
Minimum Volume Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

Abstract

Minimum Volume Embedding (MVE) is an
algorithm for non-linear dimensionality re-
duction that uses semidefinite programming
(SDP) and matrix factorization to find a
low-dimensional embedding that preserves
local distances between points while repre-
senting the dataset in many fewer dimen-
sions. MVE follows an approach similar to
algorithms such as Semidefinite Embedding
(SDE), in that it learns a kernel matrix us-
ing an SDP before applying Kernel Princi-
pal Component Analysis (KPCA). However,
the objective function for MVE directly op-
timizes the eigenspectrum of the data to pre-
serve as much of its energy as possible within
the few dimensions available to the embed-
ding. Simultaneously, remaining eigenspec-
trum energy is minimized in directions or-
thogonal to the embedding thereby keeping
data in a so-called minimum volume man-
ifold. We show how MVE improves upon
SDE in terms of the volume of the preserved
embedding and the resulting eigenspectrum,
producing better visualizations for a variety
of synthetic and real-world datasets, includ-
ing simple toy examples, face images, hand-
written digits, phylogenetic trees, and social
networks.

1 INTRODUCTION

In machine learning, computer vision, computational
biology and other applied areas, datasets often involve
high dimensional objects. While the extrinsic dimen-
sionality of such datasets may be high, most of the
dataset’s variability can often be captured by far fewer
dimensions. For example, data points may consist of
a large number of features that are not independent

because of underlying constraints in the data. In prac-
tice, such data points lie on a low-dimensional nonlin-
ear manifold and only a few intrinsic coordinates are
necessary to characterize their variation. Nonlinear di-
mensionality reduction methods recover such a mani-
fold from data and provide low-dimensional represen-
tations of the original high-dimensional data. This can
be useful for 2D or 3D visualization or for further pro-
cessing by other algorithms.

Most nonlinear dimensionality reduction techniques
begin with the following goal: given N points in
a high-dimensional space ~xi ∈ <D for i = 1 . . . N
find a low-dimensional representation of corresponding
points ~yi ∈ <d for i = 1 . . . N such that d � D which
preserves local relationships or distances in the data.
In kernel PCA [7], this is done by keeping the d dimen-
sions that have the largest eigenvalues. However, there
is always some corruption or loss when we drop dimen-
sions with non-zero eigenvalues, and in turn pairwise
distances are less perfectly preserved. Semidefinite em-
bedding [11] instead unfolds the data manifold (with-
out violating local relationships) prior to dimensional-
ity reduction. This ensures that eigenvalues measure
variation aligned with the manifold and perpendicular
to it rather than across spurious directions in the orig-
inal space. In practice, SDE drives some energy into
the lower d dimensions such that less energy is lost af-
ter kernel PCA and local pairwise distances are more
faithfully preserved. However, unfolding by maximiz-
ing variance does not explicitly target our goal of keep-
ing energy in the first d components of kernel PCA. In
this article, we explicitly unfold and increase energy
in the top d dimensions while we simultaneously col-
lapse and decrease the energy in the remaining D − d
dimensions. This ensures that as much energy as pos-
sible remains when we perform kernel PCA, and that
the pairwise distances are as faithful as possible after
we reduce dimensionality to d dimensions. We refer to
this approach as minimum volume embedding (MVE)
and provide a convergent and efficient algorithm. In
driving away energy from the dimensions after the d’th



one, we effectively minimize the volume the embedding
occupies and flatten it out.

This paper is organized as follows. In Section 2 we
review prior work in nonlinear dimensionality reduc-
tion and embedding. In Section 3, we argue that these
algorithms should preserve as much eigenspectrum en-
ergy as possible in the reduced dimensionality. Section
4 shows how MVE attains this goal via a novel cost
function, a variational upper bound, and an algorithm
that minimizes it. Section 5 provides experiments on
large datasets and shows favorable MVE performance
compared to other manifold learning algorithms. We
conclude with a discussion in Section 6.

2 CURRENT EMBEDDING
ALGORITHMS

Dimensionality Reduction is a well studied problem,
and there exist a number of algorithms in this field.
At the foundation of many of these techniques is Prin-
cipal Component Analysis (PCA) [7], an algorithm
which linearly maps a set of data onto a new coordi-
nate system, such that the 1st dimension captures the
largest amount of the variance, the 2nd captures the
next largest and so on. PCA can accurately recover
a low-dimensional embedding if the data lies near a
linear manifold. However, if the underlying manifold
is not linear, a variety of extensions to PCA have been
devised.

Locally Linear Embedding (LLE) [6], hLLE [2], Lapla-
cian Eigenmaps [1], Isomap [8], and Semidefinite Em-
bedding [11], all provide different techniques for cap-
turing the non-linearity of the underlying manifold
incorporating local distance information in different
ways. LLE, for example, only considers local pairwise
information between points, approximating the non-
linear manifold by a set of linear patches. Similarly,
Laplacian Eigenmaps operates in this local regime.
Isomap, on the other hand, operates globally on the
set of all distances between points. It uses local infor-
mation to construct a k-nearest neighbor graph and
estimates distances between far away points by con-
sidering the shortest path on the graph.

Operating in both a local and global regime, Semidef-
inite Embedding, also known as Maximum Variance
Unfolding, tries to preserve local distances as it “un-
folds” the data by optimizing globally over all pairwise
distances. SDE, for most cases, is arguably the leading
embedding algorithm, able to more accurately recover
the underlying non-linear manifold [11]. SDE works as
follows. Given input data ~xi ∈ <D for i = 1 . . . N , SDE
forms an affinity matrix A using any choice of pairwise
affinity metrics such as a linear kernel, or an RBF ker-

nel. A is then used to generate a connectivity matrix C
where typically each point is connected to its k-nearest
neighbors, and k is a parameter of the algorithm. This
connectivity structure enforces which local distances
will be preserved. SDE then learns a kernel matrix K
by maximizing tr(K), while preserving the constraints
that Ki,i+Kj,j−Ki,j−Kj,i = Ai,i+Aj,j−Ai,j−Aj,i∀i,j

where Ci,j = 1 . K is then used in KPCA, to get a
set of eigenvectors ~vi ∈ <d for i = 1 . . . N , where typi-
cally the number of eigenvectors corresponding to large
eigenvalues is much less than the dimensionality of the
data.

At the core of many of these algorithms lies this PCA-
like projection to select the d strongest eigenvectors,
typically using the “kernel trick” to extend PCA. In
doing so, these algorithms lose any information corre-
sponding to dropped eigenvectors with non-zero eigen-
values. Furthermore, none of these algorithms explic-
itly aim to minimize the amount of information lost
due to this truncation. Instead the process of learn-
ing a kernel is inherently separated from the step of
truncating its low-energy eigenvectors.

3 EVALUATING EMBEDDINGS

How can we judge the quality of an embedding? This
question is difficult to answer quantitatively. One pro-
posed measure is to examine the spectrum of eigen-
values, and see if it correctly corresponds to the un-
derlying dimensionality of the data [11]. If we know
the underlying dimensionality for synthetic data sets,
we can see if the number of large eigenvalues of the
embedding corresponds to the intrinsic dimensionality
of the data. Furthermore, if we are using the embed-
ding algorithm as a visualization tool, by truncating
the eigenspectrum, and only looking at the top 2 or
3 eigenvectors corresponding to strong eigenvalues, we
should make sure that we capture a large percentage
of the variance of the data in these top eigenvectors.
Furthermore, the eigengap (the difference between the
smallest eigenvalue preserved for embedding and the
largest eigenvalue truncated during PCA) should be
as big as possible. Capturing a large percentage of the
variance in the top eigenvalues ensures that local dis-
tances are actually preserved when we view the data in
only a few dimensions, and the large eigen-gap guaran-
tees stability in the algorithm, making sure that subtle
changes in the data don’t cause eigenvectors to switch
places, drastically altering the embedding [5].

Semidefinite Embedding has been shown to produce
low rank kernel matrices for a variety of datasets [11].
However, the objective function that SDE maximizes
is very much at odds with the intuition that we want:
to reduce the dimensionality of the data. This is



clear from a variety of datasets. In Figure 1, we see
a synthetic data set consisting of a hub and spokes;
the spokes are bent down from the hub. This sim-
ple dataset nicely illustrates an inherent limitation in
SDE. The data exists in 3 dimensions, and it is clear
that by simply unbending the spokes, we could rep-
resent this structure in 2D, preserving local relation-
ships. However, because SDE is trying to maximize
tr(K), it is in essence trying to pull the data apart in
every dimension. This maximizes the volume of the
spokes into an N-dimensional spherical cloud. Figure
1 shows the resulting embedding and the eigenvalues
before and after SDE which was actually detrimental
to the original PCA spectrum in the top of the figure.

2
4

6
8

2

4

6

8
0

1

2

!1 0
1 2

!2
0

2

!2

!1

0

1

1 2 3 4 5 6 7 8 9
!10

0

10

20

30

40
Original

1 2 3 4 5 6 7 8 9
!5

0

5

10

15
SDE

Figure 1: Top, the original data and its eigenspec-
trum (using PCA). Bottom, the unfolded data using
SDE and its eigenspectrum. The embedding (left)
generated for a synthetic hub and spokes dataset and
then processed by Semidefinite Embedding. SDE pulls
apart the data into an N -dimensional space, which is
evident from the overpopulated eigenspectrum (right).

The original motivation for developing MVE was to
visualize social networks which have a connectivity
structure similar to that of this toy problem. How-
ever, as we experimented with more datasets, we saw
that by using a more sophisticated objective function
not only can we avoid the limitations of SDE as shown
above, but we can consistently capture more of the
variance of the data in the top eigenvectors for a va-
riety of different kinds of datasets. This allows MVE
to more accurately visualize the data in only a few
dimensions.

4 THE MINIMUM VOLUME
EMBEDDING ALGORITHM

To formulate MVE, we start from the SDE algorithm
and make some important changes to its cost func-
tion. Recall that SDE maximizes the trace of a ma-
trix K subject to positive definiteness, centering and
distance-preserving constraints. It is a constrained

minimization of a linear cost function of K:

min
K∈K

fSDE(K) = min
K∈K

−tr(K) = min
K∈K

−
N∑

i=1

λi

(where λi are the eigenvalues of K) subject to the con-
straint that K is in K. Here, we use K to denote the
convex set of matrices which satisfy the properties of
SDE and define it as:

K =

∀K ∈ <N×N

∣∣∣∣∣∣∣∣∣∣
K � 0∑

ij Kij = 0
Kii + Kjj −Kij −Kji =

Aii + Ajj −Aij −Aji

∀ i, j when Cij = 1


While SDE sometimes works reasonably well, the in-
tuition of pulling points apart (maximizing the trace
of K) and unfolding by maximizing variance can cre-
ate problems and use more dimensions than are nec-
essary. Instead, we would like to pull points apart in
the dimensions that we are interested in keeping for
the embedding but reduce the variance in dimensions
that will be removed. Thus, we would like to grow the
top few eigenvalues of K while shrinking the remaining
ones (to avoid the manifold puffing out in directions
perpendicular to its surface). Ideally, if we knew the
intrinsic dimensionality d of the manifold, MVE would
therefore minimize the following cost function over the
eigenvalues:

min
K∈K

f(K) = min
K∈K

−
d∑

i=1

λi +
N∑

i=d+1

λi (1)

where λ are the eigenvalues of K in sorted order,
λi ≥ λi+1. We typically do not know d but treat it
as a user-specified parameter for now. Typically, for
visualization d is 2 or 3. Furthermore, our experiments
show that using a value of d that is too small or too big
will not significantly change results. Clearly, if we set
d = N , this cost function f becomes the same as the
cost function fSDE used in SDE. We cannot directly
minimize Equation 1, so we derive a variational upper
bound on it, and iteratively minimize that bound.

Consider rewriting Equation 1 in the following way
which makes the relationship between K, its eigenval-
ues λi and its eigenvectors ~vi more explicit:

min
K∈K

f(K) = min
K∈K

−
d∑

i=1

λi +
N∑

i=d+1

λi

s.t. K~vi = λi~vi, ~vT
i ~vj = δij , λi ≥ λi+1, ∀i, j. (2)

We next manipulate the cost function algebraically
(maintaining the above additional constraints) as fol-



lows:

f(K) = −
d∑

i=1

λi +
N∑

i=d+1

λi

= −
d∑

i=1

tr(λi~vi~v
T
i ) +

N∑
i=d+1

tr(λi~vi~v
T
i )

= −
d∑

i=1

tr(K~vi~v
T
i ) +

N∑
i=d+1

tr(K~vi~v
T
i )

= tr

[
K

(
−

d∑
i=1

~vi~v
T
i +

N∑
i=d+1

~vi~v
T
i

)]

Therefore, the MVE problem can be rewritten as:

min
K∈K

f(K) = min
K∈K

tr

[
K

(
−

d∑
i=1

~vi~v
T
i +

N∑
i=d+1

~vi~v
T
i

)]
s.t. K~vi = λi~vi, ~vT

i ~vj = δij , λi ≥ λi+1, ∀i, j.

Interestingly, f(K) does not necessarily need all the
above constraints. Consider minimizing f(K) over an
arbitrary set of eigenvectors ~v1, . . . , ~vN as follows:

min
~v1, . . . , ~vN

~vT
i ~vj = δij

tr

[
K

(
−

d∑
i=1

~vi~v
T
i +

N∑
i=d+1

~vi~v
T
i

)]

This is simply a Procrustes problem which is straight-
forward to solve. Clearly, to minimize the negative
term, we set ~v1, . . . , ~vd to the top d eigenvectors of
K. Similarly, to minimize the positive term, we set
~vd+1, . . . , ~vN to the bottom N − d eigenvectors of K.
Therefore, minimizing f over eigenvectors:

min
~v1, . . . , ~vN

~vT
i ~vj = δij

tr

[
K

(
−

d∑
i=1

~vi~v
T
i +

N∑
i=d+1

~vi~v
T
i

)]

is equivalent to the value

tr

[
K

(
−

d∑
i=1

~vi~v
T
i +

N∑
i=d+1

~vi~v
T
i

)]
s.t. K~vi = λi~vi, ~vT

i ~vj = δij , λi ≥ λi+1, ∀i, j.

under the more rigid set of constraints. In other words,
minimization over arbitrary eigenvectors is equivalent
to setting them to the eigenvectors of the matrix K.

These steps finally let us write a variational version of
the MVE problem in Equation 2 which is straightfor-
ward to minimize. The variational version makes the
choice of eigenvectors an additional parameter:

min
K∈K

min
~v1, . . . , ~vN

~vT
i ~vj = δij

tr

[
K

(
−

d∑
i=1

~vi~v
T
i +

N∑
i=d+1

~vi~v
T
i

)]
(3)

When we minimize over the additional parameter, we
get the MVE formulation in Equation 2. Thus, we
can now approach the minimization problem for MVE
as an alternating minimization found by iterating be-
tween solving for the best K while the set of eigen-
vectors is fixed and then solving for the best set of
eigenvectors given K. We simply need to initialize the
algorithm with either a starting K matrix or a start-
ing set of eigenvectors ~v1, . . . , ~vN . For instance, we
may begin with K = A, the original affinity matrix
between pairs of the input data-points or initialize K
with the solution found by SDE.

Table 1 summarizes the MVE algorithm under the al-
ternating minimization scheme.

Input (~xi)N
i=1, kernel κ, and parameters d, k.

Step 1 Form affinity matrix A ∈ <N×N with
pairwise entries Aij = κ(~xi, ~xj).

Step 2 Use A to find a binary connectivity
matrix C via k-nearest neighbors.

Step 3 Initialize K = A.
Step 4 Solve for the eigenvectors ~v1, . . . , ~vN and

eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λN of K.

Step 5 Set B = −
d∑

i=1

~vi~v
T
i +

N∑
i=d+1

~vi~v
T
i .

Step 6 Using SDP find K̂ = arg minK∈K tr(KB).
Step 7 If ‖K − K̂‖ ≥ ε set K = K̂, go to Step 4.
Step 8 Perform kernel PCA on K̂ to get

d-dimensional output vectors ~y1, . . . , ~yN .

Table 1: Minimum Volume Embedding Algorithm.

Although we have not proven that Equation 3 will con-
verge to a global minimum, we can prove that it will
converge to a local minimum, since it is a variational
bound on the original problem in Equation 2. Fur-
thermore, if we initialize the algorithm with the kernel
PCA solution (as in Table 1 K = A), we are guaran-
teed to improve the cost function beyond the kernel
PCA solution. Similarly, if we initialize the algorithm
with the SDE solution, we are guaranteed to improve
the cost function from that seed as well. We formal-
ize the monotonicity of the MVE algorithm with the
following theorem.

Theorem 1 The iterative MVE algorithm is guar-
anteed to monotonically decrease the cost function
f(K) = −

∑d
i=1 λi +

∑N
i=d+1 λi.

Proof 1 For any K ∈ K, recall that f(K) =

min
~v1, . . . , ~vN

~vT
i ~vj = δij

tr

[
K

(
−

d∑
i=1

~vi~v
T
i +

N∑
i=d+1

~vi~v
T
i

)]
.



Define the function:

g(K,~v1, . . . , ~vN ) = tr

[
K

(
−

d∑
i=1

~vi~v
T
i +

N∑
i=d+1

~vi~v
T
i

)]
.

Thus, f(K) is the minimization of g(K,~v1, . . . , ~vN )
over eigenvectors. Assume we have a current setting
of K denoted Kt and a current setting of the eigen-
vectors ~vt

1, . . . ~v
t
N . In general, we must have:

f(Kt) ≤ g(Kt, ~vt
1, . . . , ~v

t
N )

After Step 4 of the MVE algorithm we obtain:

f(Kt) = g(Kt, ~vt+1
1 , . . . , ~vt+1

N )

After Step 6 of the MVE algorithm, SDP ensures that:

g(Kt+1, ~vt+1
1 , . . . ~vt+1

N ) ≤ g(Kt, ~vt+1
1 , . . . ~vt+1

N ).

Since f(K) is a minimization of g(K,~v1, . . . , ~vN ),

f(Kt+1) ≤ g(Kt+1, ~vt+1
1 , . . . , ~vt+1

N )
≤ g(Kt, ~vt+1

1 , . . . , ~vt+1
N )

≤ f(Kt)

showing that f(Kt) ≥ f(Kt+1) after each loop of the
MVE algorithm and f(K) decreases monotonically.

It is interesting to note that spectral cost functions
of the matrix K of the form

∑
i αiλi are convex if

αi ≥ αi+1 and the eigenvalues of K are arranged in
decreasing order λi ≥ λi+1. Since MVE’s cost func-
tion has αi ≤ αi+1, it is concave. In practice, the MVE
algorithm does not seem to have any significant local
minima since it converges reliably to the same solution
despite variations in initialization, as shown in Figure
2. In addition, the solution it obtains is consistently
superior to ones found by SDE and kernel PCA. An-
other interesting property of MVE is that the selection
of d does not need to be precise. For instance, setting
d = 2 and computing a 3D visualization in Step 8 of
the algorithm will still produce a better visualization
than using traditional SDE or kernel PCA techniques.
These empirical advantages are presented in further
detail in the next section.

5 EXPERIMENTS

We present a variety of experiments using both syn-
thetic and real-world data to highlight the perfor-
mance of MVE, specifically in comparison to SDE and
KPCA.

5.1 SYNTHETIC DATA

In Figure 3, we see MVE appropriately embedding the
simple data set consisting of a hub and spokes. We

0 5 10 15 20 25 30 35 40 45 50
!50

!40

!30

!20

!10

0

10
MVE !! USPS Twos !! d=1

Figure 2: The results of using 10 random initializations
for MVE, instead of initializing with the KPCA or
SDE solution. We see that for d = 1, MVE converges
each time to the same solution, showing that MVE
is robust to local minima. We also note that seeding
MVE with KPCA reduces the number of iterations by
5 fold in practice.

2
4

6
8

2

4

6

8
0

1

2

!2

0

2

!3
!2

!1
0

1
2

3

1 2 3 4 5 6 7 8 9
!10

0

10

20

30

40
Original

1 2 3 4 5 6 7 8 9
!10

0

10

20

30

40

50

60
MVE

Figure 3: MVE correctly embeds the synthetic hub
and spokes data in 2 dimensions (left). The eigen-
spectrum (right) of the embedding generated by MVE
shows that the embedding is simply 2 dimensional
and that MVE does not puff out the data into an N -
dimensional space like SDE.

saw in Figure 1 that SDE puffs out this dataset into
an N -dimensional hub. Meanwhile, MVE recovers the
correct minimum volume two-dimensional embedding.
Although this example is very manufactured, it clearly
highlights a deficiency in SDE, and one can imagine
stringing together many of these hubs in a variety of
different ways to create hierarchical hub-like structures
that could cause SDE to use many more dimensions
than necessary.

Figure 4 shows a synthetic dataset consisting of 50
points sampled from a 2 dimensional spiral, where each
of the 50 points is connected to its 3 nearest neighbors.
As expected, both MVE and SDE find nearly identical
embeddings using the same parameters (k = 3) for
both, and d = 1 for MVE. Both algorithms successfully
reveal the underlying 1-dimensional structure in the
data.



MVE SDE

KPCA

MVE SDE

KPCA

MVE SDE

KPCA

KPCA SDE MVE

MVE
SDE

KPCA

MVE
SDE

KPCA

MVE
SDE

KPCA

24%

74%

MVE

1%2%
7%

19%

69%

SDE

1%1%1%1%1%1%2%2%2%
2%
2%
2%
3%
3%

3%

4%

4%

4%

6%
7% 7%

11%

KPCA

24%

74%

MVE

1%2%
7%

19%

69%

SDE

1%1%1%1%1%1%2%2%2%
2%
2%
2%
3%
3%

3%

4%

4%

4%

6%
7% 7%

11%

KPCA

24%

74%

MVE

1%2%
7%

19%

69%

SDE

1%1%1%1%1%1%2%2%2%
2%
2%
2%
3%
3%

3%

4%

4%

4%

6%
7% 7%

11%

KPCA

39%

60%

MVE

2%
10%

20%

67%

SDE

1%1%1%1%2%2%
2%

3%

4%

5%

7%

10%

10%
13%

18%

KPCA

39%

60%

MVE

2%
10%

20%

67%

SDE

1%1%1%1%2%2%
2%

3%

4%

5%

7%

10%

10%
13%

18%

KPCA

39%

60%

MVE

2%
10%

20%

67%

SDE

1%1%1%1%2%2%
2%

3%

4%

5%

7%

10%

10%
13%

18%

KPCA

Figure 5: A comparison of the embeddings for the faces (top) and twos (bottom) image datasets. KPCA
(left), SDE (middle), and MVE (right). The pie charts indicate the eigenvalue spectra corresponding to each
embedding. It is clear that MVE captures more of the variance in the top 2 dimensions providing a more accurate
2D embedding.

Figure 4: The embeddings of SDE (middle) and MVE
(bottom) for a simple synthetic 2-dimensional spiral
dataset (top). We see that SDE and MVE both cap-
ture the inherent low-dimensional manifold from which
the data was sampled.

5.2 REAL-WORLD DATA

Dimensionality reduction algorithms such as MVE can
provide great insight into datasets of images, allowing
one to simply input each image as a vector of pixel in-
tensity values, and automatically capture a small num-
ber of meaningful features that vary from image to
image, such as position, rotation, pose, lighting, etc.
[10].

Figure 5 shows 400 faces taken from the Frey Face
dataset. Each image is vectorized as a 560 element
vector of pixel intensity values. As in previous work on
embedding images [10], SDE is capable of capturing an
embedding which allows us to visualize the changes in
the face somewhat accurately in only a few dimensions.
Here we present a direct comparison of SDE vs. MVE
on this dataset and show that we are able to more accu-
rately represent the data in two dimensions using MVE

because we capture significantly more of the variance
of the data in the top two eigenvectors. This is shown
by the pie charts in Figure 5 which present the eigen-
spectra for the three embedding methods. MVE seems
to captures 10% more of the variance of the data in the
top two dimensions, meaning local distances in MVE’s
2D plot are more accurate, and more informative.

Figure 5 also shows 200 images of handwritten twos
taken from the USPS handwritten digit dataset. As
with the previous example with faces, we see that
MVE is able to capture more of the variance in the
top 2 eigenvectors, providing a more accurate lower
dimensional embedding.

MVE was designed from the beginning to elegantly
visualize social networks. In Figure 6, we see data
mined from a web-based social network. The names
have been anonymized. Connections between individ-
uals represent whether or not those individuals have
listed each other as friends. We use these friend con-
nections as the C matrix for both MVE and SDE. The
data consists of 19 points which exist in a 41839 di-
mensional space consisting of bag-of-words frequency
vectors from the text in the person’s profile. These 19
points are a subnetwork consisting only of the friends
of the Zeus profile. For MVE d was set to 2.

Figure 7 shows a direct comparison between the eigen-
spectrum of the kernel produced by MVE (left), and
SDE (right). We see from the plot that MVE captures
a significantly greater amount of variance of the data
in the top few eigenvectors. The long tail of eigenval-
ues in the SDE plot corresponds to information that
will be lost if we truncate the eigenvectors at 2 or 3



Theseus

JasonMedusa

Perseus

Heracles

Demeter

Hera

Aphrodite

Athena

Hades

Eros

Pan

Dionysus

Hephasstus Ares

Poseidon

Hermes
ApolloZeus

Theseus

JasonMedusa

Perseus

Heracles

Demeter

Hera Aphrodite
AthenaHades

Eros

Pan

Dionysus
Hephasstus

Ares

Poseidon

Hermes

Apollo

Zeus

Theseus
JasonMedusa

PerseusHeracles

Demeter

Hera

Aphrodite

Athena
HadesEros

Pan Dionysus
Hephasstus

Ares

Poseidon
Hermes

Apollo

Zeus

KPCA SDE MVE

Figure 6: Embedding of social networks. KPCA (left), SDE (middle), and MVE (right).

dimensions. Furthermore, we can see in Figure 6 that
KPCA alone does a poor job of embedding the data
in two dimensions, allowing us to see only a small per-
centage of the variance in the data.

Figure 7: Eigenvalue spectra for the embeddings of
social network data by KPCA (left), SDE (middle),
and MVE (right).

We see from visualizing social networks that MVE pro-
vides a much greater advantage over SDE when the
connectivity structure C is not a uniformly sampled
mesh but takes on different structures, such as hubs
and links. This advantage allows us to tackle visual-
ization problems ordinarily not handled by algorithms
such as SDE, for example phylogentic trees. For vi-
sualizing trees, it is helpful to modify MVE and SDE
with added constraints that prevent all pairwise dis-
tances from shrinking: Ki,i + Kj,j − Ki,j − Kj,i ≥
Ai,i + Aj,j −Ai,j −Aj,i∀i,j . This prevents the embed-
ding from collapsing upon itself due to sparse connec-
tivity. Figure 8 shows the result applied to the phy-
logenetic trees of salamanders and crustaceans. Here,
connectivity is sparse and is given by a spanning tree.
The figure shows MVE, SDE, and their modified ver-
sions with full constraints which we call MVE-Full and
SDE-Full. Clearly, MVE-Full provides the best visu-
alization of the tree structure.

5.3 SUMMARY

The following table summarizes the comparisons be-
tween MVE, SDE, and KPCA for the experiments in
this paper in terms of accurately being able to rep-
resent the data in 2D. We see that in all cases MVE
is able to capture more of the variance of the data in
the first two eigenvectors, providing a more accurate 2-
dimensional embedding. Although distances between

points in local neighborhoods are preserved in the ker-
nels learned by both MVE and SDE, as the sum of the
first two normalized eigenvalues decreases from 100%,
we can no longer say that local distances are being
preserved in the resulting embedding. This is because
the algorithm truncates the last N − 2 eigenvectors to
create the embedding, and therefore any distance in-
formation which comes from those eigenvectors is lost.
MVE performs better than SDE in this regard, achiev-
ing near 100% accuracy for the twos and faces datasets,
and for the difficult social network dataset achieving a
significant improvement over the other algorithms.

Percentage of eigenvalue energy captured in 2D

MVE SDE KPCA
Hubs and Spokes 100% 29.9% 95.0%
Spiral (% in 1D) 99.9% 99.9% 45.8%
Twos 97.8% 88.4% 18.4%
Faces 99.2% 83.6% 31.4%
Social Networks 77.5% 41.7% 29.3%

5.4 COMPUTATIONAL COMPLEXITY

The running time for one iteration of MVE is identical
to that of running SDE: O(N3 + C3) where N is the
number of points, and C is the number of constraints
in the SDP [10]. Therefore the running time of MVE
is proportional to the running time of SDE by some
constant factor corresponding to the number of iter-
ations needed until convergence. A better analysis of
the rate of convergence will be a matter of future work.
However, for the experiments listed above, a reason-
able convergence was reached after approximately 10
iterations.

Currently, running MVE with a standard SDP solver
is slow (up to ten times slower than SDE). However,
because of its similarity to SDE, MVE should be able
to benefit from any speed-ups for SDE including SDE-
customized SDP solvers and speed-ups from approxi-
mation schemes such as Landmark Semidefinite Em-
bedding (lSDE) [10].



!"#$ %&' ()' %&'!*+,, ()'-.+,,

!"#$ %&' ()' %&'!*+,, ()'-.+,,KPCA

52.8%

SDE MVE SDE-full MVE-full

99.6% 100% 93.7% 98.7%
Salamanders

Crustaceans

38.2% 100% 100% 88.3%

!"#$ %&' ()' %&'!*+,, ()'-.+,,

97.7%

30 species

56 species

Figure 8: Embeddings of phylogenetic trees of Salamanders and Crustaceans using KPCA, SDE, MVE , SDE-
Full, and MVE-Full. Also shown for each embedding is the percent of the variance which is captured in 2
dimensions. We see that MVE-Full provides the best visualization of the data.

6 CONCLUSION

The key motivation behind dimensionality reduction
algorithms such as SDE is to accurately represent high-
dimensional data in a lower dimensional space. In
practice, algorithms such as SDE sacrifice some accu-
racy on the local distances when dropping dimensions
with small but non-zero eigenvalues. Furthermore, in
SDE, the optimization which unfolds the data in all
directions is not complementary to the next step of
truncating extra dimensions. So although local dis-
tances are preserved in the kernel learned by the op-
timization, local distances are not necessarily as well
preserved in the low-dimensional embedding. MVE
improves upon SDE and kernel PCA in this regard,
by explicitly maximizing the amount of energy in the
first d dimensions of the eigenspectrum, converging to
a minimum volume solution which better preserves lo-
cal distances in the resulting low-dimensional embed-
ding. To highlight the advantages of MVE, we have
shown experiments on a variety of synthetic and real-
world datasets where MVE offered significant improve-
ments over SDE in terms of capturing more of the
variance of the data in the same few dimensions. Fur-
thermore, we applied MVE to visualizing phylogenetic
trees and social networks, showing its usefulness for
high-dimensional datasets with unusual connectivity
structures.

References

[1] M. Belkin and P. Niyogi. Laplacian eigenmaps for
dimensionality reduction and data representation.
Neural Computation, 15(6), 2002.

1This work was funded in part by NSF grant IIS-
0347499

[2] D. Donoho and C. Grimes. Hessian eigenmaps:
locally linear embedding techniques for high di-
mensional data. Proc. of National Academy of
Sciences, 100(10):5591–5596, 2003.

[3] T. Jebara. Convex invariance learning. In Artifi-
cial Intelligence and Statistics (AISTAT), 2003.

[4] T. Jebara. Kernelizing sorting, permutation and
alignment for minimum volume PCA. In Confer-
ence on Learning Theory, 2004.

[5] A. Ng, M. Jordan, and Y. Weiss. On spectral
clustering: Analysis and an algorithm. In Neural
Information Processing Systems 14, 2001.

[6] S. Roweis and L. Saul. Nonlinear dimensionality
reduction by locally linear embedding. Science,
290(5500), 2000.

[7] B. Schölkopf, A. Smola, and K. Müller. Nonlinear
component analysis as a kernel eigenvalue prob-
lem. Neural Compuation, 10, 1998.

[8] J.B. Tenenbaum, V. de Silva, and J.C. Langford.
A global geometric framework for nonlinear di-
mensionality reduction. Science, 290(5500), 2000.

[9] L. Vandenberghe and S. Boyd. Semidefinite pro-
gramming. SIAM Review, 38(1):49–95, 1996.

[10] K. Q. Weinberger, B. D. Packer, and L. K.
Saul. Unsupervised learning of image manifolds
by semidefinite programming. In Proceedings
of the Tenth International Workshop on Artifi-
cial Intelligence and Statistics, Barbados, Jan-
uary 2005.

[11] K. Q. Weinberger, F. Sha, and L. K. Saul. Learn-
ing a kernel matrix for nonlinear dimensionality
reduction. In Proceedings of the Twenty First
International Conference on Machine Learning
(ICML-04), pages 839–846, Banff, Canada, 2004.


