
Statistical Parsing



A Context-Free Grammar

S ⇒ NP VP
VP ⇒ Vi
VP ⇒ Vt NP
VP ⇒ VP PP
NP ⇒ DT NN
NP ⇒ NP PP
PP ⇒ P NP

Vi ⇒ sleeps
Vt ⇒ saw
NN ⇒ man
NN ⇒ dog
NN ⇒ telescope
DT ⇒ the
IN ⇒ with
IN ⇒ in



Ambiguity

• A sentence of reasonable length can easily have 10s, 100s,
or 1000s of possible analyses, most of which are very
implausible

• Examples of sources of ambiguity:

– Part-of-Speech ambiguity
NNS → walks
Vi → walks

– Prepositional phrase attachment

I drove down the street in the car

– Pre-nominal modifiers

the angry car mechanic
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A program to promote safety in trucks and vans

There are at least 14 analyses for this noun phrase...



A Probabilistic Context-Free Grammar

S ⇒ NP VP 1.0
VP ⇒ Vi 0.4
VP ⇒ Vt NP 0.4
VP ⇒ VP PP 0.2
NP ⇒ DT NN 0.3
NP ⇒ NP PP 0.7
PP ⇒ P NP 1.0

Vi ⇒ sleeps 1.0
Vt ⇒ saw 1.0
NN ⇒ man 0.7
NN ⇒ dog 0.2
NN ⇒ telescope 0.1
DT ⇒ the 1.0
IN ⇒ with 0.5
IN ⇒ in 0.5

• Probability of a tree with rulesαi → βi is
∏

i P (αi → βi|αi)



DERIVATION RULES USED PROBABILITY
S S→ NP VP 1.0
NP VP NP→ DT N 0.3
DT N VP DT→ the 1.0
the N VP N→ dog 0.1
the dog VP VP→ VB 0.4
the dog VB VB→ laughs 0.5
the dog laughs

PROBABILITY = 1.0 × 0.3 × 1.0 × 0.1 × 0.4 × 0.5
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Properties of PCFGs

• Say we have a sentenceS, set of derivations for that sentence
is T (S). Then a PCFG assigns a probability to each member
of T (S). i.e.,we now have a ranking in order of probability.

• Given a PCFG and a sentenceS, we can find

arg max
T∈T (S)

P (T, S)

using dynamic programming (e.g., a variant of the CKY
algorithm)



Overview

• Weaknesses of PCFGs

• Heads in context-free rules

• Dependency representations of parse trees

• Two models making use of dependencies



Weaknesses of PCFGs

• Lack of sensitivity to lexical information

• Lack of sensitivity to structural frequencies
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PROB = P (S→ NP VP | S) ×P (NNP→ IBM | NNP)
×P (VP → V NP | VP) ×P (Vt → bought | Vt)
×P (NP→ NNP | NP) ×P (NNP→ Lotus | NNP)
×P (NP→ NNP | NP)



A Case of PP Attachment Ambiguity
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(b) S
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(a)

Rules
S→ NP VP
NP→ NNS
VP → VP PP
VP→ VBD NP
NP→ NNS
PP→ IN NP
NP→ DT NN
NNS→ workers
VBD → dumped
NNS→ sacks
IN → into
DT → a
NN → bin

(b)

Rules
S→ NP VP
NP→ NNS
NP→ NP PP
VP→ VBD NP
NP→ NNS
PP→ IN NP
NP→ DT NN
NNS→ workers
VBD → dumped
NNS→ sacks
IN → into
DT → a
NN → bin

If P (NP→ NP PP | NP) > P (VP→ VP PP | VP) then (b) is
more probable, else (a) is more probable.

Attachment decision is completely independent of the words



A Case of Coordination Ambiguity
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(b) NP

NP

NNS

dogs

PP

IN

in

NP

NP

NNS

houses

CC

and

NP

NNS

cats



(a)

Rules
NP→ NP CC NP
NP→ NP PP
NP→ NNS
PP→ IN NP
NP→ NNS
NP→ NNS
NNS→ dogs
IN → in
NNS→ houses
CC→ and
NNS→ cats

(b)

Rules
NP→ NP CC NP
NP→ NP PP
NP→ NNS
PP→ IN NP
NP→ NNS
NP→ NNS
NNS→ dogs
IN → in
NNS→ houses
CC→ and
NNS→ cats

Here the two parses have identical rules, and therefore have
identical probability under any assignment of PCFG rule
probabilities



Structural Preferences: Close Attachment

(a) NP

NP

NN

PP

IN NP

NP

NN

PP

IN NP

NN

(b) NP

NP

NP

NN

PP

IN NP

NN

PP

IN NP

NN

• Example:president of a company in Africa

• Both parses have the same rules, therefore receive same
probability under a PCFG

• “Close attachment” (structure (a)) is twice as likely in Wall
Street Journal text.



Structural Preferences: Close Attachment

John was believed to have been shot by Bill

Here the low attachment analysis (Bill does theshooting) contains
same rules as the high attachment analysis (Bill does thebelieving),
so the two analyses receive same probability.



Heads in Context-Free Rules

Add annotations specifying the“head” of each rule:

S ⇒ NP VP
VP ⇒ Vi
VP ⇒ Vt NP
VP ⇒ VP PP
NP ⇒ DT NN
NP ⇒ NP PP
PP ⇒ IN NP

Vi ⇒ sleeps
Vt ⇒ saw
NN ⇒ man
NN ⇒ woman
NN ⇒ telescope
DT ⇒ the
IN ⇒ with
IN ⇒ in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional
phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun,
IN=preposition



Rules which Recover Heads:
An Example of rules for NPs

If the rule contains NN, NNS, or NNP:
Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP

Else If the rule contains a JJ: Choose the rightmost JJ

Else If the rule contains a CD: Choose the rightmost CD

ElseChoose the rightmost child

e.g.,
NP ⇒ DT NNP NN
NP ⇒ DT NN NNP
NP ⇒ NP PP
NP ⇒ DT JJ
NP ⇒ DT



Adding Headwords to Trees
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Adding Headwords to Trees

S(questioned)

NP(lawyer)

DT(the)

the

NN(lawyer)

lawyer

VP(questioned)

Vt(questioned)

questioned

NP(witness)

DT(the)

the

NN(witness)

witness

• A constituent receives itsheadwordfrom itshead child.

S ⇒ NP VP (S receives headword from VP)
VP ⇒ Vt NP (VP receives headword from Vt)
NP ⇒ DT NN (NP receives headword from NN)



Adding Headtags to Trees

S(questioned, Vt)

NP(lawyer, NN)

DT

the

NN

lawyer

VP(questioned, Vt)

Vt

questioned

NP(witness, NN)

DT

the

NN

witness

• Also propagatepart-of-speech tagsup the trees
(We’ll see soon why this is useful!)



Lexicalized PCFGs

S(questioned, Vt)

NP(lawyer, NN)

DT

the

NN

lawyer

VP(questioned, Vt)

Vt

questioned

NP(witness, NN)

DT

the

NN

witness

• In PCFGs we had rules such asS -> NP VP, with probabilities such as

P (NP VP|S)

• In lexicalized PCFGs we have rules such as

S(questioned,Vt) -> NP(lawyer,NN) VP(questioned,Vt)

with probabilities such as

P (NP(lawyer,NN) VP(questioned,Vt)|S(questioned,Vt))



A Model from Charniak (1997)

S(questioned,Vt)

⇓ P (NP( ,NN) VP | S(questioned,Vt))

S(questioned,Vt)

NP( ,NN) VP(questioned,Vt)

⇓ P (lawyer | S,VP,NP,NN, questioned,Vt))

S(questioned,Vt)

NP(lawyer,NN) VP(questioned,Vt)



Smoothed Estimation

P (NP( ,NN) VP | S(questioned,Vt)) =

λ1 ×
Count(S(questioned,Vt)→NP( ,NN) VP)

Count(S(questioned,Vt))

+λ2 ×
Count(S( ,Vt)→NP( ,NN) VP)

Count(S( ,Vt))

• Where0 ≤ λ1, λ2 ≤ 1, andλ1 + λ2 = 1



Smoothed Estimation

P (lawyer | S,VP,NP,NN,questioned,Vt) =

λ1 ×
Count(lawyer| S,VP,NP,NN,questioned,Vt)

Count(S,VP,NP,NN,questioned,Vt)

+λ2 ×
Count(lawyer| S,VP,NP,NN,Vt)

Count(S,VP,NP,NN,Vt)

+λ3 ×
Count(lawyer| NN)

Count(NN)

• Where0 ≤ λ1, λ2, λ3 ≤ 1, andλ1 + λ2 + λ3 = 1



P (NP(lawyer,NN) VP| S(questioned,Vt)) =

(λ1 ×
Count(S(questioned,Vt)→NP( ,NN) VP)

Count(S(questioned,Vt))

+λ2 ×
Count(S( ,Vt)→NP( ,NN) VP)

Count(S( ,Vt)) )

× ( λ1 ×
Count(lawyer| S,VP,NP,NN,questioned,Vt)

Count(S,VP,NP,NN,questioned,Vt)

+λ2 ×
Count(lawyer| S,VP,NP,NN,Vt)

Count(S,VP,NP,NN,Vt)

+λ3 ×
Count(lawyer| NN)

Count(NN)
)



Motivation for Breaking Down Rules

• First step of decomposition of (Charniak 1997):
S(questioned,Vt)

⇓ P (NP( ,NN) VP | S(questioned,Vt))

S(questioned,Vt)

NP( ,NN) VP(questioned,Vt)

• Relies on counts of entire rules

• These counts aresparse:

– 40,000 sentences from Penn treebank have 12,409 rules.

– 15% of all test data sentences contain a rule never seen in training



Motivation for Breaking Down Rules

Rule Count No. of Rules Percentage No. of Rules Percentage
by Type by Type by token by token

1 6765 54.52 6765 0.72
2 1688 13.60 3376 0.36
3 695 5.60 2085 0.22
4 457 3.68 1828 0.19
5 329 2.65 1645 0.18

6 ... 10 835 6.73 6430 0.68
11 ... 20 496 4.00 7219 0.77
21 ... 50 501 4.04 15931 1.70
51 ... 100 204 1.64 14507 1.54
> 100 439 3.54 879596 93.64

Statistics for rules taken from sections 2-21 of the treebank
(Table taken from my PhD thesis).



Modeling Rule Productions as Markov Processes

• Step 1: generate category of head child

S(told,V[6])

⇓

S(told,V[6])

VP(told,V[6])

Ph(VP | S, told, V[6])



Modeling Rule Productions as Markov Processes

• Step 2: generate left modifiers in a Markov chain

S(told,V[6])

?? VP(told,V[6])

⇓

S(told,V[6])

NP(Hillary,NNP) VP(told,V[6])

Ph(VP | S, told, V[6])×Pd(NP(Hillary,NNP)| S,VP,told,V[6],LEFT)



Modeling Rule Productions as Markov Processes

• Step 2: generate left modifiers in a Markov chain

S(told,V[6])

?? NP(Hillary,NNP) VP(told,V[6])

⇓

S(told,V[6])

NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6])

Ph(VP | S, told, V[6]) × Pd(NP(Hillary,NNP) | S,VP,told,V[6],LEFT)×
Pd(NP(yesterday,NN)| S,VP,told,V[6],LEFT)



Modeling Rule Productions as Markov Processes

• Step 2: generate left modifiers in a Markov chain

S(told,V[6])

?? NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6])

⇓

S(told,V[6])

STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6])

Ph(VP | S, told, V[6]) × Pd(NP(Hillary,NNP) | S,VP,told,V[6],LEFT)×
Pd(NP(yesterday,NN)| S,VP,told,V[6],LEFT) × Pd(STOP| S,VP,told,V[6],LEFT)



Modeling Rule Productions as Markov Processes

• Step 3: generate right modifiers in a Markov chain

S(told,V[6])

STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6]) ??

⇓

S(told,V[6])

STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6]) STOP

Ph(VP | S, told, V[6]) × Pd(NP(Hillary,NNP) | S,VP,told,V[6],LEFT)×
Pd(NP(yesterday,NN)| S,VP,told,V[6],LEFT) × Pd(STOP | S,VP,told,V[6],LEFT) ×
Pd(STOP| S,VP,told,V[6],RIGHT)



A Refinement: Adding aDistanceVariable

• ∆ = 1 if position is adjacent to the head.

S(told,V[6])

?? VP(told,V[6])

⇓

S(told,V[6])

NP(Hillary,NNP) VP(told,V[6])

Ph(VP | S, told, V[6])×
Pd(NP(Hillary,NNP)| S,VP,told,V[6],LEFT,∆ = 1)



A Refinement: Adding aDistanceVariable

• ∆ = 1 if position is adjacent to the head.

S(told,V[6])

?? NP(Hillary,NNP) VP(told,V[6])

⇓

S(told,V[6])

NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6])

Ph(VP | S, told, V[6]) × Pd(NP(Hillary,NNP) | S,VP,told,V[6],LEFT)×
Pd(NP(yesterday,NN)| S,VP,told,V[6],LEFT,∆ = 0)



The Final Probabilities
S(told,V[6])

STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6]) STOP

Ph(VP | S, told, V[6])×
Pd(NP(Hillary,NNP) | S,VP,told,V[6],LEFT,∆ = 1)×
Pd(NP(yesterday,NN)| S,VP,told,V[6],LEFT,∆ = 0)×
Pd(STOP| S,VP,told,V[6],LEFT,∆ = 0)×
Pd(STOP| S,VP,told,V[6],RIGHT,∆ = 1)



Adding the Complement/Adjunct Distinction

S

NP

subject

VP

V

verb

S(told,V[6])

NP(yesterday,NN)

NN

yesterday

NP(Hillary,NNP)

NNP

Hillary

VP(told,V[6])

V[6]

told

. . .

• Hillary is the subject

• yesterdayis a temporal modifier

• But nothing to distinguish them.



Adding the Complement/Adjunct Distinction

VP

V

verb

NP

object
VP(told,V[6])

V[6]

told

NP(Bill,NNP)

NNP

Bill

NP(yesterday,NN)

NN

yesterday

SBAR(that,COMP)

. . .

• Bill is the object

• yesterdayis a temporal modifier

• But nothing to distinguish them.



Complements vs. Adjuncts

• Complements are closely related to the head they modify,
adjuncts are more indirectly related

• Complements are usually arguments of the thing they modify
yesterday Hillary told. . . ⇒ Hillary is doing thetelling

• Adjuncts add modifying information: time, place, manner etc.
yesterday Hillary told. . . ⇒ yesterdayis atemporal modifier

• Complements are usually required, adjuncts are optional

vs. yesterday Hillary told. . . (grammatical)
vs. Hillary told . . . (grammatical)
vs. yesterday told. . . (ungrammatical)



Adding Tags Making the Complement/Adjunct Distinction

S

NP-C

subject

VP

V

verb

S

NP

modifier

VP

V

verb
S(told,V[6])

NP(yesterday,NN)

NN

yesterday

NP-C(Hillary,NNP)

NNP

Hillary

VP(told,V[6])

V[6]

told

. . .



Adding Tags Making the Complement/Adjunct Distinction

VP

V

verb

NP-C

object

VP

V

verb

NP

modifier

VP(told,V[6])

V[6]

told

NP-C(Bill,NNP)

NNP

Bill

NP(yesterday,NN)

NN

yesterday

SBAR-C(that,COMP)

. . .



Adding Subcategorization Probabilities

• Step 1: generate category of head child

S(told,V[6])

⇓

S(told,V[6])

VP(told,V[6])

Ph(VP | S, told, V[6])



Adding Subcategorization Probabilities

• Step 2: choose leftsubcategorization frame

S(told,V[6])

VP(told,V[6])

⇓

S(told,V[6])

VP(told,V[6])
{NP-C}

Ph(VP | S, told, V[6]) × Plc({NP-C} | S, VP, told, V[6])



• Step 3: generate left modifiers in a Markov chain

S(told,V[6])

?? VP(told,V[6])
{NP-C}

⇓

S(told,V[6])

NP-C(Hillary,NNP) VP(told,V[6])
{}

Ph(VP | S, told, V[6]) × Plc({NP-C} | S, VP, told, V[6])×
Pd(NP-C(Hillary,NNP)| S,VP,told,V[6],LEFT,{NP-C})



S(told,V[6])

?? NP-C(Hillary,NNP) VP(told,V[6])
{}

⇓

S(told,V[6])

NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V[6])
{}

Ph(VP | S, told, V[6]) × Plc({NP-C} | S, VP, told, V[6])
Pd(NP-C(Hillary,NNP)| S,VP,told,V[6],LEFT,{NP-C})×
Pd(NP(yesterday,NN)| S,VP,told,V[6],LEFT,{})



S(told,V[6])

?? NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V[6])
{}

⇓

S(told,V[6])

STOP NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V[6])
{}

Ph(VP | S, told, V[6]) × Plc({NP-C} | S, VP, told, V[6])
Pd(NP-C(Hillary,NNP)| S,VP,told,V[6],LEFT,{NP-C})×
Pd(NP(yesterday,NN)| S,VP,told,V[6],LEFT,{})×
Pd(STOP| S,VP,told,V[6],LEFT,{})



The Final Probabilities
S(told,V[6])

STOP NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V[6]) STOP

Ph(VP | S, told, V[6])×
Plc({NP-C} | S, VP, told, V[6])×
Pd(NP-C(Hillary,NNP)| S,VP,told,V[6],LEFT,∆ = 1,{NP-C})×
Pd(NP(yesterday,NN)| S,VP,told,V[6],LEFT,∆ = 0,{})×
Pd(STOP| S,VP,told,V[6],LEFT,∆ = 0,{})×
Prc({} | S, VP, told, V[6])×
Pd(STOP| S,VP,told,V[6],RIGHT,∆ = 1,{})



Another Example

VP(told,V[6])

V[6](told,V[6]) NP-C(Bill,NNP) NP(yesterday,NN) SBAR-C(that,COMP)

Ph(V[6] | VP, told, V[6])×
Plc({} | VP, V[6], told, V[6])×
Pd(STOP| VP,V[6],told,V[6],LEFT,∆ = 1,{})×
Prc({NP-C, SBAR-C} | VP, V[6], told, V[6])×
Pd(NP-C(Bill,NNP) | VP,V[6],told,V[6],RIGHT,∆ = 1,{NP-C, SBAR-C})×
Pd(NP(yesterday,NN)| VP,V[6],told,V[6],RIGHT,∆ = 0,{SBAR-C})×
Pd(SBAR-C(that,COMP)| VP,V[6],told,V[6],RIGHT,∆ = 0,{SBAR-C})×
Pd(STOP| VP,V[6],told,V[6],RIGHT,∆ = 0,{})



Summary

• Identify heads of rules⇒ dependency representations

• Presented two variants of PCFG methods applied to
lexicalized grammars.

– Break generation of rule down into small (markov
process) steps

– Build dependencies back up (distance, subcategorization)



Evaluation: Representing Trees as Constituents

S

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

⇓

Label Start Point End Point

NP 1 2
NP 4 5
VP 3 5
S 1 5



Precision and Recall

Label Start Point End Point

NP 1 2
NP 4 5
NP 4 8
PP 6 8
NP 7 8
VP 3 8
S 1 8

Label Start Point End Point

NP 1 2
NP 4 5
PP 6 8
NP 7 8
VP 3 8
S 1 8

• G = number of constituents ingold standard= 7

• P = number inparse output= 6

• C = number correct = 6

Recall= 100% ×
C

G
= 100% ×

6

7
Precision= 100% ×

C

P
= 100% ×

6

6



Results

Method Recall Precision

PCFGs (Charniak 97) 70.6% 74.8%
Conditional Models – Decision Trees (Magerman 95)84.0% 84.3%
Lexical Dependencies (Collins 96) 85.3% 85.7%
Conditional Models – Logistic (Ratnaparkhi 97) 86.3% 87.5%
Generative Lexicalized Model (Charniak 97) 86.7% 86.6%
Model 1 (no subcategorization) 87.5% 87.7%
Model 2 (subcategorization) 88.1% 88.3%



Effect of the Different Features

MODEL A V R P
Model 1 NO NO 75.0% 76.5%
Model 1 YES NO 86.6% 86.7%
Model 1 YES YES 87.8% 88.2%
Model 2 NO NO 85.1% 86.8%
Model 2 YES NO 87.7% 87.8%
Model 2 YES YES 88.7% 89.0%

Results on Section 0 of the WSJ Treebank. Model 1 has no subcategorization,
Model 2 has subcategorization. A = YES, V = YES mean that the
adjacency/verb conditions respectively were used in the distance measure.R/P =
recall/precision.



Weaknesses of Precision and Recall

Label Start Point End Point

NP 1 2
NP 4 5
NP 4 8
PP 6 8
NP 7 8
VP 3 8
S 1 8

Label Start Point End Point

NP 1 2
NP 4 5
PP 6 8
NP 7 8
VP 3 8
S 1 8

NP attachment:
(S (NP The men) (VP dumped (NP (NP sacks) (PP of (NP the substance)))))

VP attachment:
(S (NP The men) (VP dumped (NP sacks) (PP of (NP the substance))))



S(told,V[6])

NP-C(Hillary,NNP)

NNP

Hillary

VP(told,V[6])

V[6](told,V[6])

V[6]

told

NP-C(Clinton,NNP)

NNP

Clinton

SBAR-C(that,COMP)

COMP

that

S-C

NP-C(she,PRP)

PRP

she

VP(was,Vt)

Vt

was

NP-C(president,NN)

NN

president

( told V[6] TOP S SPECIAL)
(told V[6] Hillary NNP S VP NP-C LEFT)
(told V[6] Clinton NNP VP V[6] NP-C RIGHT)
(told V[6] that COMP VP V[6] SBAR-C RIGHT)
(that COMP was Vt SBAR-C COMP S-C RIGHT)
(was Vt she PRP S-C VP NP-C LEFT)
(was Vt president NN VP Vt NP-C RIGHT)



Dependency Accuracies

• All parses for a sentence withn words haven dependencies
Report a single figure, dependency accuracy

• Model 2 with all features scores 88.3% dependency accuracy
(91% if you ignore non-terminal labels on dependencies)

• Can calculate precision/recall on particular dependencytypes
e.g., look at all subject/verb dependencies⇒
all dependencies with label(S,VP,NP-C,LEFT)

Recall = number of subject/verb dependencies correct
number of subject/verb dependencies in gold standard

Precision = number of subject/verb dependencies correct
number of subject/verb dependencies in parser’s output



R CP P Count Relation Rec Prec
1 29.65 29.65 11786 NPB TAG TAG L 94.60 93.46
2 40.55 10.90 4335 PP TAG NP-C R 94.72 94.04
3 48.72 8.17 3248 S VP NP-C L 95.75 95.11
4 54.03 5.31 2112 NP NPB PP R 84.99 84.35
5 59.30 5.27 2095 VP TAG NP-C R 92.41 92.15
6 64.18 4.88 1941 VP TAG VP-C R 97.42 97.98
7 68.71 4.53 1801 VP TAG PP R 83.62 81.14
8 73.13 4.42 1757 TOP TOP S R 96.36 96.85
9 74.53 1.40 558 VP TAG SBAR-C R 94.27 93.93
10 75.83 1.30 518 QP TAG TAG R 86.49 86.65
11 77.08 1.25 495 NP NPB NP R 74.34 75.72
12 78.28 1.20 477 SBAR TAG S-C R 94.55 92.04
13 79.48 1.20 476 NP NPB SBAR R 79.20 79.54
14 80.40 0.92 367 VP TAG ADVP R 74.93 78.57
15 81.30 0.90 358 NPB TAG NPB L 97.49 92.82
16 82.18 0.88 349 VP TAG TAG R 90.54 93.49
17 82.97 0.79 316 VP TAG SG-C R 92.41 88.22

Accuracy of the 17 most frequent dependency types in section 0 of the treebank,
as recovered by model 2. R = rank; CP = cumulative percentage; P = percentage;
Rec = Recall; Prec = precision.





Type Sub-type Description Count Recall Precision

Complement to a verb S VP NP-C L Subject 3248 95.75 95.11
VP TAG NP-C R Object 2095 92.41 92.15

6495 = 16.3% of all cases VP TAG SBAR-C R 558 94.27 93.93
VP TAG SG-C R 316 92.41 88.22
VP TAG S-C R 150 74.67 78.32
S VP S-C L 104 93.27 78.86
S VP SG-C L 14 78.57 68.75
...
TOTAL 6495 93.76 92.96

Other complements PP TAG NP-C R 4335 94.72 94.04
VP TAG VP-C R 1941 97.42 97.98

7473 = 18.8% of all cases SBAR TAG S-C R 477 94.55 92.04
SBAR WHNP SG-C R 286 90.56 90.56
PP TAG SG-C R 125 94.40 89.39
SBAR WHADVP S-C R 83 97.59 98.78
PP TAG PP-C R 51 84.31 70.49
SBAR WHNP S-C R 42 66.67 84.85
SBAR TAG SG-C R 23 69.57 69.57
PP TAG S-C R 18 38.89 63.64
SBAR WHPP S-C R 16 100.00 100.00
S ADJP NP-C L 15 46.67 46.67
PP TAG SBAR-C R 15 100.00 88.24
...
TOTAL 7473 94.47 94.12



Type Sub-type Description Count Recall Precision

PP modification NP NPB PP R 2112 84.99 84.35
VP TAG PP R 1801 83.62 81.14

4473 = 11.2% of all cases S VP PP L 287 90.24 81.96
ADJP TAG PP R 90 75.56 78.16
ADVP TAG PP R 35 68.57 52.17
NP NP PP R 23 0.00 0.00
PP PP PP L 19 21.05 26.67
NAC TAG PP R 12 50.00 100.00
...
TOTAL 4473 82.29 81.51

Coordination NP NP NP R 289 55.71 53.31
VP VP VP R 174 74.14 72.47

763 = 1.9% of all cases S S S R 129 72.09 69.92
ADJP TAG TAG R 28 71.43 66.67
VP TAG TAG R 25 60.00 71.43
NX NX NX R 25 12.00 75.00
SBAR SBAR SBAR R 19 78.95 83.33
PP PP PP R 14 85.71 63.16
...
TOTAL 763 61.47 62.20



Type Sub-type Description Count Recall Precision

Mod’n within BaseNPs NPB TAG TAG L 11786 94.60 93.46
NPB TAG NPB L 358 97.49 92.82

12742 = 29.6% of all cases NPB TAG TAG R 189 74.07 75.68
NPB TAG ADJP L 167 65.27 71.24
NPB TAG QP L 110 80.91 81.65
NPB TAG NAC L 29 51.72 71.43
NPB NX TAG L 27 14.81 66.67
NPB QP TAG L 15 66.67 76.92
...
TOTAL 12742 93.20 92.59

Mod’n to NPs NP NPB NP R Appositive 495 74.34 75.72
NP NPB SBAR R Relative clause 476 79.20 79.54

1418 = 3.6% of all cases NP NPB VP R Reduced relative 205 77.56 72.60
NP NPB SG R 63 88.89 81.16
NP NPB PRN R 53 45.28 60.00
NP NPB ADVP R 48 35.42 54.84
NP NPB ADJP R 48 62.50 69.77
...
TOTAL 1418 73.20 75.49



Type Sub-type Description Count Recall Precision

Sentential head TOP TOP S R 1757 96.36 96.85
TOP TOP SINV R 89 96.63 94.51

1917 = 4.8% of all cases TOP TOP NP R 32 78.12 60.98
TOP TOP SG R 15 40.00 33.33
...
TOTAL 1917 94.99 94.99

Adjunct to a verb VP TAG ADVP R 367 74.93 78.57
VP TAG TAG R 349 90.54 93.49

2242 = 5.6% of all cases VP TAG ADJP R 259 83.78 80.37
S VP ADVP L 255 90.98 84.67
VP TAG NP R 187 66.31 74.70
VP TAG SBAR R 180 74.44 72.43
VP TAG SG R 159 60.38 68.57
S VP TAG L 115 86.96 90.91
S VP SBAR L 81 88.89 85.71
VP TAG ADVP L 79 51.90 49.40
S VP PRN L 58 25.86 48.39
S VP NP L 45 66.67 63.83
S VP SG L 28 75.00 52.50
VP TAG PRN R 27 3.70 12.50
VP TAG S R 11 9.09 100.00
...
TOTAL 2242 75.11 78.44



Some Conclusions about Errors in Parsing

• “Core” sentential structure (complements, NP chunks)
recovered with over 90% accuracy.

• Attachment ambiguities involving adjuncts are resolved with
much lower accuracy (≈ 80% for PP attachment,≈ 50− 60%
for coordination).


