Announcements

Email: <ji+ir@cs.columbia.edu>
- Mail to anything else will not be answered.

Class web page: http://www.cs.columbia.edu/~ji/F03/
- Check frequently!
- Slides will be available there.
- As will additional reading material (papers, RFCs, source code, man pages, etc.).

Class BBoard: coms6998-002-033@columbia.edu (to post), or https://www1.columbia.edu/sec/bboard/033/coms6998-002/

Office hours: MW 15:00-16:00 in 464 CSC.

TA(s): Angelos Stavrou <angel@cs.columbia.edu>
TA office hours: TR 13:00-14:00 in the Mudd TA room.
Summary of Lecture 3

- Address aggregation.
- Special addresses.
- Neighbor discovery.
- Router discovery.
- Multihoming.
Classless Interdomain Routing (CIDR)

- “Supernetting” (opposite of subnetting).
- Get rid of classes A/B/C.
- Give addresses in terms of prefixes.
- Netmask MUST have contiguous 1s, then contiguous 0s.
- Allows sites to be allocated the proper size of network.
- Allows ISPs to aggregate addresses of clients.
 - Reducing routing table size.
- “CIDR block” or “CIDR prefix”.

CIDR Address Allocation

- Pre-CIDR allocations still routed, of course.
- ARIN/RIPE/APNIC have large allocations (/8s) to hand out.
- ISPs get addresses in large blocks from the Registries.
- Allocate chunks of these blocks to customers.
 - “Non-portable” address space: change ISP, change addresses.
 - Aggregation of addresses within ISP.
Classful vs. CIDR Announcements

- Class Cs: 128, 512, 64
- 198.0.0.0/15
- 198.1.0.0/17
- 198.1.1.0/24
- 198.1.2.0/24
- 198.1.3.0/24
- 198.1.128.0/18
- 198.1.129.0/24
- 198.1.128.0/24
- 198.1.129.0/24
Special Addresses

• 127.0.0.0/8 ("loopback"). Usually 127.0.0.1 on hosts.
• net.0 is “any host this subnet” (form of “anycast”).
• net.-1 is “all hosts this subnet” (directed broadcast).
• 255.255.255.255 is “local broadcast”.
• Multicast (224.0.0.0/4). Class E (240.0.0.0/4) still reserved.
• RFC1918 addresses ("site local", “private-use”).
 - 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16.
 - MUST NOT be routed outside an organization.
 - Used for NAT.
• draft-ietf-zeroconf-ipv4-linklocal-09.txt ("link local")
 - 169.254.0.0/16.
 - MUST NOT be forwarded by a router (OK to bridge).
 - Used by auto-configuration process.
Unicast, Anycast, Multicast, Broadcast

• RFC 791 does not mention any of these terms.
• Broadcast & Multicast originally Ethernet (etc.) notions.
• (net,-1) addresses are IP directed broadcasts.
 - “All hosts this subnet”.
 - Routed normally until last subnet.
 - Then sent to all-ones MAC address (no ARP involved).
 - “Outside” directed broadcasts (“splattergrams”) usually filtered at last-hop router or just answered by it.
• (net,0) addresses are IP directed anycasts.
 - “Any host this subnet”.
 - Routed normally until last subnet.
 - Usually answered by last-hop router.
 - Router may know who the responsible host(s) are.
 - Not much use when sent in same subnet.
• All-ones address (255.255.255.255, “limited broadcast”).
 - Stays in subnet.
 - “All hosts this subnet”.
• All-zeroes address (0.0.0.0, “unspecified”, INADDR_ANY).
 - As source, replaced by outgoing interface address.
 - As destination, same as loopback.
• IP Multicast (224.0.0.0/4).
 - On “target” subnet turned into Ethernet multicast.
 - Can be routed (we’ll talk about this later).
• IP Anycast (not (net,0)).
 - Any address can be deemed anycast.
 - Routers determine what is anycast.
 - Suggested for critical services use (e.g., root DNS servers).
IPv6 Addresses

- 128 bits.
- Representation (RFC2373, RFC1924):
 - Eight groups of four hex digits separated by colons.
 - Leading zeros dropped.
 - One contiguous set of 0000s replaced with ::
 - fe80:0000:0000:0000:280:c8ff:feca:a27b is the same as fe80::280:c8ff:feca:a27b.
 - ::1 is “loopback”, :: is “unspecified”.
 - Also, ::ffff:192.20.13.4
- 2000::/3 (addresses starting with the bits 001) are aggregatable addresses.
- Read RFC2373!
Forwarding

• How to send an IP packet to a host on the same subnet?
 - “Same subnet” means equal subnet prefix (and different host part).
 - if ((src & netmask) == (dst & netmask)) { ...
 - Find MAC address of destination (if not on p2p link).
 - Send packet.

• How to send an IP packet to a host on different subnet?
 - ... } else { ...
 - Find MAC address of appropriate router.
 • Have to know who the router is.
 • Entry in forwarding table.
 - Send packet.
 - Eventually a router attached to the dst subnet will get the packet.
ARP

• Local (same subnet) forwarding.
• Address Resolution Protocol, RFC826
• Maps IPv4 addresses to MAC addresses.
• Ethertype 0x0806.
• Man pages: arp(4), arp(8)

03:10:59.738069 0:1:2:72:bd:3e ff:ff:ff:ff:ff 0806 42: arp who-has 135.207.25.192 tell 135.207.25.36
 0001 0800 0604 0001 0001 0272 bd3e 87cf
 1924 0000 0000 0000 87cf 19c0
03:10:59.738190 0:e0:81:10:4b:64 0:1:2:72:bd:3e 0806 60: arp reply 135.207.25.192 is-at 0:e0:81:10:4b:64
 0001 0800 0604 0002 00e0 8110 4b64 87cf
 19c0 0001 0272 bd3e 87cf 1924 0000 0000
 0000 0000 0000 0000 0000 0000 0000
Gratuitous ARP, Proxy-ARP, RARP,

- When an interface comes up, it sends a “gratuitous ARP”.
 - Other stations update their ARP cache.
 - Can detect duplicate IP addresses.
- Proxy-ARP: poor man’s subnetting/routing.
 - Used to “subnet” on non-bit boundaries.

- RARP (Reverse ARP, ethertype 0x8035).
 - Used by booting station to find its IP address from its MAC address.
 - Needs a server.

 - How to get a station to report its IP address given its MAC address?
NDP

- Neighbor Discovery Protocol.
- IPv6 ARP-equivalent.
- Uses UDP Multicast.
 - (ARP predates Multicast).
- RFC2461.
Router Discovery

- (For hosts).
- Configured with a command:
 - `route add 135.207.4.0/24 135.207.25.36`
 - `route add default 135.207.31.1`
 - Default is the same as 0/0.
- Configured with DHCP/BOOTP at boot time.
- Simple routing protocol (e.g., RIP) used to announce routes.
- There is an ICMP message for router discovery (not used).

- IPv6: Router solicitation, also multicast based.
Forwarding for Routers

- *Forwarding* vs. *Routing*
 - Forwarding is selecting the next-hop machine for each outgoing packet.
 - Forwarding table, FIB.
 - Routing is the process of deciding the path from a source to a destination.
 - Routing table, RIB.

- Select the next-hop router.
 - Find the outgoing interface.
 - Find the MAC address of the next-hop router.
 - In Unix, you specify the IP address of the next-hop router.

- Longest-prefix first.
- Default routing (implied by longest-prefix rule: default has prefix of length 0).
Forwarding beyond the LAN

- IP routing is destination-address-based only.
- Routing protocol is used to derive the forwarding table.
 - Routers advertise prefixes that they know how to route to.
 - Lots of ways of doing this, hence lots of routing protocols.
- Routers forward to the next-hop router until destination is reached.
- Routers near the edges have “default” routes.
 - Also, static routes.
- Multiple forwarding entries may match an address.
 - Longest-prefix match wins.
- Default-free zone.
Longest Path First

“The Internet” → ISP-B (198.32.1.0/24)

ISP-A

Little ISP

ISP-B (198.32.0.0/16) → 198.32.1.1
Default Routing

- Add a bit bucket for own aggregate when doing default routing!
Transit Networks

- Transit ISP
 - ISP A
 - Customer A
 - Customer B
 - ISP B
 - Customer C
 - Customer D
 - Customer E
Peering

- The Internet is not a tree!
 - Unlike bridging, all links are active.
 - Routing determines which links are used for each pair of hosts.
- Network Providers exchange traffic at peering points.
- Regional Networks.
- Tier-1 networks.
- NAPs.
- Private peering.
 - Peering agreements.
 - Often very confidential.
- Route servers.
- Policy.
- We’ll keep coming back to this throughout the semester.
• Customers connect at POPs.
• POPs are connected by the ISP’s backbone.
• ISPs can be local, regional, national, global, etc.
NAPs

National ISP

Regional A

Regional B

Regional C

NAP
NAPs and Peering

- Small/Regional ISPs connect at NAPs.
- Large/National ISPs provide connectivity at NAPs.
- Mainly, they have private peering agreements.
- National ISPs provide both customer and transit traffic.
Address Allocation

- Customers (sites, companies, organizations, universities, etc.) get a CIDR Block.
- Their provider is responsible for routing it.
 - Advertising the CIDR Block.
 - Getting packets to it.
- In the “before” time:
 - Customers got an allocation (class A/B/C) from the NIC, then the IANA.
 - Did not scale (a couple of people were doing the allocations).
 - Addresses were assigned without considerations for aggregation.
Address Allocation, Cont’d

- Since CIDR.
 - Regional Registries (ARIN, RIPE, APNIC).
 - Registries get allocated /8s or shorter.
 - Registries allocate space to ISPs on a need-to-have basis.
 - ISPs allocate space to customers (who can also be smaller ISPs).
 - Most of the address space is non-portable (“belongs” to the ISP).
 - Much better for aggregation.

- Still a lot of old portable address space around.
- Customers who can justify portable space can still get it.
 - And guard it jealously.

- Customers with only one provider are called “single-homed”.
- Their ISP is their default route.
 - No need to run routing protocols.
- Can have portable or non-portable address space.
- ISP advertises their address space.
- What happens when they change providers?
 - Portable space: no problem.
 - Non-portable space:
 - Renumber (big pain).
 - Steal the previous providers address space.
 - It happens all the time.
Multihoming

• A node can have interfaces connected to multiple networks.
 - If it forwards between interfaces, it’s called a router.
 - If it does not, it’s called a multi-homed host.

• A network can also be multihomed.
 - Have service from more than one ISP.

• Multihomed networks create interesting routing problems.
 - Address space usage.
 - Issues with aggregation.
 - Traffic engineering.
 - Policy.
 - Reachability.
Multihoming II

ISP-A
10.10.0.0/16

ISP-B
20.20.0.0/16

NAP

Bignet
10.10.16.0/20
20.20.48.0/20

10.10.0.0/16
20.20.0.0/16
Multihoming III

ISP-A
10.10.0.0/16
128.96.0.0/16

NAP

ISP-B
20.20.0.0/16
128.96.0.0/16

Richnet
128.96.0.0/16