## Statistical Parsing

## A Context-Free Grammar

| S | $\Rightarrow$ | NP | VP |
| :--- | :--- | :--- | :--- |
| VP | $\Rightarrow$ | Vi |  |
| VP | $\Rightarrow$ | Vt | NP |
| VP | $\Rightarrow$ | VP | PP |
| NP | $\Rightarrow$ | DT | NN |
| NP | $\Rightarrow$ | NP | PP |
| PP | $\Rightarrow$ | P | NP |


| Vi | $\Rightarrow$ | sleeps |
| :--- | :--- | :--- |
| Vt | $\Rightarrow$ | saw |
| NN | $\Rightarrow$ | man |
| NN | $\Rightarrow$ | dog |
| NN | $\Rightarrow$ | telescope |
| DT | $\Rightarrow$ | the |
| IN | $\Rightarrow$ | with |
| IN | $\Rightarrow$ | in |

## Ambiguity

- A sentence of reasonable length can easily have $10 \mathrm{~s}, 100 \mathrm{~s}$, or 1000s of possible analyses, most of which are very implausible
- Examples of sources of ambiguity:
- Part-of-Speech ambiguity

NNS $\rightarrow$ walks
$\mathrm{Vi} \quad \rightarrow$ walks

- Prepositional phrase attachment

I drove down the street in the car

- Pre-nominal modifiers
the angry car mechanic



A program to promote safety in trucks and vans

There are at least 14 analyses for this noun phrase...

## A Probabilistic Context-Free Grammar

| S | $\Rightarrow$ | NP | VP | 1.0 |
| :--- | :--- | :--- | :--- | :--- |
| VP | $\Rightarrow$ | Vi |  | 0.4 |
| VP | $\Rightarrow$ | Vt | NP | 0.4 |
| VP | $\Rightarrow$ | VP | PP | 0.2 |
| NP | $\Rightarrow$ | DT | NN | 0.3 |
| NP | $\Rightarrow$ | NP | PP | 0.7 |
| PP | $\Rightarrow$ | P | NP | 1.0 |


| Vi | $\Rightarrow$ | sleeps | 1.0 |
| :--- | :--- | :--- | :--- |
| Vt | $\Rightarrow$ | saw | 1.0 |
| NN | $\Rightarrow$ | man | 0.7 |
| NN | $\Rightarrow$ dog | 0.2 |  |
| NN | $\Rightarrow$ telescope | 0.1 |  |
| DT | $\Rightarrow$ the | 1.0 |  |
| IN | $\Rightarrow$ with | 0.5 |  |
| IN | $\Rightarrow$ in | 0.5 |  |

- Probability of a tree with rules $\alpha_{i} \rightarrow \beta_{i}$ is $\prod_{i} P\left(\alpha_{i} \rightarrow \beta_{i} \mid \alpha_{i}\right)$

| DERIVATION | RULES USED | PROBABILITY |
| :--- | :--- | :--- |
| S | $\mathrm{S} \rightarrow$ NP VP | 1.0 |
| NP VP | $\mathrm{NP} \rightarrow$ DT N | 0.3 |
| DT N VP | $\mathrm{DT} \rightarrow$ the | 1.0 |
| the N VP | $\mathrm{N} \rightarrow \operatorname{dog}$ | 0.1 |
| the dog VP | $\mathrm{VP} \rightarrow$ VB | 0.4 |
| the dog VB | $\mathrm{VB} \rightarrow$ laughs | 0.5 |
| the dog laughs |  |  |

PROBABILITY $=1.0 \times 0.3 \times 1.0 \times 0.1 \times 0.4 \times 0.5$


## Properties of PCFGs

- Say we have a sentence $S$, set of derivations for that sentence is $\mathcal{T}(S)$. Then a PCFG assigns a probability to each member of $\mathcal{T}(S)$. i.e., we now have a ranking in order of probability.
- Given a PCFG and a sentence $S$, we can find

$$
\arg \max _{T \in \mathcal{T}(S)} P(T, S)
$$

using dynamic programming (e.g., a variant of the CKY algorithm)

## Overview

- Weaknesses of PCFGs
- Heads in context-free rules
- Dependency representations of parse trees
- Two models making use of dependencies


## Weaknesses of PCFGs

- Lack of sensitivity to lexical information
- Lack of sensitivity to structural frequencies


$$
\begin{aligned}
\mathrm{PROB}= & P(\mathrm{~S} \rightarrow \mathrm{NP} \mathrm{VP} \mid \mathrm{S}) & & \times P(\mathrm{NNP} \rightarrow I B M \mid \mathrm{NNP}) \\
& \times P(\mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} \mid \mathrm{VP}) & & \times P(\mathrm{Vt} \rightarrow \text { bought } \mid \mathrm{Vt}) \\
& \times P(\mathrm{NP} \rightarrow \mathrm{NNP} \mid \mathrm{NP}) & & \times P(\mathrm{NNP} \rightarrow \text { Lotus } \mid \mathrm{NNP}) \\
& \times P(\mathrm{NP} \rightarrow \mathrm{NNP} \mid \mathrm{NP}) & &
\end{aligned}
$$

## A Case of PP Attachment Ambiguity

(a)

(b)



If $P(\mathrm{NP} \rightarrow \mathrm{NP} \mathrm{PP} \mid \mathrm{NP})>P(\mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP} \mid \mathrm{VP})$ then $(\mathrm{b})$ is more probable, else (a) is more probable.

Attachment decision is completely independent of the words

## A Case of Coordination Ambiguity

(a)

(b)

(a)

| Rules |
| :--- |
| $\mathrm{NP} \rightarrow$ NP CC NP |
| $\mathrm{NP} \rightarrow$ NP PP |
| $\mathrm{NP} \rightarrow$ NNS |
| $\mathrm{PP} \rightarrow$ IN NP |
| $\mathrm{NP} \rightarrow$ NNS |
| $\mathrm{NP} \rightarrow$ NNS |
| $\mathrm{NNS} \rightarrow$ dogs |
| $\mathrm{IN} \rightarrow$ in |
| $\mathrm{NNS} \rightarrow$ houses |
| $\mathrm{CC} \rightarrow$ and |
| $\mathrm{NNS} \rightarrow$ cats |

(b)

| Rules |
| :--- |
| $\mathrm{NP} \rightarrow$ NP CC NP |
| $\mathrm{NP} \rightarrow$ NP PP |
| $\mathrm{NP} \rightarrow$ NNS |
| $\mathrm{PP} \rightarrow$ IN NP |
| $\mathrm{NP} \rightarrow$ NNS |
| $\mathrm{NP} \rightarrow$ NNS |
| $\mathrm{NNS} \rightarrow$ dogs |
| $\mathrm{IN} \rightarrow$ in |
| $\mathrm{NNS} \rightarrow$ houses |
| $\mathrm{CC} \rightarrow$ and |
| $\mathrm{NNS} \rightarrow$ cats |

Here the two parses have identical rules, and therefore have identical probability under any assignment of PCFG rule probabilities

## Structural Preferences: Close Attachment

(a)

(b)


- Example: president of a company in Africa
- Both parses have the same rules, therefore receive same probability under a PCFG
- "Close attachment" (structure (a)) is twice as likely in Wall Street Journal text.


## Structural Preferences: Close Attachment

John was believed to have been shot by Bill
Here the low attachment analysis (Bill does the shooting) contains same rules as the high attachment analysis (Bill does the believing), so the two analyses receive same probability.

## Heads in Context-Free Rules

Add annotations specifying the "head" of each rule:

| S | $\Rightarrow$ | NP | VP |
| :--- | :--- | :--- | :--- |
| VP | $\Rightarrow$ | Vi |  |
| VP | $\Rightarrow$ | Vt | NP |
| VP | $\Rightarrow$ | VP | PP |
| NP | $\Rightarrow$ | DT | NN |
| NP | $\Rightarrow$ | NP | PP |
| PP | $\Rightarrow$ | IN | NP |


| Vi | $\Rightarrow$ | sleeps |
| :--- | :--- | :--- |
| Vt | $\Rightarrow$ | saw |
| NN | $\Rightarrow$ | man |
| NN | $\Rightarrow$ | woman |
| NN | $\Rightarrow$ | telescope |
| DT | $\Rightarrow$ | the |
| IN | $\Rightarrow$ | with |
| IN | $\Rightarrow$ | in |

Note: $\mathrm{S}=$ sentence, $\mathrm{VP}=$ verb phrase, $\mathrm{NP}=$ noun phrase, $\mathrm{PP}=$ prepositional phrase, $\mathrm{DT}=$ determiner, $\mathrm{Vi}=$ intransitive verb, $\mathrm{Vt}=$ transitive verb, $\mathrm{NN}=$ noun, $\mathrm{IN}=$ preposition

## Rules which Recover Heads: An Example of rules for NPs

If the rule contains NN, NNS, or NNP:
Choose the rightmost NN, NNS, or NNP
Else If the rule contains an NP: Choose the leftmost NP

Else If the rule contains a JJ: Choose the rightmost JJ
Else If the rule contains a CD: Choose the rightmost CD
Else Choose the rightmost child
e.g.,
$\mathrm{NP} \Rightarrow \mathrm{DT}$ NNP NN
$\mathrm{NP} \Rightarrow \mathrm{DT}$ NN NNP
$\mathrm{NP} \Rightarrow \mathrm{NP} \quad \mathrm{PP}$
$\mathrm{NP} \Rightarrow \mathrm{DT}$ JJ
$\mathrm{NP} \Rightarrow \mathrm{DT}$

## Adding Headwords to Trees



## Adding Headwords to Trees



- A constituent receives its headword from its head child.

| S | $\Rightarrow$ | NP | VP |  | (S receives headword from VP) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| VP | $\Rightarrow$ | Vt | NP |  | (VP receives headword from Vt) |
| NP | $\Rightarrow$ | DT |  | NN |  |

## Adding Headtags to Trees



- Also propagate part-of-speech tags up the trees (We'll see soon why this is useful!)


## Lexicalized PCFGs



- In PCFGs we had rules such as $S$-> NP VP, with probabilities such as

$$
P(\mathrm{NP} \text { VP|S })
$$

- In lexicalized PCFGs we have rules such as

S (questioned,Vt) -> NP (lawyer, NN) VP (questioned, Vt)
with probabilities such as
$P(N P(l a w y e r, N N) V P(q u e s t i o n e d, V t) \mid S(q u e s t i o n e d, ~ V t))$

## A Model from Charniak (1997)

S(questioned,Vt)
$\Downarrow \quad P(\mathrm{NP}(\ldots, \mathrm{NN}) \mathrm{VP} \mid \mathrm{S}($ questioned, Vt $))$

$\Downarrow \quad P($ lawyer $\mid \mathrm{S}, \mathrm{VP}, \mathrm{NP}, \mathrm{NN}$, questioned, Vt) $)$


## Smoothed Estimation

$P(\mathrm{NP}(\ldots, \mathrm{NN}) \mathrm{VP} \mid \mathrm{S}($ questioned, Vt$))=$

$$
\begin{aligned}
& \lambda_{1} \times \frac{\operatorname{Count}(\mathrm{S}(\text { questioned, } \mathrm{Vt}) \rightarrow \mathrm{NP}(\ldots, \mathrm{NN}) \mathrm{VP})}{\operatorname{Count}(\mathrm{S}(\text { questioned, } \mathrm{Vt}))} \\
+ & \lambda_{2} \times \frac{\operatorname{Count}\left(\mathrm{S}\left({ }_{--}, \mathrm{Vt}\right) \rightarrow \mathrm{NP}\left({ }_{--}, \mathrm{NN}\right) \mathrm{VP}\right)}{\operatorname{Count}\left(\mathrm{S}\left({ }_{--}, \mathrm{Vt}\right)\right)}
\end{aligned}
$$

- Where $0 \leq \lambda_{1}, \lambda_{2} \leq 1$, and $\lambda_{1}+\lambda_{2}=1$


## Smoothed Estimation

$P($ lawyer $\mid \mathrm{S}, \mathrm{VP}, \mathrm{NP}, \mathrm{NN}$, questioned, Vt$)=$

$$
\begin{aligned}
& \lambda_{1} \times \frac{\operatorname{Count}(\text { lawyer } \mid \text { S,VP,NP,NN,questioned,Vt })}{\operatorname{Count}(\mathrm{S}, \mathrm{VP}, \mathrm{NP}, \mathrm{NN}, \text { questioned,Vt })} \\
+ & \lambda_{2} \times \frac{\operatorname{Count}(\text { lawyer } \mid \text { S,VP,NP,NN,Vt })}{\operatorname{Count}(\mathrm{S}, \mathrm{VP}, \mathrm{NP}, \mathrm{NN}, \mathrm{Vt})} \\
+ & \lambda_{3} \times \frac{\operatorname{Count}(\text { lawyer } \mid \mathrm{NN})}{\operatorname{Count}(\mathrm{NN})}
\end{aligned}
$$

- Where $0 \leq \lambda_{1}, \lambda_{2}, \lambda_{3} \leq 1$, and $\lambda_{1}+\lambda_{2}+\lambda_{3}=1$
$P($ NP $($ lawyer, NN$) \mathrm{VP} \mid$ S(questioned, Vt$))=$

$$
\begin{aligned}
& \left(\lambda_{1} \times \frac{\operatorname{Count}(\mathbf{S}(\text { questioned,Vt }) \rightarrow \mathrm{NP}(\ldots, \mathrm{NN}) \mathrm{VP})}{\operatorname{Count}(\mathrm{S}(\text { questioned,Vt })}\right. \\
& \left.+\lambda_{2} \times \frac{\operatorname{Count}(\mathbf{S}(\ldots, \mathrm{Vt}) \rightarrow \mathrm{NP}(\ldots, \mathrm{NN}) \mathrm{VP})}{\operatorname{Count}(\mathbf{S}(\ldots, \mathrm{Vt}))}\right) \\
& \times\left(\lambda_{1} \times \frac{\operatorname{Count}(\text { lawyer | S,VP,NP,NN,questioned,Vt })}{\operatorname{Count}(\text { S,VP,NP,NN,questioned,Vt })}\right. \\
& +\lambda_{2} \times \frac{\operatorname{Count}(\text { lawyer | S,VP,NP,NN,Vt) }}{\operatorname{Count}(\text { S,VP,NP,NN,Vt })} \\
& \left.+\lambda_{3} \times \frac{\operatorname{Count}(\operatorname{lawyer} \mid \mathrm{NN})}{\operatorname{Count}(\mathrm{NN})}\right)
\end{aligned}
$$

## Motivation for Breaking Down Rules

- First step of decomposition of (Charniak 1997):

S(questioned, Vt)
$\Downarrow \quad P(\mathrm{NP}(\ldots, \mathrm{NN}) \mathrm{VP} \mid \mathrm{S}($ questioned, Vt) $)$
S(questioned, Vt)

NP(_-,NN) VP(questioned,Vt)

- Relies on counts of entire rules
- These counts are sparse:
- 40,000 sentences from Penn treebank have 12,409 rules.
- $15 \%$ of all test data sentences contain a rule never seen in training


## Motivation for Breaking Down Rules

| Rule Count | No. of Rules <br> by Type | Percentage <br> by Type | No. of Rules <br> by token | Percentage <br> by token |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 6765 | 54.52 | 6765 | 0.72 |
| 2 | 1688 | 13.60 | 3376 | 0.36 |
| 3 | 695 | 5.60 | 2085 | 0.22 |
| 4 | 457 | 3.68 | 1828 | 0.19 |
| 5 | 329 | 2.65 | 1645 | 0.18 |
| $6 \ldots 10$ | 835 | 6.73 | 6430 | 0.68 |
| $11 \ldots 20$ | 496 | 4.00 | 7219 | 0.77 |
| $21 \ldots 50$ | 501 | 4.04 | 15931 | 1.70 |
| $51 \ldots 100$ | 204 | 1.64 | 14507 | 1.54 |
| $>100$ | 439 | 3.54 | 879596 | 93.64 |

Statistics for rules taken from sections 2-21 of the treebank (Table taken from my PhD thesis).

## Modeling Rule Productions as Markov Processes

- Step 1: generate category of head child

$$
\begin{gathered}
\text { S(told,V[6]) } \\
\Downarrow \\
\text { S(told,V[6]) } \\
\text { VP(told,V[6]) }
\end{gathered}
$$

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V[6])

## Modeling Rule Productions as Markov Processes

- Step 2: generate left modifiers in a Markov chain

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V[6] $) \times P_{d}(\mathrm{NP}($ Hillary,NNP $) \mid \mathrm{S}, \mathrm{VP}$, told, V[6],LEFT $)$


## Modeling Rule Productions as Markov Processes

- Step 2: generate left modifiers in a Markov chain

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, $\mathrm{V}[6]) \times P_{d}(\mathrm{NP}($ Hillary,NNP $) \mid \mathrm{S}, \mathrm{VP}$, told, V[6],LEFT $) \times$
$P_{d}(\mathrm{NP}($ yesterday,NN $) \mid \mathrm{S}, \mathrm{VP}$, told, V[6],LEFT $)$


## Modeling Rule Productions as Markov Processes

- Step 2: generate left modifiers in a Markov chain



## Modeling Rule Productions as Markov Processes

- Step 3: generate right modifiers in a Markov chain

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, $\mathrm{V}[6]) \times P_{d}(\mathrm{NP}($ Hillary,NNP $) \mid \mathrm{S}, \mathrm{VP}$, told, V[6],LEFT $) \times$
$P_{d}(\mathrm{NP}($ yesterday,NN $) \mid \mathrm{S}, \mathrm{VP}$, told,V[6],LEFT $) \times P_{d}(\mathrm{STOP} \mid \mathrm{S}, \mathrm{VP}$, told,V[6],LEFT $) \times$ $P_{d}($ STOP $\mid \mathrm{S}, \mathrm{VP}$, told,V[6],RIGHT)


## A Refinement: Adding a Distance Variable

- $\Delta=1$ if position is adjacent to the head.

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V[6] $) \times$
$P_{d}(\mathrm{NP}($ Hillary,NNP $) \mid \mathrm{S}, \mathrm{VP}$, told, V[6],LEFT, $\Delta=1)$


## A Refinement: Adding a Distance Variable

- $\Delta=1$ if position is adjacent to the head.

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, $\mathrm{V}[6]) \times P_{d}(\mathrm{NP}($ Hillary,NNP $) \mid \mathrm{S}, \mathrm{VP}$, told, V[6],LEFT $) \times$
$P_{d}(\mathrm{NP}($ yesterday,NN $) \mid \mathrm{S}, \mathrm{VP}$, told, $\mathrm{V}[6], \mathrm{LEFT}, \Delta=0)$


## The Final Probabilities


$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, $\mathrm{V}[6]) \times$
$P_{d}($ NP(Hillary,NNP) $\mid$ S,VP,told,V[6],LEFT, $\Delta=1) \times$
$P_{d}(\mathrm{NP}($ yesterday,NN $) \mid \mathrm{S}, \mathrm{VP}$, told, V[6],LEFT, $\Delta=0) \times$
$P_{d}($ STOP $\mid$ S,VP,told,V[6],LEFT, $\Delta=0) \times$
$P_{d}($ STOP $\mid \mathrm{S}, \mathrm{VP}$, told,V[6],RIGHT, $\Delta=1)$

## Adding the Complement/Adjunct Distinction



- Hillary is the subject
- yesterday is a temporal modifier
- But nothing to distinguish them.


## Adding the Complement/Adjunct Distinction



- Bill is the object
- yesterday is a temporal modifier
- But nothing to distinguish them.


## Complements vs. Adjuncts

- Complements are closely related to the head they modify, adjuncts are more indirectly related
- Complements are usually arguments of the thing they modify yesterday Hillary told $\ldots \Rightarrow$ Hillary is doing the telling
- Adjuncts add modifying information: time, place, manner etc. yesterday Hillary told $\ldots \Rightarrow$ yesterday is a temporal modifier
- Complements are usually required, adjuncts are optional
yesterday Hillary told ... (grammatical)
vs. Hillary told . . . (grammatical)
vs. yesterday told ... (ungrammatical)


## Adding Tags Making the Complement/Adjunct Distinction



## Adding Tags Making the Complement/Adjunct Distinction



## Adding Subcategorization Probabilities

- Step 1: generate category of head child

$$
\begin{gathered}
\text { S(told, V[6]) } \\
\Downarrow \\
\text { S(told,V[6]) } \\
\text { VP(told,V[6]) }
\end{gathered}
$$

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V[6])

## Adding Subcategorization Probabilities

- Step 2: choose left subcategorization frame

$$
\begin{gathered}
\text { S(told,V[6]) } \\
\text { VP(told, V[6]) } \\
\Downarrow \\
\mathrm{S}(\text { told,V[6] }) \\
\mathrm{VP}(\text { told, V[6] }) \\
\{\mathrm{NP}-\mathrm{C}\} \\
P_{h}(\mathrm{VP} \mid \mathrm{S}, \text { told, } \mathrm{V}[6]) \times P_{l c}(\{\mathrm{NP}-\mathrm{C}\} \mid \mathrm{S}, \mathrm{VP}, \text { told, V[6] })
\end{gathered}
$$

- Step 3: generate left modifiers in a Markov chain

$$
\begin{gathered}
? ? \begin{array}{c}
\text { VP(told,V[6]) } \\
\{\mathrm{NP}-\mathrm{C}\}
\end{array} \\
\Downarrow \\
\Downarrow
\end{gathered}
$$


$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, $\mathrm{V}[6]) \times P_{l c}(\{\mathrm{NP}-\mathrm{C}\} \mid \mathrm{S}, \mathrm{VP}$, told, $\mathrm{V}[6]) \times$ $P_{d}($ NP-C(Hillary,NNP) $\mid \mathrm{S}, \mathrm{VP}$, told, V[6],LEFT, \{NP-C\} $)$

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V[6] $) \times P_{l c}(\{\mathrm{NP}-\mathrm{C}\} \mid \mathrm{S}, \mathrm{VP}$, told, V[6] $)$
$P_{d}($ NP-C(Hillary,NNP) $\mid$ S,VP,told,V[6],LEFT, $\{$ NP-C $\}) \times$
$P_{d}(\mathrm{NP}($ yesterday,NN $) \mid \mathrm{S}, \mathrm{VP}$, told, V[6],LEFT, $\{ \})$


$$
\begin{aligned}
& P_{h}(\mathrm{VP} \mid \mathrm{S}, \text { told, V[6] }) \times P_{l c}(\{\mathrm{NP}-\mathrm{C}\} \mid \mathrm{S}, \mathrm{VP}, \text { told, V[6] }) \\
& P_{d}(\mathrm{NP}-\mathrm{C}(\text { Hillary } \mathrm{NNP}) \mid \mathrm{S}, \mathrm{VP}, \text { told,V[6],LEFT, }\{\mathrm{NP}-\mathrm{C}\}) \times \\
& P_{d}(\mathrm{NP}(\text { yesterday,NN }) \mid \mathrm{S}, \mathrm{VP}, \text { told,V[6],LEFT, }\{ \}) \times \\
& P_{d}(\text { STOP } \mid \mathrm{S}, \mathrm{VP}, \text { told, V[6],LEFT, }\{ \})
\end{aligned}
$$

## The Final Probabilities



```
Ph(VP | S, told, V[6])×
Plc}({NP-C}|S,VP, told, V[6])
P
P
P
Prc}({}| S, VP, told, V[6])
P
```


## Another Example



## Summary

- Identify heads of rules $\Rightarrow$ dependency representations
- Presented two variants of PCFG methods applied to lexicalized grammars.
- Break generation of rule down into small (markov process) steps
- Build dependencies back up (distance, subcategorization)


## Evaluation: Representing Trees as Constituents



| Label | Start Point | End Point |
| :--- | :--- | :--- |
| NP | 1 | 2 |
| NP | 4 | 5 |
| VP | 3 | 5 |
| S | 1 | 5 |

## Precision and Recall

| Label | Start Point | End Point |
| :--- | :--- | :--- |
| NP | 1 | 2 |
| NP | 4 | 5 |
| NP | 4 | 8 |
| PP | 6 | 8 |
| NP | 7 | 8 |
| VP | 3 | 8 |
| S | 1 | 8 |


| Label | Start Point | End Point |
| :--- | :--- | :--- |
|  |  |  |
| NP | 1 | 2 |
| NP | 4 | 5 |
| PP | 6 | 8 |
| NP | 7 | 8 |
| VP | 3 | 8 |
| S | 1 | 8 |

- $G=$ number of constituents in gold standard $=7$
- $P=$ number in parse output $=6$
- $C=$ number correct $=6$

$$
\text { Recall }=100 \% \times \frac{C}{G}=100 \% \times \frac{6}{7} \quad \text { Precision }=100 \% \times \frac{C}{P}=100 \% \times \frac{6}{6}
$$

## Results

| Method | Recall | Precision |
| :--- | :---: | :---: |
| PCFGs (Charniak 97) | $70.6 \%$ | $74.8 \%$ |
| Conditional Models - Decision Trees (Magerman 95) | $84.0 \%$ | $84.3 \%$ |
| Lexical Dependencies (Collins 96) | $85.3 \%$ | $85.7 \%$ |
| Conditional Models - Logistic (Ratnaparkhi 97) | $86.3 \%$ | $87.5 \%$ |
| Generative Lexicalized Model (Charniak 97) | $86.7 \%$ | $86.6 \%$ |
| Model 1 (no subcategorization) | $87.5 \%$ | $87.7 \%$ |
| Model 2 (subcategorization) | $88.1 \%$ | $88.3 \%$ |

## Effect of the Different Features

| MODEL | A | V | R | P |
| :---: | :---: | :---: | :---: | :---: |
| Model 1 | NO | NO | $75.0 \%$ | $76.5 \%$ |
| Model 1 | YES | NO | $86.6 \%$ | $86.7 \%$ |
| Model 1 | YES | YES | $87.8 \%$ | $88.2 \%$ |
| Model 2 | NO | NO | $85.1 \%$ | $86.8 \%$ |
| Model 2 | YES | NO | $87.7 \%$ | $87.8 \%$ |
| Model 2 | YES | YES | $88.7 \%$ | $89.0 \%$ |

Results on Section 0 of the WSJ Treebank. Model 1 has no subcategorization, Model 2 has subcategorization. $\mathrm{A}=\mathrm{YES}, \mathrm{V}=$ YES mean that the adjacency/verb conditions respectively were used in the distance measure. $\mathbf{R} / \mathbf{P}=$ recall/precision.

## Weaknesses of Precision and Recall

| Label | Start Point | End Point |
| :--- | :--- | :--- |
| NP | 1 | 2 |
| NP | 4 | 5 |
| NP | 4 | 8 |
| PP | 6 | 8 |
| NP | 7 | 8 |
| VP | 3 | 8 |
| S | 1 | 8 |


| Label | Start Point | End Point |
| :--- | :--- | :--- |
|  |  |  |
| NP | 1 | 2 |
| NP | 4 | 5 |
| PP | 6 | 8 |
| NP | 7 | 8 |
| VP | 3 | 8 |
| S | 1 | 8 |

NP attachment:
(S (NP The men) (VP dumped (NP (NP sacks) (PP of (NP the substance)))))

VP attachment:
(S (NP The men) (VP dumped (NP sacks) (PP of (NP the substance))))


| (-- | - | told | V[6] | TOP | S | - | SPECIAL) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (told | V[6] | Hillary | NNP | S | VP | NP-C | LEFT) |
| (told | V[6] | Clinton | NNP | VP | V[6] | NP-C | RIGHT) |
| (told | V[6] | that | COMP | VP | V[6] | SBAR-C | RIGHT) |
| (that | COMP | was | Vt | SBAR-C | COMP | S-C | RIGHT) |
| (was | Vt | she | PRP | S-C | VP | NP-C | LEFT) |
| (was | Vt | president | NN | VP | Vt | NP-C | RIGHT) |

## Dependency Accuracies

- All parses for a sentence with $n$ words have $n$ dependencies Report a single figure, dependency accuracy
- Model 2 with all features scores $88.3 \%$ dependency accuracy ( $91 \%$ if you ignore non-terminal labels on dependencies)
- Can calculate precision/recall on particular dependency types e.g., look at all subject/verb dependencies $\Rightarrow$ all dependencies with label (S,VP,NP-C,LEFT)

Recall $=\frac{\text { number of subject } / \text { verb dependencies correct }}{\text { number of subject/verb dependencies in gold standard }}$
Precision $=\frac{\text { number of subject } / \text { verb dependencies correct }}{\text { number of subject/verb dependencies in parser's output }}$

| R | CP | P | Count | Relation | Rec | Prec |
| :---: | :---: | :---: | :---: | :--- | :---: | :---: |
| 1 | 29.65 | 29.65 | 11786 | NPB TAG TAG L | 94.60 | 93.46 |
| 2 | 40.55 | 10.90 | 4335 | PP TAG NP-C R | 94.72 | 94.04 |
| 3 | 48.72 | 8.17 | 3248 | S VP NP - L L | 95.75 | 95.11 |
| 4 | 54.03 | 5.31 | 2112 | NP NPB PP R | 84.99 | 84.35 |
| 5 | 59.30 | 5.27 | 2095 | VP TAG NP-C R | 92.41 | 92.15 |
| 6 | 64.18 | 4.88 | 1941 | VP TAG VP-C R | 97.42 | 97.98 |
| 7 | 68.71 | 4.53 | 1801 | VP TAG PP R | 83.62 | 81.14 |
| 8 | 73.13 | 4.42 | 1757 | TOP TOP S R | 96.36 | 96.85 |
| 9 | 74.53 | 1.40 | 558 | VP TAG SBAR-C R | 94.27 | 93.93 |
| 10 | 75.83 | 1.30 | 518 | QP TAG TAG R | 86.49 | 86.65 |
| 11 | 77.08 | 1.25 | 495 | NP NPB NP R | 74.34 | 75.72 |
| 12 | 78.28 | 1.20 | 477 | SBAR TAG S-C R | 94.55 | 92.04 |
| 13 | 79.48 | 1.20 | 476 | NP NPB SBAR R | 79.20 | 79.54 |
| 14 | 80.40 | 0.92 | 367 | VP TAG ADVP R | 74.93 | 78.57 |
| 15 | 81.30 | 0.90 | 358 | NPB TAG NPB L | 97.49 | 92.82 |
| 16 | 82.18 | 0.88 | 349 | VP TAG TAG R | 90.54 | 93.49 |
| 17 | 82.97 | 0.79 | 316 | VP TAG SG-C R | 92.41 | 88.22 |

Accuracy of the 17 most frequent dependency types in section 0 of the treebank, as recovered by model $2 . \mathrm{R}=$ rank; $\mathrm{CP}=$ cumulative percentage; $\mathrm{P}=$ percentage; Rec $=$ Recall; Prec $=$ precision .

| Type | Sub-type | Description | Count | Recall | Precision |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Complement to a verb $6495=16.3 \% \text { of all cases }$ | ```S VP NP-C L VP TAG NP-C R VP TAG SBAR-C R VP TAG SG-C R VP TAG \(S-C R\) S VP S-C L S VP SG-C L ...``` | Subject Object | $\begin{gathered} \hline \hline 3248 \\ 2095 \\ 558 \\ 316 \\ 150 \\ 104 \\ 14 \end{gathered}$ | $\begin{aligned} & \hline \hline 95.75 \\ & 92.41 \\ & 94.27 \\ & 92.41 \\ & 74.67 \\ & 93.27 \\ & 78.57 \end{aligned}$ | 95.11 92.15 93.93 88.22 78.32 78.86 68.75 |
|  | TOTAL |  | 6495 | 93.76 | 92.96 |
| Other complements <br> $7473=18.8 \%$ of all cases | PP TAG NP-C R VP TAG VP-C R SBAR TAG $S-C$ R SBAR WHNP SG-C R PP TAG SG-C R SBAR WHADVP S-C R PP TAG PP-C R SBAR WHNP S-C R SBAR TAG SG-C R PP TAG S-C R SBAR WHPP S-C R $S$ ADJP NP-C L PP TAG SBAR-C R ... |  | 4335 1941 477 286 125 83 51 42 23 18 16 15 15 | $\begin{gathered} \hline \hline 94.72 \\ 97.42 \\ 94.55 \\ 90.56 \\ 94.40 \\ 97.59 \\ 84.31 \\ 66.67 \\ 69.57 \\ 38.89 \\ 100.00 \\ 46.67 \\ 100.00 \end{gathered}$ | 94.04 97.98 92.04 90.56 89.39 98.78 70.49 84.85 69.57 63.64 100.00 46.67 88.24 |
|  | TOTAL |  | 7473 | 94.47 | 94.12 |



| Type | Sub-type | Description | Count | Recall | Precision |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Mod'n within BaseNPs <br> $12742=29.6 \%$ of all cases | NPB TAG TAG L |  | 11786 | 94.60 | 93.46 |
|  | NPB TAG NPB L |  | 358 | 97.49 | 92.82 |
|  | NPB TAG TAG R |  | 189 | 74.07 | 75.68 |
|  | NPB TAG ADJP L |  | 167 | 65.27 | 71.24 |
|  | NPB TAG QP L |  | 110 | 80.91 | 81.65 |
|  | NPB TAG NAC L |  | 29 | 51.72 | 71.43 |
|  | NPB NX TAG L |  | 27 | 14.81 | 66.67 |
|  | NPB QP TAG L |  | 15 | 66.67 | 76.92 |
|  | ... |  |  |  |  |
|  | TOTAL |  | 12742 | 93.20 | 92.59 |
| Mod'n to NPs <br> $1418=3.6 \%$ of all cases | NP NPB NP $R$ <br> NP NPB SBAR $R$ <br> NP NPB VP $R$ <br> NP NPB SG $R$ <br> NP NPB PRN $R$ <br> NP NPB $A D V P$ $R$ <br> NP NPB ADJP $R$ <br> $\ldots$    | AppositiveRelative clauseReduced relative | 495 | 74.34 | 75.72 |
|  |  |  | 476 | 79.20 | 79.54 |
|  |  |  | 205 | 77.56 | 72.60 |
|  |  |  | 63 | 88.89 | 81.16 |
|  |  |  | 53 | 45.28 | 60.00 |
|  |  |  | 48 | 35.42 | 54.84 |
|  |  |  | 48 | 62.50 | 69.77 |
|  |  |  |  |  |  |
|  | TOTAL |  | 1418 | 73.20 | 75.49 |


| Type | Sub-type | Description | Count | Recall | Precision |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sentential head | TOP TOP S R |  | 1757 | 96.36 | 96.85 |
|  | TOP TOP SINV R |  | 89 | 96.63 | 94.51 |
| $1917=4.8 \%$ of all cases | TOP TOP NP R |  | 32 | 78.12 | 60.98 |
|  | TOP TOP SG R |  | 15 | 40.00 | 33.33 |
|  | ... |  |  |  |  |
|  | TOTAL |  | 1917 | 94.99 | 94.99 |
| Adjunct to a verb$2242=5.6 \% \text { of all cases }$ | VP TAG ADVP R |  | 367 | 74.93 | 78.57 |
|  | VP TAG TAG $R$ |  | 349 | 90.54 | 93.49 |
|  | VP TAG ADJP R |  | 259 | 83.78 | 80.37 |
|  | $S$ VP ADVP L |  | 255 | 90.98 | 84.67 |
|  | VP TAG NP R |  | 187 | 66.31 | 74.70 |
|  | VP TAG SBAR R |  | 180 | 74.44 | 72.43 |
|  | VP TAG SG R |  | 159 | 60.38 | 68.57 |
|  | $S$ VP TAG L |  | 115 | 86.96 | 90.91 |
|  | S VP SBAR L |  | 81 | 88.89 | 85.71 |
|  | VP TAG ADVP L |  | 79 | 51.90 | 49.40 |
|  | S VP PRN L |  | 58 | 25.86 | 48.39 |
|  | S VP NP L |  | 45 | 66.67 | 63.83 |
|  | S VP SG L |  | 28 | 75.00 | 52.50 |
|  | VP TAG PRN R |  | 27 | 3.70 | 12.50 |
|  | VP TAG $S$ R |  | 11 | 9.09 | 100.00 |
|  |  |  |  |  |  |
|  | TOTAL |  | 2242 | 75.11 | 78.44 |

## Some Conclusions about Errors in Parsing

- "Core" sentential structure (complements, NP chunks) recovered with over $90 \%$ accuracy.
- Attachment ambiguities involving adjuncts are resolved with much lower accuracy ( $\approx 80 \%$ for PP attachment, $\approx 50-60 \%$ for coordination).

