Building an ASR using HTK CS4706

Fadi Biadsy

Mar 24th, 2010

Outline

- Speech Recognition
- Feature Extraction
- Modeling Speech
 - Hidden Markov Models (HMM): 3 basic problems
- HMM Toolkit (HTK)
 - Steps for building an ASR using HTK

Automatic Speech Recognition (ASR)

Speech signal to text

ASR

There's something happening when Americans...

It's hard to recognize speech

- Contextual effects
 - Speech sounds vary within contexts
 - "How **do** you **do**?"
 - Half and half
 - /t/ in butter vs. bat
- Within-speaker variability
 - Speaking rate, Intensity, F0 contour
 - Voice quality
 - Speaking Style
 - Formal vs. spontaneous register
 - Speaker State: Emotion, Sleepy, Drunk,...
- Between-speaker variability
 - Gender and age
 - Accents, Dialects, native vs. non-native
 - Scottish vs. American /r/ in some contexts
- Environment variability
 - Background noise
 - Microphone type

Outline

- Speech Recognition
- Feature Extraction
- Modeling Speech
 - Hidden Markov Models (HMM): 3 basic problems
- HMM Toolkit (HTK)
 - Steps for building an ASR using HTK

Feature Extraction

• Extract features from short frames (frame period 10ms, 25ms frame size) – a sequence of features

Feature Extraction - MFCC

- Mel Scale: Approximate the unequal sensitivity of human hearing at different frequencies
- Based on pitch perception

R

Feature Extraction - MFCC

- MFCC (Mel frequency cepstral coefficient)
 - Widely used in speech recognition
 - 1. Take the Fourier transform of the signal → spectrum
 - 2. Map the powers of the spectrum to the mel scale and take the log
 - 3. Discrete cosine transform of the mel log-amplitudes
 - 4. The MFCCs are the amplitudes of the resulting spectrum

Feature Extraction - MFCC

- Extract a feature vector from each frame
 - 12 MFCC coefficients + 1 normalized energy = 13 features
 - Delta MFCC = 13
 - Delta-Delta MCC = 13
 - Total: 39 features
- Inverted MFCCs:

Outline

- Speech Recognition
- Feature Extraction
- Modeling Speech
 - Hidden Markov Models (HMM): 3 basic problems
- HMM Toolkit (HTK)
 - Steps for building an ASR using HTK

Markov Chain

 Weighted finite state acceptor: Future is independent of the past given the present

SAAAAAAABBBBBBBBBCCCCBBBBBBCE

Hidden Markov Model (HMM)

- HMM is a Markov chain + emission probability function for each state
- Markov Chain

- HMM M=(A, B, Pi)
- A = Transition Matrix
- B = Observation Distributions
- Pi = Initial state probabilities

HMM – 3 Basic Problems

- . Evaluation
- II. Decoding
- III. Training

HMM – I. Evaluation

ullet Given an observation sequence O and a model M, how can we efficiently compute:

 $P(O \mid M) =$ the likelihood of O given the model?

HMM – II. Decoding

• Given an observation sequence O and a model M:

How can we obtain the most likely state sequence $Q = \{q1, q2,...,qt\}$?

Outline

- Speech Recognition
- Feature Extraction
- Modeling Speech
 - Hidden Markov Models (HMM): 3 basic problems
- HMM Toolkit (HTK)
 - Steps for building an ASR using HTK

Hidden Markov Model Toolkit (HTK)

- HTK is a research toolkit for building and manipulating HMMs
- Primarily designed for building HMM-based ASR systems
- Tools, for examples:
 - Extracting MFCC features
 - HMM algorithms
 - Grammar networks
 - Speaker Adaptation
 - ...

Steps for building ASR: Voice-operated interface for phone dialing

- Examples:
 - Dial three three two six five four
 - Phone Woodland
 - Call Steve Young
- Grammar:
 - \$digit = ONE | TWO | THREE | FOUR | FIVE | SIX | SEVEN | EIGHT | NINE | OH | ZERO;
 - \$name = [JOOP] JANSEN | [JULIAN] ODELL | [DAVE] OLLASON | [PHIL] WOODLAN
 - (SENT-START (DIAL <\$digit> | (PHONE | CALL) \$name) SENT-END)

Words to Phones (using HLEd)

25

• HTK scripting language is used to generate phonetic transcription for all training data

```
#!MLF!#
#!MLF!#
"*/S0001.lab"
                                          "*/S0001.lab"
ONE
                                          sil
VALIDATED
ACTS
                                          W
0F
                                          ah
SCHOOL
                                          n
DISTRICTS
                                          v
"*/S0002.lab"
                                          ae
TWO
                                          1
OTHER
                                          ih
CASES
                                          d
ALSO
WERE
                                          .. etc
UNDER
ADVISEMENT
"*/S0003.lab"
BOTH
FIGURES
(etc.)
```

Extracting MFCC (using HCopy)

• For each wave file, extract MFCC features.

.wav → .mfc files

Specifying Monophone HMM Topology

• 5 states: 3 emitting states

• Flat Start: Mean and Variance are initialized as the global mean and variance of all the data

Training (HERest)

- For each training pair of files (mfc+lab):
 - 1. Concatenate the corresponding monophone HMMs
 - 2. Use the Baum-Welch Algorithm to train the

HMMs given the MFC features

One validated acts of school districts...

Training

- So far, we have all monophone models trained
- Train the short pause (sp) model

Handling Multiple Pronunciations (HVite)

- The dictionary contains multiple pronunciations for some words.
- Forced alignment

Handling Multiple Pronunciations

- The dictionary contains multiple pronunciations for some words.
- Forced alignment

Creating Triphone Models (using HLEd)

- Phones may be realized differently in some contexts
- → Build context-dependent acoustic models (HMMs)
- Triphones: One preceding and succeeding phone
- Make triphones from monophones
 - Generate a list of all the triphones for which there is at least one example in the training data
 - s-l+ow
 - b-l+aa
 - p-l+aa
 - jh-oy+s
 - f-iy+t
 - ...

Tie Triphone (HDMan)

- Clustering by growing decision trees
- All states in the same leaf will be tied

```
t+ih
         t+ae
t+iy
         t+ae
ao-r+ax r
t+oh
         t+ae
ao-r+iy
t+uh
         t+ae
t+uw
        t+ae
sh-n+t
sh-n+z
         sh-n+t
ch-ih+l
ay-oh+l
ay-oh+r ay-oh+l
```


- Train the acoustic models again using Baum-Welch algorithm (HERest)
- Increase the number of Gaussians for each state
 - HHEd followed by HERest

- Using the compiled grammar network (WNET)
- Given a new speech file:
 - Extract the mfcc features (.mfc file)
 - Run Viterbi on the WNET given the .(mfc file) to get the most likely word sequence

Summary

- MFCC Features
- HMM 3 basic problems
- Steps for Building an ASR using using HTK:
 - Features and data preparation
 - Monophone topology
 - Flat Start
 - Training monophones
 - Handling multiple pronunciations
 - Context-dependent acoustic models (triphones) + Tying
 - Final Training
 - Decoding

Thanks!	_	_	_
38			

