
Permutation Invariant SVMs

Pannagadatta K. Shivaswamy pannaga@cs.columbia.edu

Department of Computer Science, Columbia University, New York, NY 10027

Tony Jebara jebara@cs.columbia.edu

Department of Computer Science, Columbia University, New York, NY 10027

Abstract

We extend Support Vector Machines to in-
put spaces that are sets by ensuring that the
classifier is invariant to permutations of sub-
elements within each input. Such permuta-
tions include reordering of scalars in an in-
put vector, re-orderings of tuples in an input
matrix or re-orderings of general objects (in
Hilbert spaces) within a set as well. This
approach induces permutational invariance
in the classifier which can then be directly
applied to unusual set-based representations
of data. The permutation invariant Sup-
port Vector Machine alternates the Hungar-
ian method for maximum weight matching
within the maximum margin learning proce-
dure. We effectively estimate and apply per-
mutations to the input data points to max-
imize classification margin while minimizing
data radius. This procedure has a strong the-
oretical justification via well established error
probability bounds. Experiments are shown
on character recognition, 3D object recogni-
tion and various UCI datasets.

1. Introduction

Support Vector Machines (SVMs) (Vapnik, 1995) are
a well established and highly successful tool for clas-
sification problems. Given patterns belonging to two
classes, SVMs find a generalized large margin sepa-
ration boundary. Traditional SVMs, however, focus
on vectorial input data and are typically applied to
datasets in Euclidean spaces, i.e. R

n. However, many
interesting applied problems have input spaces that
are not simply static vectors in R

n but have additional
structure. Thus, SVMs are often augmented with in-
teresting kernels to handle exotic inputs such as strings

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

(Lodhi et al., 2002), graphs (Mah et al., 2004), and sets
(Kondor & Jebara, 2003). These kernel methods make
the SVM robust to certain types of nuisance variations
the input spaces can undergo and hence help improve
accuracy. These nuisance variations include, for in-
stance, strings undergoing insertions or input sets un-
dergoing arbitrary re-orderings of their elements. An
alternative approach is to deal with structured input
spaces within the learning algorithm itself, instead of
deferring the responsibility solely to the kernel. For in-
stance, certain conditional independence assumptions
on both input and output space can be handled via an
extension of the SVM called Maximum Margin Markov
Networks (Taskar et al., 2004). Since the learning al-
gorithm is an active element in enforcing the desired
invariance or independence assumptions, the result-
ing algorithm may achieve better accuracy than sim-
ply finding a kernel which is constant and invariant to
the source of nuisance variations. In this article, we
embed an interesting form of invariance, namely per-
mutational invariance, directly into the SVM learning
algorithm. For instance, an adversary may have per-
muted the vectorial inputs in a dataset which prevents
us from directly learning an SVM classifier. We thus
propose an SVM that jointly uncovers and compen-
sates for these adversarial permutations while learning
its decision boundary via the SVM optimization algo-
rithms. Invariance is achieved by optimizing away the
source of variation instead of having a kernel that is
simply insensitive to it. The motivation is that the ro-
bustness or invariance gained by a kernel often comes
at the expense of additional loss of information about
the input. For instance, an invariant kernel between
two sets (Kondor & Jebara, 2003) might consider the
spectrum of a matrix of pairwise inner-products be-
tween elements in each set. The spectrum is invari-
ant to permutation but it is also invariant to rotation.
Since rotation is a superset of permutation, such a ker-
nel is overcompensating to achieve invariance.

More specifically, we develop an SVM that can handle
datasets where each input can undergo an arbitrary
permutation. For instance, if each input to the SVM

Permutation Invariant SVMs

is a vector, the order of the scalar entries in the vec-
tor can be shuffled arbitrarily. Alternatively, if each
input to the SVM is a matrix, the rows (tuples) of the
matrix may be shuffled arbitrarily. The SVM takes a
linear combination of the scalars in the input (vector
or matrix) to compute a classification, yet, if permu-
tations have been applied to the inputs and are not
compensated for, a classical SVM will exhibit poor
classification accuracy. While we will focus on ma-
trix permutation, our framework applies more gener-
ally to any set of elementary objects (not just a set of
scalars or tuples) as long as we can define a kernel be-
tween these elementary objects. We will assume that
there is no way of knowing a priori the ordering of ele-
ments or features in the permutable input set. We may
not know which ordering of the features is the correct
one - every ordering might be as correct as any other.
Therefore, SVM learning algorithms should uncover
permutations only to improve classification accuracy
and not an alternative criterion.

While permutation may seem like a fairly exotic type
of invariance, it is a very useful one in many real
datasets. Consider an image based classifier which
discriminates between different classes of hand writ-
ten digits. Each digit can be represented by a set
of (x, y) coordinates corresponding to the dark pix-
els in the image (each pixel is a tuple (x, y)). In this
cloud-of-points representation, there is no single cor-
rect a priori ordering among the points that compose
the digit shape. This representation of a digit is akin
to the bag of pixels or bag of tuples representation (Je-
bara, 2004). One way to represent the point cloud is
to have each pixel be a tuple or a row in a matrix and
allow the rows of the resultant matrix to be permuted
arbitrarily. Clearly, these permutations don’t actu-
ally change the digit being represented. Similarly, a
gray scale image could be represented by a collection
of tuples (x, y, I) where x and y denote the location
of the pixel and I denotes the intensity of the pixel
at (x, y). An SVM needs to compensate for this ar-
bitrary permutation to achieve accurate classification
performance. Furthermore, the resulting SVM should
be invariant and learn the same classifier despite any
such arbitrary permutations.

There have been prior attempts to handle permuted
data. For instance, Kirshner et al. (2003) make use
of EM algorithm for unsupervised learning and treat
each input’s permutation as a hidden variable but re-
quire exhaustively enumerating all n! permutations. A
more efficient approach is to find a single setting of the
permutations that maximize likelihood by optimizing
a generative unsupervised model (Jebara, 2004). Per-
mutable images and other objects have been handled

via a permutational invariant kernel (Kondor & Je-
bara, 2003) which also remains efficient. Earlier work
on removing the invariant aspects of the input spaces
has been demonstrated to improve a learning (Simard
et al., 1996) yet has not directly handled permutation
types of variation. What is lacking in literature, to
the best of our knowledge, are large margin discrim-
inative algorithms that factor out nuisance permuta-
tions to maximize classification accuracy. In this paper
we propose a way to classify data which is permuta-
tionally invariant or corrupted by permutation. Our
approach is based on well known bounds that relate
error probability to the ratio of the radius of the data
and the margin of separation. This learning criterion
is achieved by interleaving the classical Kuhn-Munkres
algorithm (also known as the Hungarian method) into
the large margin discriminative SVM learning process.
We make use of the Hungarian method to permute the
data to achieve large margins and to reduce radius, as
the error probability bounds suggest. The proposed
method is well suited to bags of objects, data cor-
rupted by permutations, and sparse image datasets
where objects undergo 3D translation and rotation.

2. Support Vector Machines

In this paper, we focus on the case where input pat-
terns xi are are matrices of size R

m×d whose m rows
are d-dimensional tuples. The rows of each matrix can
undergo an arbitrary permutation.

Denote by π : R
m×d × R

m×d → R the func-
tion π(A,B) =

∑d

i=1
〈Ai,Bi〉 =

∑d

i=1

∑m

j=1
AijBij .

Here, we have matrices A,B ∈ R
m×d and the sub-

script i denotes the ith column of the corresponding
matrix while the subscript ij denotes the scalar in the
ith row and the jth column of the matrix. When d = 1,
the function π defines just the dot product.

Assume that we have n observations (xi, yi) drawn
i.i.d. (independently and identically distributed) from
a distribution over R

m×d × {±1} where xi ∈ R
m×d

is the ith pattern and yi ∈ {±1} is the correspond-
ing label. A linear SVM gives a decision rule f(x) =
sign(π(w,x) + b) with w ∈ R

m×d and b ∈ R. Given
a matrix A ∈ R

m×d, we compute its norm as fol-

lows ‖A‖ =

√

∑d

i=1
‖Ai‖2. Here the norm within the

square root, ‖.‖, is just l2 norm and Ai denotes the
ith column of A. The decision rule parameters (w, b)
are learned by solving the standard SVM equation:

min
w,b

1

2
‖w‖2 s.t. yi(π(w,xi)+ b) ≥ 1 ∀1 ≤ i ≤ n. (1)

The distance of the optimal hyperplane obtained by
solving the formulations above to the closest training

Permutation Invariant SVMs

sample xi is called the maximum margin and is de-
noted by M . Often, it is not possible to strictly sepa-
rate the two classes in (1). In such cases a slack vari-
able which serves as a penalty is introduced in each
of the constraints in (1). Doing so gives the follow-
ing relaxed version of the SVM (Bennett & Mangasar-
ian, 1993; Cortes & Vapnik, 1995) in which the quan-
tity Cξi is the penalty for the patterns that are either
within the margin or misclassified:

min
w,b,ξ

1

2
‖w‖2 + C

n
∑

i=1

ξi (2a)

s.t.yi(π(w,xi) + b) ≥ 1− ξi, ξi ≥ 0 ∀1 ≤ i ≤ n. (2b)

In addition, the radius R of a dataset is relevant to
support vector machines and can be found by con-
sidering the smallest hypersphere which encloses all
data points. The radius and centroid of the hyper-
sphere are estimated using the following quadratically
constrained quadratic program formulation (Weston
et al., 2000; Ben-Hur et al., 2001):

min
c,R,ξ

R2 + C

n
∑

i=1

ξi (3a)

s. t. ‖c− xi‖
2 ≤ R2 + ξi, ξi ≥ 0 ∀1 ≤ i ≤ n (3b)

where c ∈ R
m×d is the centroid of the hypersphere.

The relaxed version (with finite C) makes the hyper-
sphere robust to the outliers in the data.

We state an important result (Vapnik, 1995; Weston
et al., 2000) relating the expected probability of er-
ror, the maximum margin M and the radius R of the
hypersphere enclosing all the training samples in H
space. This theorem is the crux of this paper in that
we will use it to motivate a criterion for eliminating
nuisance variations (permutations) to minimize the er-
ror probability.

Theorem 1 If images of training data of size n be-

longing to a hypersphere of size R are separable with

margin M, then the expectation of the error probability

has the following bound

EPerr ≤
1

n
E

{

R2

M2

}

, (4)

where the expectation is over sets of training data of

size n.

Images correspond to the training samples themselves
when we consider the input space. If we can make sure
that the radius of the hypersphere enclosing the data is
small with a large margin of separation, we can expect
to have smaller probability of error as suggested by (4).

In this paper, since we are considering permutational
invariance, our aim in the following sections will be to
reduce the radius R and to increase the margin M by
permuting the patterns appropriately.

3. Linear Assignment Problem

At the core of our technique lies the well studied
Linear Assignment Problem (LAP) (Papadimitriou &
Steiglitz, 1982). For example, consider a situation
with N factories and N warehouses, and a matrix of
transportation costs from each factory to each ware-
house. The LAP problem is to find an assignment
of each warehouse to a factory such that the total
cost is minimized. Although LAP is traditionally cast
as a minimization problem, the maximization prob-
lem is equally straightforward. LAP is solvable us-
ing the classical Kuhn-Munkres algorithm (also called
the Hungarian method) in O(N3) time. Recent ad-
vances (Goldberg & Kennedy, 1995) have made the
Kuhn-Munkres algorithm efficient and scalable. Such
algorithms produce a permutation or a permutation
matrix A which indicates how the N elements have to
be permuted to get the optimal assignment.

Let P,Q ∈ R
m×d and A ∈ {0, 1}m×m be any permu-

tation matrix such that
∑

i Aij = 1 and
∑

j Aij = 1.
Consider the problem of permuting the Q matrix to
bring it as close as possible to the P matrix. Formally,
we seek a permutation matrix A which minimizes the
quantity ‖P−AQ‖2. Consider minimizing the follow-
ing over permutation matrices A:

‖P−AQ‖2 = π(P−AQ,P−AQ) (5a)

= π(P,P) + π(AQ,AQ) − 2π(P,AQ) (5b)

= π(P,P) + π(Q,Q)− 2π(P,AQ). (5c)

Above, we used the property that the matrix norm is
unchanged under permutation of a matrix’s rows.

One consequence of the above (5) is that by maximiz-
ing π(P,AQ) over A, we find a permutation matrix
which reorders the rows of Q to give the minimum dis-
tance matrix from P. The Kuhn-Munkres algorithm
effectively finds a matrix A which is a permutation
such that the trace tr(A⊤Z) is maximized, where Z is
the cost matrix given to the algorithm. The ijth entry
of Z consists of the dot product of the ith row of P and
the jth row of Q. For a given Z matrix, the solution
permutation tells us how to align the rows of the ma-
trices P and Q to get the maximum matching, which
from (5) gives minimum distance between P and AQ.
In other words, by solving a linear assignment prob-
lem, we are computing the closest permutation of a
matrix Q to bring it to P.

Permutation Invariant SVMs

Input: Training dataset - (xi, yi)
n
i=1, Maximum Iterations - max, Parameter - λ

Output: Hyperplane - (w, b) and Centroid - c

Step 0: Set j ← 1
Step 1 Solve (3) from (xi, yi)

n
i=1 to find centroid cj and the radius R

Step 2 Solve (2) on from (xi, yi)
n
i=1 to find (wj , bj) and margin M

Step 3 Solve Kuhn-Munkres Algorithm with cost matrix λyiw
jx⊤

i + cjx⊤

i for each i,
let the permutation matrix obtained be Aij .

Step 4 Permute xi with the permutation matrix obtained, that is, xi ← Aijxi.
Step 5 If j = max return (wj , bj , cj) else j ← j + 1, goto Step 1

Table 1. Algorithmic description of π-SVM

4. Permutation Invariant SVMs

Consider a dataset that has undergone arbitrary per-
mutations of the rows of each of its matrix-shaped in-
put patterns. For instance, each input pattern is a
set where no pre-determined ordering on the elements
in the set. To use a classical SVM formulation (2)
we would need the data to be reordered feature-wise.
We present a version of SVM which we call the Per-
mutation Invariant SVM (π-SVM for short) which is
invariant to such feature-wise ordering. To do so, we
will combine results from Section 2 and the Section 3
to propose an algorithm training a π-SVM. The bound
in (4) suggests that for a smaller R and a larger M the
expected probability of error is small. We thus suggest
an iterative scheme where we both decrease the radius
R and increase the margin M iteratively.

We begin with a training data (xi, yi)
n
i=1 with the fea-

tures (or rows) in each matrix-shaped xi is arbitrarily
permuted. We first find the centroid and radius R of
the dataset and the largest margin hyperplane and its
margin M . Both of these steps can be made robust to
outliers via the C parameters). We then find the per-
mutation using the Kuhn-Munkres algorithm for each
example pattern that brings it closer to the centroid
in the sphere while ensuring that we only increase its
margin from the decision boundary. Thus, we move
the data to ensure that R can only be decreased and
M can only be increased. We then recompute the cen-
troid, the hyperplane and the new R and M on the
permute data and repeat. This process is iterated un-
til some criterion is met. Table 1 summarizes the pro-
cedure.

Assume we have a current SVM classifier parame-
ter setting (w, b) by solving (2). If we permute the
rows of xi so that left hand side of the inequality
(2b) is maximized then we will have a better sep-
aration between the patterns belonging to the two
classes. For instance, applying the maximization ver-
sion of the Kuhn-Munkres algorithm to the cost matrix
yiwx⊤

i , we get a permutation matrix which maximizes

yi 〈w,Axi〉. In other words, it gives that permutation
of xi which is the most separated pattern among pos-
sible row permutations of xi.

Conversely, assume that c is the centroid obtained by
solving (3) for a dataset. If we solve Kuhn-Munkres
algorithm with the cost matrix xic

⊤, we get a per-
mutation matrix A which permutes the rows of xi so
that the resulting pattern is as close to the centroid c

as possible among all the row permutation matrices of
xi. That is, we pull the pattern close to the centroid
by permuting the rows of xi. If we pull every training
pattern towards the centroid, the resulting dataset will
have a smaller radius R.

In the iterative procedure outlined in Table 1 we com-
bine both criteria - pulling the patterns towards the
centroid while increasing the margin with suitable
tradeoff. We use a parameter λ to trade off the rel-
ative weights of the two goals - permuting to bring
a datum closer to the centroid and permuting to in-
crease its margin. We specifically solve the Kuhn-
Munkres for a weighted combination of both inputs,
i.e. λyiw

jx⊤

i + cjx⊤

i . For high values of λ, this is
guaranteed to achieve a margin as large or larger as
the one found during the previous iteration of the al-
gorithm. Similarly for low values of λ, the radius of
the enclosing hypersphere is guaranteed to be equal
to or smaller than the radius during the previous it-
eration. Ideally, one could perform a bisection search
over the Lagrange multiplier λ for each input exam-
ple by solving the Kuhn-Munkres algorithm over many
λyiw

jx⊤

i + cjx⊤

i to ensure that we never reduce the
margin while we reduce the radius as much as possi-
ble. A more efficient alternative is to simply select a
λ manually and trade off radius for margin in a fixed
way (which is what we implemented in practice). This
approach of incrementally increasing the margin and
decreasing the radius is similar to Bi and Zhang (2005)
where margin is incrementally increased over an uncer-
tainty ball. Our framework addresses permutational
uncertainty. Furthermore, instead of just increasing

Permutation Invariant SVMs

margin, we also simultaneously decrease the data ra-
dius (suitably traded off). Once we run the training
algorithm in Table 1, we have (w, b) and c. To predict
the label of a test datum x, we proceed as follows,

1. Solve Kuhn-Munkres with the cost matrices
λwx⊤ + cx⊤ and −λwx⊤ + cx⊤, let A+ and
A− be the permutation matrices obtained respec-
tively.

2. If |π(w,A+x) + b| ≥ |π(w,A−x) + b|,
then output sign(π(w,A+x) + b) else output
sign(π(w,A−x) + b).

In other words, we permute x as a positive exemplar
and then as a negative exemplar to see which permu-
tation achieves a larger (absolute) margin. We then
output the sign for x with (w, b) after applying the
larger-margin permutation to it. While other predic-
tion rules are also sensible, this one works well in prac-
tice.

With k iterations of the π-SVM, the running time of
training is O(k(n3 + n3 + nm3)). In practice, k is just
a small constant, therefore, for small values of m, the
running time of the algorithm is similar to that of the
classical SVM.

5. Experiments

In this section we present experimental results. We
present results on a small toy dataset as well as real
world datasets. In all these experiments the primal
SVM formulation (2) was used for π-SVM and the dual
formulation (Burges, 1998) was used for experiments
with a Gaussian RBF kernel.

5.1. Illustration with a toy dataset

Figure 1 illustrates the π-SVM on a toy dataset. We
generated fifty points from a multivariate normal dis-
tribution with mean [0 2]′ as the positive class and fifty
points from a multivariate normal distribution with
mean [0 6]′ as the negative class. Both Gaussians used
an identity covariance matrix. We wish to compare
the hyperplane obtained on the actual dataset with
the one obtained by π-SVM after randomly permut-
ing the features.

The first plot shows the original patterns with the cor-
responding centroid, enclosing hypersphere (which is
a circle in this simple two dimensional case) and the
SVM hyperplane obtained with a linear kernel. We
used a C value of 10 and λ value of 100 in this ex-
periment. The second plot shows the patterns after
permuting the coordinates of every pattern with prob-

ability half with the corresponding hyperplane and the
centroid on the permuted data. Clearly, the classifier
makes a few errors at this point. Our aim was to see if
we could recover the hyperplane for the original data
from this permuted data. We then performed one iter-
ation on all patterns permuting them to pull towards
the centroid and to maximize the margin. The third
plot shows the patterns after performing Steps 2 and
3 in Table 1 along with the old hyperplane and the
old bounding circle. The fourth plot shows the up-
dated hyperplane and the updated circle. Not only
did π-SVM recover a similar hyperplane on the orig-
inal uncorrupted data, it gave a better margin com-
pared to the actual dataset. With different values for
λ we obtain slightly different margins and radius trade
offs. Alternatively, we can do bisection search for λ for
each example i within Step 3 to ensure that we never
reduce margin as the algorithm iterates.

5.2. Experiment with Object Classification

We demonstrate the effectiveness of our method with
classification tasks on three pairs of images from the
Amsterdam Library of Object Images (Geusebroek
et al., 2005) which consists of images of real everyday
objects rotated in 3D. The first experiment consisted
of images of planes and darts. The second experiment
consisted of two almost identical looking jugs and the
third experiment discriminated between two dolls.

In each case, the dataset consisted of 24 images with 12
images of each object. The aim of the experiment was
to study the performance of π−SV M compared to the
other methods. One of the things that we wanted to
make sure was that the position of the images was not
a classification criterion. Images were moved slightly
(both horizontally and vertically) by random number
of pixels so as to ensure that the position of the images
no longer remained a discriminative criterion. Images
were down-sampled to 36× 48 (and to 72× 96 in case
of plane dart as the objects became too small). Figure
2 shows the down sampled images, binarized images
(by converting pixels with intensity more than 30 to
255 and others to 0) and the bag-of-pixels images for
five instances of each object. We randomly selected
120 pixels (with a check to eliminate duplicates if pos-
sible) from the white region of the binarized images
(where the intensity value was 255) and retained their
spatial coordinates. In this representation, each image
or point-cloud is stored as a matrix of m = 120 rows
and d = 2 columns where each row represents a tuple
or pixels (x, y) spatial coordinates. We then applied
the π-SVM on this dataset since there is no natural
ordering of the tuples in any given point-cloud. Any
permutation of the rows of the pattern matrices rep-

Permutation Invariant SVMs

−8 −6 −4 −2 0 2 4 6 8 10
−4

−2

0

2

4

6

8

10
Positive
Negative
Hyperplane
Centroid
Circle

−8 −6 −4 −2 0 2 4 6 8 10
−4

−2

0

2

4

6

8

10

12
Positive
Negative
Hyperplane
Centroid
Circle

−8 −6 −4 −2 0 2 4 6 8 10
−4

−2

0

2

4

6

8

10

12
Positive
Negative
Old Hyperplane
New Centroid
New Circle

−8 −6 −4 −2 0 2 4 6 8 10
−4

−2

0

2

4

6

8

10
Positive
Negative
Hyperplane
Centroid
Circle

Figure 1. Illustration of π-SVM on a toy dataset.

Plane/Dart Jugs Dolls
Acc Var Acc Var Acc Var

π-SVM 97.22 0.002 95.83 0.001 98.61 0.006
RBF 66.67 0.014 93.75 0.001 96.52 0.009

Linear 66.67 0.014 91.67 0.001 95.83 0.009
Sorted 95.83 0.003 81.94 0.008 96.52 0.006

Random 88.89 0.004 72.91 0.008 65.28 0.007
Kondor/Jebara 90.97 0.057 71.52 0.003 86.11 0.015

Table 2. Percentage accuracies with different classifiers on object classification tasks.

resents the same underlying cloud of pixels.

Comparisons were made by running classical SVMs
with Gaussian kernels and linear kernels on the bina-
rized images in contrast to the π-SVM on the bag of
pixels dataset. In each case, we selected three ran-
domly chosen patterns from each class as training ex-
amples and used the remaining 18 patterns as test
cases. Classical SVMs were attempted with different
values of kernel parameter and C. The π-SVM was
run with different values of λ and C. In each case, we
noted the mean and the variance of the accuracy over
eight randomized runs. Table 2 summarizes results.

It can be noted that π-SVM is the only method which
has performed consistently well on all all the three
datasets. The reason for the performance of π-SVM
is the flexibility it has in permuting the tuples. When
the objects are nearly identical, it has the ability to
match nearby pixels of different images to same or
nearby tuples in w and c, thereby making it much
more flexible than traditional classifiers which are rigid
and always map the pixels at a certain position always
with particular components of w of the classifier. Our
hypothesis is that π-SVM works the best when a lin-
ear matching between the images also a matching in a
semantically meaningful way. For example, if the im-
ages are translated/rotated slightly, doing a maximum
matching would still give a matching in a semantically
meaningful way in that similar components of the ob-
jects get matched with similar components of the other

objects. Also, the additional flexibility of permuting
the tuples makes the method work better than other
methods especially when the number of training sam-
ples is low and the training samples contain translated
and/or slightly rotated images.

Another quick straw-man approach to handling the
bag of pixels or point-cloud representation would be to
sort the (x, y) tuples according to their distance from a
point (i.e. the origin) and to use the resultant matrix
with the classical SVM. We tried this strategy as well
as running a classical SVM on randomly sorted fea-
tures. Both SVMs used a linear kernel. The resulting
accuracy was nearly random in case of plane/dart and
jugs experiments. Meanwhile, it was 80% on the dolls
dataset - still far from the performance of the π-SVM.
Clearly, the π-SVM beats such naive sorting strategies
as well. Similarly, we compared against an SVM us-
ing the kernel on sets (Kondor & Jebara, 2003) which
is invariant to ordering. This kernel sometimes works
better than naive sorting yet was also outperformed
by the π-SVM. Most interestingly, in situations where
training data is sparse and not every view of each ob-
ject is available, the π-SVM performs better because
of its ability to match the components in the images.

5.3. Experiments with NIST

We next consider a digit recognition problem. The
dataset we used consisted of one hundred patterns of
the digits three and nine. Some of the typical dig-

Permutation Invariant SVMs

Figure 2. Plane/Dart,Jugs and Dolls datasets.

its are shown in the Figure 3. Each digit was repre-
sented by the (x, y) coordinates of the dark pixels in
the image. This was done by randomly selecting pixel
from dark regions in the gray scale image and retain-
ing their (x, y) coordinates (as before). We retained
70 such points for each digit. The point-cloud images
are then represented as matrices in R

70×2. We evalu-
ated the accuracy of the π-SVM over this dataset by
doing a ten fold cross validation with different values
for λ and C. We compared our method to standard

4 6 8 10 12 14 16 18 20 22
4

6

8

10

12

14

16

18

20

22

24

2 4 6 8 10 12 14 16 18 20 22
4

6

8

10

12

14

16

18

20

22

24

4 6 8 10 12 14 16 18 20 22
4

6

8

10

12

14

16

18

20

22

24

0 5 10 15 20 25
6

8

10

12

14

16

18

20

5 10 15 20
2

4

6

8

10

12

14

16

18

20

22

6 8 10 12 14 16 18 20 22
2

4

6

8

10

12

14

16

18

20

22

8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

18

20

22

6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

18

20

22

8 10 12 14 16 18 20
4

6

8

10

12

14

16

18

20

22

24

4 6 8 10 12 14 16 18 20 22 24
2

4

6

8

10

12

14

16

18

20

22

Figure 3. NIST digits as bags of pixels

Linear Gaussian

π-SVM 97.00
SVM 91.00 95.00
Sorted 88.00 92.00
Random 69.00 80.00
Kondor,Jebara 94.00

Table 3. Percentage accuracies on the NIST dataset.

SVMs on the vectorized gray-scale digit images using
both linear and Gaussian kernels (as is typically done
in digit recognition experiments). We also compared
our results with classical SVMs with linear and Gaus-
sian kernels on point-cloud data with x, y coordinates
under naive or random sorting. The results reported
in Table 3 are the best accuracy (averaged over 10
iterations) over runs with different parameters. The
π-SVM again performed well.

5.4. Experiments with UCI datasets

We next studied the problem of recovering from ran-
dom permutations applied to the input vectors in stan-
dard UCI datasets. To do so, we randomly permuted
the features of heart, ion and Pima datasets from the
UCI Machine Learning Repository (Newman et al.,
1998) with a different permutation for each datum.
For these datasets, we have d = 1 since each pattern
is just a vectors. We ran the π-SVM on arbitrarily
permuted features dataset with ten fold cross valida-
tion for different values of the parameters λ and C.
As before, one quick way of handling such data is to
sort the features and to use a classical SVM. We also
show the result on the original (uncorrupted) dataset
which is an upper limit of how well the π-SVM or any
permutation-cleaning algorithm can do. We also show
the performance of a classical SVM on the randomly
permuted input vectors.

Table 4 summarizes the results. In all the cases the
reported results are the best average percentage ac-
curacies over ten randomized runs with different pa-
rameters. All methods used a linear kernel. In the
heart and ion datasets, our π-SVM was able to almost
match the result of SVM on the original uncorrupted

Permutation Invariant SVMs

Ionosphere Pima Heart

π-SVM 85.14 69.87 85.18
Actual 85.42 76.75 86.67
Sorted 76.61 67.19 74.89
Random 68.24 65.60 52.36

Table 4. Percentage accuracies on UCI datasets.

datasets. In the case of Pima, the accuracy was slightly
lower compared to that on the actual dataset. Never-
theless, the π-SVM performed better compared to the
sorted features or using randomized features.

6. Conclusion

We proposed a method for handling the problem of
classifying permuted data with SVM. The technique
made use of a bound on the expected probability of
error. Our proposed π-SVM incrementally searches
for and compensates for permutations on each datum
by iteratively increasing the margin while keeping tabs
on the radius of the enclosing hypersphere. Exper-
iments indicate that π-SVM performed much better
than traditional SVMs (with RBF, linear or vector-
set kernels) on small datasets for 3D objects classifi-
cation and digit problems as well as permutationally
corrupted UCI datasets. It also outperformed naive
ways of handling permuted data such as sorting.

The π-SVM is also kernelizable. In other words, in-
stead of a linear inner product between d-dimensional
tuples in each input matrix, we may use a kernel.
Thus, π-SVM can deal with sets of permuted Hilbert-
space elements. While most attempts to handle un-
certainty have focused mainly on margin, integrating
our approach with the bounding hypersphere and ra-
dius arguments give interesting results and allow us to
reliably and incrementally remove sources of nuisance
variation such as permutation. We are also considering
other SVMs designed to handle different types of vari-
ation beyond permutations where the margin and the
radius can be incrementally increased and decreased,
respectively. We are also exploring ways to solve the
problem as one single optimization rather than one for
SVM and one for data radius. Other directions include
using this framework to linearly transform data for low
probability of error. Extending our technique to sup-
port vector clustering is also an interesting direction.

7. Acknowledgments

Funded by NSF Grants IIS-0347499 & CCR-0312690.

References

Ben-Hur, A., Horn, D., Siegelmann, H. T., & Vapnik, V.
(2001). Support vector clustering. Journal of Machine
Learning Research.

Bennett, K. P., & Mangasarian, O. L. (1993). Multicate-
gory separation via linear programming. Optimization
Methods and Software, 3, 27–39.

Bi, J., & Zhang, T. (2005). Support vector classification
with input data uncertainty. Neural Information Pro-
cessing Systems 17.

Burges, C. (1998). A tutorial on support vector machines
for pattern recognition. Knowledge Discovery and Data
Mining.

Cortes, C., & Vapnik, V. (1995). Support-vector networks.
Machine Learning, 20, 273–297.

Geusebroek, J. M., Burghouts, G. J., & Smeulders, A.
W. M. (2005). The Amsterdam library of object images.
Int. J. Comput. Vision, 61, 103–112.

Goldberg, A. V., & Kennedy, R. (1995). An efficient cost
scaling algorithm for the assignment problem. Mathe-
matical Programming, 71, 153–178.

Jebara, T. (2004). Kernelizing sorting, permutation and
alignment for minimum volume PCA. COLT.

Kirshner, S., Parise, S., & Smyth, P. (2003). Unsupervised
learning with permuted data. International Conference
on Machine Learning.

Kondor, R., & Jebara, T. (2003). A kernel between sets of
vectors. International Conference on Machine Learning.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N.,
& Watkins, C. (2002). Text classification using string
kernels. Journal of Machine Learning Research, 2, 419–
444.

Mah, P., Ueda, N., Akutsu, T., Perret, J., & Vert, J.
(2004). Extensions of marginalized graph kernels. In-
ternational Conference on Machine Learning.

Newman, D., Hettich, S., Blake, C., & Merz, C. (1998).
UCI repository of machine learning databases.

Papadimitriou, C. H., & Steiglitz, K. (1982). Combinato-
rial optimization: Algorithms and complexity. Prentice-
Hall.

Simard, P., LeCun, Y., Denker, J. S., & Victorri,
B. (1996). Transformation invariance in pattern
recognition-tangent distance and tangent propagation.
Neural Networks: Tricks of the Trade (pp. 239–27).

Taskar, B., Guestrin, C., & Koller, D. (2004). Max-margin
Markov networks. Neural Information Processing Sys-
tems.

Vapnik, V. (1995). The nature of statistical learning theory.
Springer-Verlag.

Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Pog-
gio, T., & Vapnik, V. (2000). Feature selection for SVMs.
Neural Information Processing Systems.

