERCHI ’93 Conference Proceedings, pp. 179–186.

Suendermann, D., Evanini, K., Liscombe, J., Hunter, P.,
Dayanidhi, K., and Pieraccini, R. (2009). From rule-based
to statistical grammars: Continuous improvement of large-
scale spoken dialog systems. In ICASSP-09, pp. 4713–
4716.

VanLehn, K., Jordan, P. W., Rosé, C., Bhembe, D., Böttner,
M., Gaydos, A., Makatchev, M., Pappuswamy, U., Ringen-
berg, M., Roque, A., Siler, S., Srivastava, R., and Wilson,
R. (2002). The architecture of Why2-Atlas: A coach for
qualitative physics essay writing. In Proc. Intelligent Tu-
toring Systems.

Vinyals, O. and Le, Q. (2015). A neural conversational
model. In Proceedings of ICML Deep Learning Workshop,
Lille, France.

Walker, M. A., Kamm, C. A., and Litman, D. J. (2001). To-
wards developing general models of usability with PAR-
ADISE. Natural Language Engineering: Special Issue on
Best Practice in Spoken Dialogue Systems, 6(3), 363–377.

Walker, M. A. and Whittaker, S. (1990). Mixed initiative in
dialogue: An investigation into discourse segmentation. In
ACL-90, Pittsburgh, PA, pp. 70–78.

Wang, H., Lu, Z., Li, H., and Chen, E. (2013). A dataset for
research on short-text conversations.. In EMNLP 2013, pp.
935–945.

Ward, W. and Issar, S. (1994). Recent improvements in
the CMU spoken language understanding system. In
ARPA Human Language Technologies Workshop, Plains-
boro, N.J.

Weizenbaum, J. (1966). ELIZA – A computer program for
the study of natural language communication between man
and machine. Communications of the ACM, 9(1), 36–45.

Yan, Z., Duan, N., Bao, J.-W., Chen, P., Zhou, M., Li, Z.,
and Zhou, J. (2016). DocChat: An information retrieval ap-
proach for chatbot engines using unstructured documents.
In ACL 2016.

Yankelovich, N., Levow, G.-A., and Marx, M. (1995). De-
signing SpeechActs: Issues in speech user interfaces. In
Human Factors in Computing Systems: CHI ’95 Confer-
ence Proceedings, Denver, CO, pp. 369–376.

Zue, V. W., Glass, J., Goodine, D., Leung, H., Phillips, M.,
Polifroni, J., and Seneff, S. (1989). Preliminary evalua-
tion of the VOYAGER spoken language system. In Pro-
ceedings DARPA Speech and Natural Language Workshop,
Cape Cod, MA, pp. 160–167.

http://www.msxiaoice.com
https://medium.com/startup-grind/google-home-vs-alexa-56e26f69ac77
https://medium.com/startup-grind/google-home-vs-alexa-56e26f69ac77

	Dialog Systems and Chatbots
	Chatbots
	Rule-based chatbots: ELIZA and PARRY
	Corpus-based chatbots

	Frame Based Dialog Agents
	Control structure for frame-based dialog
	Natural language understanding for filling slots
	Evaluating Slot Filling
	Other components of frame-based dialog

	VoiceXML
	Evaluating Dialog Systems
	Dialog System Design
	Ethical Issues in Dialog System Design

	Summary
	Bibliographical and Historical Notes
	Exercises

