COMS 4705, Fall 2011 Machine Translation Part III

1

Roadmap for the Next Few Lectures

- Lecture 1 (last time): IBM Models 1 and 2
- Lecture 2 (today): *phrase-based* models
- Lecture 3: Syntax in statistical machine translation

Overview

- Learning phrases from alignments
- A phrase-based model
- Decoding in phrase-based models

(Thanks to Philipp Koehn for giving me the slides from his EACL 2006 tutorial)

Phrase-Based Models

- First stage in training a phrase-based model is extraction of a *phrase-based (PB) lexicon*
- A PB lexicon pairs strings in one language with strings in another language, e.g.,

nach Kanada	\leftrightarrow	in Canada
zur Konferenz	\leftrightarrow	to the conference
Morgen	\leftrightarrow	tomorrow
fliege	\leftrightarrow	will fly

An Example (from tutorial by Koehn and Knight)

- A training example (Spanish/English sentence pair):
 Spanish: Maria no daba una bofetada a la bruja verde
 English: Mary did not slap the green witch
- Some (not all) phrase pairs extracted from this example:

(Maria \leftrightarrow Mary), (bruja \leftrightarrow witch), (verde \leftrightarrow green), (no \leftrightarrow did not), (no daba una bofetada \leftrightarrow did not slap), (daba una bofetada a la \leftrightarrow slap the)

• We'll see how to do this using *alignments* from the IBM models (e.g., from IBM model 2)

Recap: IBM Model 2

• IBM model 2 defines a distribution

 $P(\mathbf{a}, \mathbf{f} | \mathbf{e})$

where f is foreign (French) sentence, e is an English sentence, a is an *alignment*

• A useful by-product: once we've trained the model, for any (\mathbf{f}, \mathbf{e}) pair, we can calculate

$$\mathbf{a}^* = \arg \max_{\mathbf{a}} P(\mathbf{a}|\mathbf{f}, \mathbf{e}) = \arg \max_{\mathbf{a}} P(\mathbf{a}, \mathbf{f}|\mathbf{e})$$

under the model. a* is the **most likely alignment**

Representation as Alignment Matrix

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	•								
did									
not		•							
slap									
the							•		
green									•
witch									

(Note: "bof" = "bofetada")

In IBM model 2, each foreign (Spanish) word is aligned to exactly one English word. The matrix shows these alignments.

Finding Alignment Matrices

- Step 1: train IBM model 2 for $P(\mathbf{f} \mid \mathbf{e})$, and come up with most likely alignment for each (\mathbf{e}, \mathbf{f}) pair
- Step 2: train IBM model 4 for P(e | f) and come up with most likely alignment for each (e, f) pair
- We now have two alignments:
 take intersection of the two alignments as a starting point

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	•								
did						•			
not		•							
slap									
the							•		
green									•
witch								•	

Alignment from $P(\mathbf{f} \mid \mathbf{e})$ model:

Alignment from $P(\mathbf{e} \mid \mathbf{f})$ model:

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	•								
did									
not									
slap									
the							•		
green									
witch									

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	•								
did									
not		•							
slap									
the									
green									
witch									

Intersection of the two alignments:

The intersection of the two alignments has been found to be a very reliable starting point

Heuristics for Growing Alignments

- Only explore alignment in **union** of $P(f \mid e)$ and $P(e \mid f)$ alignments
- Add one alignment point at a time
- Only add alignment points which align a word that currently has no alignment
- At first, restrict ourselves to alignment points that are "neighbors" (adjacent or diagonal) of current alignment points
- Later, consider other alignment points

The final alignment, created by taking the intersection of the two alignments, then adding new points using the growing heuristics:

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	•								
did		•							
not		•							
slap			•						
the							•		
green									•
witch								•	

Note that the alignment is no longer many-to-one: potentially multiple Spanish words can be aligned to a single English word, and vice versa.

Extracting Phrase Pairs from the Alignment Matrix

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	•								
did									
not									
slap									
the									
green									
witch									

- A phrase-pair consists of a sequence of English words, e, paired with a sequence of foreign words, f
- A phrase-pair (e, f) is consistent if there are no words in f aligned to words outside e, and there are no words in e aligned to words outside f
 e.g., (Mary did not, Maria no) is consistent. (Mary did, Maria no) is not consistent: "no" is aligned to "not", which is not in the string "Mary did"
- We extract all consistent phrase pairs from the training example. See Koehn, EACL 2006 tutorial, **pages 103-108** for illustration.

Probabilities for Phrase Pairs

• For any phrase pair (f, e) extracted from the training data, we can calculate

$$P(f|e) = \frac{Count(f,e)}{Count(e)}$$

e.g.,

 $P(\text{daba una bofetada} \mid \text{slap}) = \frac{Count(\text{daba una bofetada, slap})}{Count(\text{slap})}$

An Example Phrase Translation Table

An example from Koehn, EACL 2006 tutorial. (Note that we have P(e|f) not P(f|e) in this example.)

• Phrase Translations for *den Vorschlag*

English	$P(\mathbf{e} \mathbf{f})$	English	$P(\mathbf{e} \mathbf{f})$
the proposal	0.6227	the suggestions	0.0114
's proposal	0.1068	the proposed	0.0114
a proposal	0.0341	the motion	0.0091
the idea	0.0250	the idea of	0.0091
this proposal	0.0227	the proposal,	0.0068
proposal	0.0205	its proposal	0.0068
of the proposal	0.0159	it	0.0068
the proposals	0.0159	•••	•••

Overview

- Learning phrases from alignments
- A phrase-based model
- Decoding in phrase-based models

Translate using a greedy, left-to-right decoding method

Today

Heute werden wir uber die Wiedereroffnung des Mont-Blanc-Tunnels diskutieren

Score =
$$\underbrace{\log P(\text{Today} | \text{START})}_{\text{Language model}}$$

+ $\underbrace{\log P(\text{Heute} | \text{Today})}_{\text{Phrase model}}$

+
$$\underbrace{\log P(1-1 \mid 1-1)}_{\text{Distortion model}}$$

Translate using a greedy, left-to-right decoding method

Todaywe shall beHeutewerden wiruberdieWiedereroffnungdesMont-Blanc-Tunnels diskutieren

Score =
$$\underbrace{\log P(\text{we shall be } | \text{ today})}_{\text{Language model}}$$

+
$$\log P(\text{werden wir} \mid \text{we will be})$$

Phrase model

+
$$\log P(2-3 \mid 2-4)$$

Distortion model

Translate using a greedy, left-to-right decoding method

Today we shall be debating Heute werden wir uber die Wiedereroffnung des Mont-Blanc-Tunnels diskutieren

Translate using a greedy, left-to-right decoding method

Today we shall be debating the reopening

Heute werden wir uber die Wiedereroffnung des Mont-Blanc-Tunnels diskutieren

Translate using a greedy, left-to-right decoding method

Today we shall be debating the reopeningof the Mont Blanc tunnelHeutewerdenwiruberdiedes Mont-Blanc-Tunnelsdiskutieren

Phrase-Based Systems: Formal Definitions

(following notation in Jurafsky and Martin, chapter 25)

- We'd like to translate a French string **f**
- E is a sequence of l English phrases, e_1, e_2, \ldots, e_l . For example,

 $e_1 = Mary, e_2 = did not, e_3 = slap, e_4 = the, e_5 = green witch$

E defines a possible translation, in this case $e_1e_2 \dots e_5 = Mary$ *did not slap the green witch*.

• F is a sequence of l foreign phrases, f_1, f_2, \ldots, f_l . For example,

 $f_1 = Maria, f_2 = no, f_3 = dio una bofetada, f_4 = a la, f_5 = bruja verde$

• a_i for $i = 1 \dots l$ is the position of the first word of f_i in **f**. b_i for $i = 1 \dots l$ is the position of the last word of f_i in **f**.

Phrase-Based Systems: Formal Definitions

• We then have

$$Cost(E, F) = P(E) \prod_{i=1}^{l} P(f_i | e_i) d(a_i - b_{i-1})$$

- P(E) is the language model score for the string defined by E
- $P(f_i|e_i)$ is the phrase-table probability for the *i*'th phrase pair
- $d(a_i b_{i-1})$ is some probability/penalty for the distance between the *i*'th phrase and the (i - 1)'th phrase. Usually, we define

$$d(a_i - b_{i-1}) = \alpha^{|a_i - b_{i-1} - 1|}$$

for some $\alpha < 1$.

• Note that this is *not* a coherent probability model

An Example

Position	1	2	3	4	5
English	Mary	did not	slap	the	green witch
Spanish	Maria	no	dio una bofetada	a la	bruja verde

In this case,

 $Cost(E, F) = P_L(\text{Mary did not slap the green witch}) \times P(\text{Maria}|\text{Mary}) \times d(1) \times P(\text{no}|\text{did not}) \times d(1) \times P(\text{dio una bofetada}|\text{slap}) \times d(1) \times P(\text{a la}|\text{the}) \times d(1) \times P(\text{bruja verde}|\text{green witch}) \times d(1)$

 P_L is the score from a language model

Another Example

Position	1	2	3	4	5	6
English	Mary	did not	slap	the	green	witch
Spanish	Maria	no	dio una bofetada	a la	verde	bruje

The original Spanish string was *Maria no dio una bofetada a la bruje verde*, so notice that the last two phrase pairs involve reordering

In this case,

 $Cost(E, F) = P_L(\text{Mary did not slap the green witch}) \times P(\text{Maria}|\text{Mary}) \times d(1) \times P(\text{no}|\text{did not}) \times d(1) \times P(\text{dio una bofetada}|\text{slap}) \times d(1) \times P(\text{a la}|\text{the}) \times d(1) \times P(\text{verde}|\text{green}) \times d(2) \times P(\text{bruja}|\text{witch}) \times d(1)$

Overview

- Learning phrases from alignments
- A phrase-based model
- Decoding in phrase-based models

The Decoding Problem

• For a given foreign string **f**, the decoding problem is to find

 $\arg\max_{(E,F)} Cost(E,F)$

where the $\arg \max$ is over all (E, F) pairs that are consistent with **f**

- See Koehn tutorial, EACL 2006, slides 29–57
- See Jurafsky and Martin, Chapter 25, Figure 25.30
- See Jurafsky and Martin, Chapter 25, section 25.8