Basic Parsing with Context-
Free Grammars

Announcements

» To view past videos:
o http://globe.cvn.columbia.edu:8080/oncampus.ph

p?c=133ae14752e27fde909fdbd64c06b337

» Usually available only for 1 week. Right now,
available for all previous lectures

http://globe.cvn.columbia.edu:8080/oncampus.php?c=133ae14752e27fde909fdbd64c06b337
http://globe.cvn.columbia.edu:8080/oncampus.php?c=133ae14752e27fde909fdbd64c06b337

Earley Parsing

» Allows arbitrary CFGs

» Fills a table in a single sweep over the input
words
- Table is length N+1; N is number of words
> Table entries represent
- Completed constituents and their locations

- In-progress constituents
- Predicted constituents

States/Locations

It would be nice to know where these things are in
the input so...

S -> "VP[0,0] A VP is predicted at the
start of the sentence

NP —-> Det * Nominal [1,2] An NP is in progress; the
Det goes from 1 to 2

VP -> VNP [0,3] A VP has been found
starting at O and ending at 3

Graphically

Earley Algorithm

» March through chart left-to-right.

» At each step, apply 1 of 3 operators
> Predictor
- Create new states representing top-down expectations
> Scanner

- Match word predictions (rule with word after dot) to
words

- Completer

- When a state is complete, see what rules were looking
for that completed constituent

» Done when an S spans from O to n

Predictor

» Given a state
> With a non-terminal to right of dot (not a part-
of-speech category)
- Create a new state for each expansion of the
non-terminal

> Place these new states into same chart entry as
generated state, beginning and ending where
generating state ends.
> So predictor looking at
- S->.VP[0,0]
results in

- VP -> . Verb [0,0]
- VP -> . Verb NP [0,0]

Scanner

» Given a state
- With a non-terminal to right of dot that is a part-of-
speech category
> If the next word in the input matches this POS

> Create a new state with dot moved over the non-
terminal

> So scanner looking at VP -> . Verb NP [0,0]

- |f the next word, “book”, can be a verb, add new state:

- VP -> Verb . NP [0,1]
- Add this state to chart entry following current one
> Note: Earley algorithm uses top-down input to

disambiguate POS! Only POS predicted by some state
can get added to chart!

Completer

» Applied to a state when its dot has reached right
end of role.

» Parser has discovered a category over some span of
Input.

» Find and advance all previous states that were
looking for this category
o copy state, move dot, insert in current chart entry

» Given:
o NP -> Det Nominal . [1,3]
- VP -> Verb. NP [0,1]

» Add

- VP -> Verb NP . [0,3]

How do we know we are done?

» Find an S state in the final column that spans
from O to n and is complete.

» If that’s the case you’re done.
S ->a-[0,n]

10

Earley

<

More specifically...

. Predict all the states you can upfront

2. Read a word

1. Extend states based on matches
2. Add new predictions
3. Goto 2

3. Look at N to see if you have a winner

11

Example

» Book that flight

» We should find... an S from 0 to 3 that is a
completed state...

12

CFG for Fragment of English

S 2> NP VP VP>V

S =2 Aux NP VP PP -> Prep NP

NP - Det Nom N - old | dog | footsteps |
young

NP ->PropN V = dog | include | prefer

Nom -> Adj Nom Aux = does

Nom - N Prep 2>from | to | on | of

Nom = N Nom PropN - Bush | McCain |

Obama

Nom - Nom PP

Det - that | this | a| the

Adj -> old | green | red

V NP

Example

Chart[0] S0
51
52
53
54
$5
56
57
58
59

Yy — 3

S — e« NPFVP

S — o Aux NP VP

S — o P

NP — o Pronoun
NP — o Proper-Noun
NP — e Det Nominal
FP — o Ferb

P — e Verb NP

VP — e Verb NP PP

510 FP — e Verb PP
511 FP — « VPPF

0.0]
0.0]
0.0]
0.0]
0.0]
0.0]
0.0]
0.0]
0.0]
0.0]
0.0]
00

Dummy start state

Predictor
Predictor

Predictor
Predictor

Predictor
Predictor
Predictor
Predictor

Predictor
Predictor

Predictor

14

Example

Chart[1] S12 Ferb — booke [0.1] Scanner
513 VP — Ferboe [0.1] Completer
514 FP — Ferb e NP [0.1] Completer
513 VP — Ferb e NP PP [0.0] Predictor
516 VP — Ferb e« PP [0.0] Predictor
517 § — FPe [0.1] Completer
518 FP — FPe PP [0.1] Completer
519 NP — e Pronoun [1.1] Predictor
S20 NP — e Proper-Noun [1.1] Predictor
521 NP — e Det Nominal [1.1] Predictor
522 PP — e Prep NP [1.1] Predictor

15

Example

Chart[2] 523 Det — thate 2 Scanner
524 NP — Det e Nominal B gt Completer
525 Nominal — e Noun prgd Predictor
526 Nominal — e Nominal Noun [2.2] Predictor
527 Nominal — e Nominal PP [2.2] Predictor
Chart[3] S28 Noun — flight e 23] Scanner
529 Nominal — Noun e 23] Completer
530 NP — Det Nominal e 3] Completer
531 Nominal — Nominal e Noun [2.3] Completer
532 Nominal — Nominal e PP [2.3] Completer
533 VP — FVerb NP e 0,3] Completer
534 VP — Ferb NP e PP 0.3] Completer
S35 PP — o Prep NP B2l Predictor
536 § — FPoe (0.3] Completer

16

Details

» What kind of algorithms did we just describe
- Not parsers - recognizers

- The presence of an S state with the right attributes in
the right place indicates a successful recognition.
- But no parse tree... no parser

- That’s how we solve (not) an exponential problem in
polynomial time

17

Converting Earley from Recognizer
to Parser

» With the addition of a few pointers we have a
parser

» Augment the “Completer” to point to where
we came from.

18

Augmenting the chart with

structural informati

Chart[1]

on

S8 Verb book
VP Verb

S10 S VP

si1 VP Verb NP

S12 NP Det NOMINAL
513 NP Proper-Noun

Chart[2]

[0,1] Scanner
0,1] Completer S8
0,1] Completer s9
[0,1] Completer S8
1,1] Predictor
1,1] Predictor

Det that
NP Det NOMINAL
NOMINAL Noun

1,2] Scanner
1,2] Completer
2,2] Predictor

NOMINAL Noun NOMINAL [2,2] Predictor

Retrieving Parse Trees from Chart

» All the possible parses for an input are in the table

v

We just need to read off all the backpointers from
every complete S in the last column of the table

Find all the S -> X . [O,N+1]

v

Follow the structural traces from the Completer

v

Of course, this won’t be polynomial time, since
there could be an exponential number of trees

A 4

>

We can at least represent ambiguity efficiently

20

Left Recursion vs. Right Recursion

» Depth-first search will never terminate if
grammar is /eft recursive (e.g. NP ——> NP PP)

(A——>aAB,aa——¢)

=

¥F ¥F

f\ x’“‘\
AN

HF FF

» Solutions:
- Rewrite the grammar (automatically?) to a weakl/y
equivalent one which is not left-recursive
e.g. The man {on the hill with the telescope...}
NP - NP PP)
NP - Nom PP
NP 2> Nom
Nom -2 Det N
...becomes...
NP = Nom NP’
Nom - Det N
NP’ = PP NP’)
NP’ = e
- Not so obvious what these rules mean...

- Harder to detect and eliminate non-immediate
left recursion
* NP ——> Nom PP
- Nom --> NP

> Fix depth of search explicitly

> Rule ordering: non-recursive rules first
* NP ——> Det Nom
© NP ——> NP PP

23

Another Problem: Structural
ambiguity

» Multiple legal structures

o Attachment (e.g. | saw a man on a hill with a
telescope)

> Coordination (e.g. younger cats and dogs)
> NP bracketing (e.g. Spanish language teachers)

24

NP vs. VP Attachment

(a1 3

ﬁ“‘x
HE WP
HE
i
HE FE

N

Fio % Dw1 Mooh P Poe=x ®™oon

-]

e

HF W

PE PP

/N S

Pio WD M™Mooh P Fowm MWooh

T shoAnh mlephabt ih by pples T shetoh ele=phabtin by pojames

25

» Solution?

- Return all possible parses and disambiguate
using “other methods”

26

Summing Up

» Parsing is a search problem which may be
implemented with many control strategies

> Top-Down or Bottom-Up approaches each have
problems
- Combining the two solves some but not all issues

> Left recursion
> Syntactic ambiguity

» Rest of today (and next time): Making use of
statistical information about syntactic
constituents

- Read Ch 14

27

Probabilistic Parsing

How to do parse disambiguation

» Probabilistic methods

» Augment the grammar with probabilities

» Then modify the parser to keep only most
probable parses

» And at the end, return the most probable
parse

29

Probabilistic CFGs

» The probabilistic model
> Assigning probabilities to parse trees

» Getting the probabilities for the model

» Parsing with probabilities

> Slight modification to dynamic programming
approach

> Task is to find the max probability tree for an input

30

Probability Model

» Attach probabilities to grammar rules

» The expansions for a given non-terminal sum
to 1

VP -> Verb .55
VP -> Verb NP 40
VP -> Verb NP NP .05

- Read this as P(Specific rule | LHS)

31

PCFG

S — NPVP

S . Aux NP VP

S — VP

NP — Det Nom
NP — Proper-Noun
NP — Nom

NP — Pronoun
Nom — Noun
Nom — Noun Nom
Nom — Proper-Noun Nom
VP — Verb

VP — Verb NP

VP — Verb NP NP

.80
.15
[05]
.20
.35]
05]

75
20
03]
55

05]

Det — fhﬂf[.OS] | the [.80] | a
Noun . book

Noun — flights

Noun — meal

Verb — book

Verb — include

Verb — want

Aux — can

Aux — does

Aux — do
Proper-Noun — TWA
Proper-Noun — Denver

Pronoun — you[.40] | 1[.60] |

.15
.10
50
.40
.30
30
.40
.40)
.30,
.30,
.40

32

PCFG

(a)

Aux NP)K Aux NP //EP
A% NP NP V NP
Nom
Nom NTm
Pro PNoun Noun Pro PNoun Nc|lun
can you book TWA flights can vou book TWA flights
Rules P Raules P
S — Aux NP VP .15 S — Aux NPVP .15
NP — Pro A0 NP — Pro A0
VP — V NPNP 05 VP — VNP A0
NP — Nom 05 NP — Nom 05
NP — PNoun 35 Nom — PNoun Nom .05
Nom — Noun 5 Nom — Noun 5
Aux — Can A0 Aux — Can A0
NP — Pro A0 NP — Pro 40
Pro — you A0 Pro — you 40
Verb — book 30 Verb — book 30
PNoun — TWA A0 Pnoun — TWA A0
Noun — flights S50 Noun — flights S50

33

Probability Model (1)

» A derivation (tree) consists of the set of
grammar rules that are in the tree

» The probability of a tree is just the product of
the probabilities of the rules in the derivation.

34

Probability model
PT.S)=]1p(r,)

nel

P(T,S) = P(T)P(S|T) = P(T); since P(S|T)=1

P(T;) A5% .40 % .05 % .05%.35%.75%.40 x .40 % .40
.30 * .40 % .50

1.5%10°°

P(T,) = .15%.40% .40%.05%.05*.75% .40 % .40 % .40
.30 % .40 % .50
= 1.7x10°°

ARRRY
g LY

35

Probability Model (1.1)

» The probability of a word sequence P(S) is the
probability of its tree in the unambiguous
case.

» It’s the sum of the probabilities of the trees in
the ambiguous case.

36

Getting the Probabilities

» From an annotated database (a treebank)

> So for example, to get the probability for a
particular VP rule just count all the times the rule is
used and divide by the number of VPs overall.

37

TreeBanks

((s
(NP-SBJ (DT That)

(J7 cold) (, ,)
(JJ empty) (NN sky))
(VP (VBD was)
(ADJP-PRD (JJ full)
(PP (IN of)
(NP (NN fire)
(CC and)
(NN light)))))

(- =)))
(a)

((S
(NP-SBJ The/DT flight/NN)

(VP should/MD
(VP arrive/VB
(PP-TMP at/IN
(NP eleven/CD a.m/RB))
(NP-TMP tomorrow/NN)))))

(b)

38

Treebanks

S
NP-SBJ VP
DT 1 , JJ NN VBD ADIP-PRD
| | | | | N
That cold , empty sky was 1I PP
|
Jull IN NP

|
of NN CC NN

.
fire and light

39

Treebanks

((S (' ')

(S-TPC-2

(NP-SBJ-1 (PRP We))

(VP (MD would)

(VP (VB have)
(S
(NP-SBJ (-NONE- *-1))
(VP (TO to)
(VP (VB wait)
(SBAR-TMP (IN until)
(S
(NP=-5BJ (PRP we))
(VP (VBP have)
(VP (VBN collected)
(PP-CLR (IN o©on)
(NP (DT those) (NNS assets))))))))1)))))

(e r) (78 77)
(NP-SBJ (PRP he))
(VP (VBD said)

(S (-NONE- *T*-2)))
(- =)))

D

40

Treebank Grammars

NP

VP

SBAR
ADJP
PP

L

|

L

NP VP.
NP VP

"ST,NPVP.

-NONE-

DT NN

DT NN NNS
NN CCNN
CDRB

DT JJ, JJ NN
PRP
-NONE-
MD VP
VBD ADJP
VBD §

VB PP

VB S

VB SBAR
VBP VP
VBN VP

10 VP

INS

JJ PP

IN NP

PRP
DT
JJ
NN
NNS
cC
IN
CcD
RB
VB
VBD
VBP
VBN
MD
10

T

we | he

the | that | those
cold | empty | full
sky | fire | light | flight
assets

and

of | at| until| on
eleven

a.m

arrive | have | wait
said

have

collected

should | would

o

41

Lots of flat rules

NP
NP
NP
NP
NP
NP
NP
NP
NP
NP
NP
NP
NP
NP

e

DT
DT
DT
DT
DT
RB
RB
DT
DT
DT
RB
DT
DT
DT
NP

JJ NN

JJ NNS

JJ NN NN

JJ JJ NN

JJ CD NNS

DT JJ NN NN

DT JJ JJ NNS5

JJ JJ NNP NNS

NNP NNP NNP NNP JJ NN

JJ NNP CC JJ JJ NN NNS

DT JJS5 NN NN SBAR

VBG JJ NNFP NNP CC NNP

JJ NNS , NNS CC NN NNS NN
JJ JJ VBG NN NNFP NNFP FW NNP
JJ , JJ ' SBAR "' NNS

42

Example sentences from those
rules

» Total: over 17,000 different grammar rules in
the 1-million word Treebank corpus

(9.19) |pr The| [;; state-owned| |5y industrial| [ypg holding| [yn company| [nnp
Instituto| [nnp Nacional| |gw de| [nnp Industrial

(9.20) |np Shearson’s| [j7 easy-to-film|, |57 black-and-white| “|spar Where We
Stand]|” [NNs commercials]

43

Probabilistic Grammar

Assumptions

» We're assuming t
used to parse wit

» We’re assuming t

nat there is a grammar to be
.

ne existence of a large robust

dictionary with parts of speech
» We’re assuming the ability to parse (i.e. a

parser)

» Given all that... we can parse probabilistically

44

Typical Approach

» Bottom-up (CKY) dynamic programming
approach

» Assign probabilities to constituents as they
are completed and placed in the table

» Use the max probability for each constituent
going up

45

What's that last bullet mean?

» Say we’'re talking about a final part of a parse
2 S_>ONP|VPJ

The probability of the S is...
P(S->NP VP)*P(NP)*P(VP)

The green stuff is already known. We’re doing
bottom-up parsing

46

Max

» | said the P(NP) is known.

» What if there are multiple NPs for the span of
text in question (O to i)?

» Take the max (where?)

47

Problems with PCFGs

» The probability model we’re using is just
based on the rules in the derivation...

- Doesn’t use the words in any real way

- Doesn’t take into account where in the derivation a
rule is used

48

Solution

» Add lexical dependencies to the scheme...

> Infiltrate the predilections of particular words into
the probabilities in the derivation
> |.e. Condition the rule probabilities on the actual

words

49

Heads

» To do that we’re going to make use of the
notion of the head of a phrase
> The head of an NP is its noun
> The head of a VP is its verb
> The head of a PP is its preposition

(It’s really more complicated than that but this will
do.)

50

Attribute grammar

S(dumped)
/\
NP(workers) VP(dumped)
/ \
NNS(workers) VBD(dumped) NP(sacks) PP(into)
/\
NNS(sacks) P(into) NP(bin)
/\
DT(a) NN(bin)
|
into a‘l bin

Example (wrong)

S(dumped)
/\
NP(workers) VP(dumped)
/\
NNS(workers) VBD(dumped) NP(sacks)
/\
NP(sacks) PP(into)
. /\ .
NNS(sacks) P(into) NP(bin)
/\
DT(a) NN(bin)
|
dumped sacks into l bin

How?

» We used to have
> VP -> V NP PP P(rule|VP)

- That’s the count of this rule divided by the number of
VPs in a treebank

» Now we have
> VP(dumped)-> V(dumped) NP(sacks)PP(in)

> P(r[VP A dumped is the verb A sacks is the head of
the NP A in is the head of the PP)

> Not likely to have significant counts in any treebank

53

Declare Independence

» When stuck, exploit independence and collect
the statistics you can...

» We’ll focus on capturing two things
> Verb subcategorization
- Particular verbs have affinities for particular VPs

- Objects affinities for their predicates (mostly their
mothers and grandmothers)

- Some objects fit better with some predicates than
others

54

Subcategorization

» Condition particular VP rules on their head...
SO

r: VP -> V NP PP P(r|VP)
Becomes

P(r | VP A dumped)

What’s the count?

How many times was this rule used with (head)

dump, divided by the number of VPs that dump
appears (as head) in total

Think of left and right modifiers to the head

55

Attribute grammar

S(dumped)
/\
NP(workers) VP(dumped)
/ \
NNS(workers) VBD(dumped) NP(sacks) PP(into)
/\
NNS(sacks) P(into) NP(bin)
/\
DT(a) NN(bin)
|
into a‘l bin

Probability model

P(T,S)=] [n(r,)

nel

» P(T,S) = S-> NP VP (.5)*
» V
» V
» V

P(dumped) —> V NP PP (.5) (T1)
P(ate) —> V NP PP (.03)

P(dumped) -> V NP (.2) (T2)

Preferences

» Subcategorization captures the affinity
between VP heads (verbs) and the VP rules
they go with.

» What about the affinity between VP heads and
the heads of the other daughters of the VP

» Back to our examples...

58

Example (right)

S(dumped)

/\

VP(dumped)

NP(workers)

.

S(workers) VBD(dumped) NP(sacks)

NNS(sacks) P(into)

into

\

PP(into)

NP(bin)
/\

DT(a) NN(bin)

a bin

59

Example (wrong)

S(dumped)
NP(workers) VP(dumped)
/\

NNS(workers) VBD(dumped) NP(sacks)

NP(sacks) PP(nto)

/\
NNS(sacks) P(into) NP(bin)
DT¢a) NN(bin)
|
workers dumped sacks into z‘i bin

Preferences

» The issue here is the attachment of the PP.
So the affinities we care about are the ones
between dumped and into vs. sacks and into.

» So count the places where dumped is the
head of a constituent that has a PP daughter
with into as its head and normalize

» Vs. the situation where sacks is a constituent
with into as the head of a PP daughter.

61

Probability model

P(T.S)=] [p(r)
nel
» P(T,S) = S-> NP VP (.5)*
» VP(dumped) -> V NP PP(into) (.7) (T1)
» NOM(sacks) —> NOM PP(into) (.01) (T2)

Preferences (2)

» Consider the VPs

> Ate spaghetti with gusto
> Ate spaghetti with marinara

» The affinity of gusto for eat is much larger
than its affinity for spaghetti

» On the other hand, the affinity of marinara for
spaghetti is much higher than its affinity for
ate

63

Preferences (2)

» Note the relationship here is more distant
and doesn’t involve a headword since gusto
and marinara aren’t the heads of the PPs.

Vp(ate)
Np(3Rag)
np Pp(with)

N
Ate spaghetti with gusto Ate spaghetti with marinara

64

Summary

» Context-Free Grammars
» Parsing

> Top Down, Bottom Up Metaphors

> Dynamic Programming Parsers: CKY. Earley
» Disambiguation:

> PCFG

> Probabilistic Augmentations to Parsers

- Tradeoffs: accuracy vs. data sparcity
> Treebanks

65

	Slide Number 1
	Announcements
	Earley Parsing
	States/Locations
	Graphically
	Earley Algorithm
	Predictor
	Scanner
	Completer
	How do we know we are done?
	Earley
	Example
	CFG for Fragment of English
	Example
	Example
	Example
	Details
	Converting Earley from Recognizer to Parser
	Augmenting the chart with structural information
	Retrieving Parse Trees from Chart
	Left Recursion vs. Right Recursion
	Slide Number 22
	Slide Number 23
	Another Problem: Structural ambiguity
	Slide Number 25
	Slide Number 26
	Summing Up
	Probabilistic Parsing
	How to do parse disambiguation
	Probabilistic CFGs
	Probability Model
	PCFG
	PCFG
	Probability Model (1)
	Probability model
	Probability Model (1.1)
	Getting the Probabilities
	TreeBanks
	Treebanks
	Treebanks
	Treebank Grammars
	Lots of flat rules
	Example sentences from those rules
	Probabilistic Grammar Assumptions
	Typical Approach
	What’s that last bullet mean?
	Max
	Problems with PCFGs
	Solution
	Heads
	Example (right)
	Example (wrong)
	How?
	Declare Independence
	Subcategorization
	Example (right)
	Probability model
	Preferences
	Example (right)
	Example (wrong)
	Preferences
	Probability model
	Preferences (2)
	Preferences (2)
	Summary

