Lecture 11
OSPF continued (and finished).

John Ioannidis
AT&T Labs – Research
ji+ir@cs.columbia.edu
Announcements

Lectures 1-11 are available.
Start working on your project proposal (due 10/22).
- Literature search.
- Summary of approach.
- Division of labor.
- Validation of results.

Reading assignment: Read RFC 2328 twice.

Still looking for a TA.
Adjacencies Revisited

Routers connected by data links ⇔ nodes connected by adjacencies.
Flooding

- Link State Database: list of all LSAs the router has heard (and sent).
- Change in topology results in new or changed LSAs.
- Changed LSAs are flooded throughout the network:
 - Link State Updates.
 - Link State Acknowledgements.
- Each LSA reaches every router.
- Updates/Acks only flow between adjacent routers
 - I.E., it’s not the update packets that get flooded, it’s their contents.
Updates

• On point-to-point networks, multicast to AllSPFRouters.
• On broadcast networks:
 – DRothers multicast updates to AllDRouters.
 – The DR then multicasts an update to AllSPFRouters.
 – If the DR fails to do that, BDR takes over, otherwise BDR stays silent.
• On NBMA networks:
 – DRothers unicast updates to DR and BDR.
 – DR unicasts updates to all adjacent routers.
Reliable flooding

- Transmitted LSAs must be acked.
- Implicit acks: send the same LSA back.
 - Used when you would have sent it anyway.
- Explicit acks: OSPF packet type 5.
 - Carry only LSA header.
- When sending an LSA, put it in a retransmission queue in the neighbor data structure.
 - Retransmitted every RxmtInterval (or until adj. is broken).
- Delayed acks: more LSAs acked in a single update packet.
- Direct acks: sent immediately and are unicast.
 - When duplicate LSA received from neighbor.
 - Rxed LSA has MaxAge and router has no copy of it.
Sequence numbers

- Linear sequence number space.
 - Signed 32bit integers.
 - Start at InitialSequenceNumber (0x80000001).
 - End at MaxSequenceNumber (0x7fffffff).
- First LSA goes out with InitialSequenceNumber.
- Each new LSA adds 1 to the previous sequence number.
- If is MaxSequenceNumber reached:
 - LSA must be flushed out of other routers’ list.
 - LSA is sent out with MaxAge.
 - When all neighbors (adj.) have acked, flush LSA and create new one.
Age

- Age of LSA in seconds.
- Unsigned 16-bit integer.
 - From 0 to MaxAge (3600).
- Set to 0 by originating router.
- At each router transit, incremented by InfTransDelay.
- Also incremented as it resides in database.
- When LSA reaches MaxAge, it is reflooded so it can be eliminated from the network.
- When the originating router wants to flush an LSA, it sets the age to MaxAge and floods it.
- LSAs are refreshed every LSRefreshTime (1800s).
 - With Sequence Number incremented by 1.
 - LSA group pacing.
LSA Comparison

• Highest sequence number is newest.
• Else highest checksum is newest.
• Else if one of the ages is MaxAge, it is newest.
• Else if ages differ by more than 15 minutes (MaxAgeDiff), lowest age is newest.
• Else LSAs are the same.

• An LSA in a router is replaced when a “newer” one is received.
LSA Types

1. Router
2. Network
3. Network Summary
4. ASBR Summary
5. AS External
6. Group Membership
7. NSSA External
8. External Attributes
9. Opaque (link-local scope)
10. Opaque (area-local scope)
11. Opaque (AS scope)
Router LSA

• Produced by every router.
• Flooded within an area.

• List of all of router’s links (interfaces).
 – And corresponding costs.

• Type (=1)
• RouterID
• Number of links
• Link Descriptions (i/f address, link type, metric).
Network LSA

- Produced by the DR on MA networks.
- Flooded within an area.

- Represent the multiaccess network.
 - (MA network acts as a pseudonode).

- Type (=2)
- Network address and netmask.
- Addresses of attached routers.
Network Summary LSA

- Produced by Area Border Routers.
- Sent into an area to advertise prefixes outside that area.
 - One per destination (prefix).
 - If multiple paths known, lowest-cost LSA is advertised.
- When a NS LSA is received, the cost of the route to the ABR is added to the cost advertised in the NS LSA.
 - Distance-vector behavior!

- Type (=3)
- Prefix
- Metric
AS Boundary Router Summary LSA

- Produced by ABRs.
- Identical to NS (type 3) LSAs.
 - Advertise (host) routes to ASBRs.
 - Destination is a host address, prefix length is 32.
- Type (=4)
- ASBR IP address and mask (all-ones).
- Metric.
AS External LSA

• Produced by ASBRs.
• Advertise a destination (or a default route) external to the AS.
• Flooded throughout the AS (but not stub areas).
 – Since they are not associated with a particular area!

• Type (=5)
• Advertised prefix.
• Forwarding address (of external router).
• Metric.
Other LSAs

- Group membership.
 - Used for MOSPF.
- NSSA External.
 - Like AS External, but only flooded within the NSSA.
- External attributes.
 - Proposed as an alternative to IBGP.
- Opaque.
 - Proposed so that OSPF can be used to carry app-specific data to all routers in an AS.
Stub Areas

• Areas with no ASBRs.
• To reach ASBRs, you have to go through the ABR anyway.
• No point in advertising type 5 (AS External) LSAs.
 – No point in advertising type 4 (ASBR Summary) LSAs either.
• Just advertise a default route into the area.
• No virtual links can be configured through a Stub Area.

• Totally-stubby areas: type 3 (Network summary) LSAs are not advertised, except for a default route.
Stub Areas, cont’d

Area 0

Area 3.141.159.26

Stub Area
Not-So-Stubby Areas

N has a default route.
E advertises type 7 LSAs to the area.
F may block it (P=0) or translate into type 5 (P=1).
Options

- **DC bit**: Router is capable of supporting OSPF over demand circuits.
- **EA bit**: Router is capable of sending and receiving External Attributes (type 8) LSAs.
- **N bit**: Router can support NSSA LSAs. N=1 implies E=0.
- **P bit**: (Same position as N bit). ABR should translate a type 7 into a type 5 LSA.
- **MC**: Used by MOSPF.
- **E**: Router is capable of accepting AS External LSAs.
 - In hello packets, indicates ability to send/receive Type 5.
- **T**: capable of supporting TOS.