
Sampling form distributions

Let f : Ω→ R+ be a probability density function on a domain Ω ⊂ R and F be
the corresponding cumulative distribution function

F (x) =

∫

x

−∞

f(x) dx.

Sampling from f means producing a random variable X such that

Pr (X < x) = F (x). (1)

In general, this might not be easy to do. However, for specific distributions
efficient algorithms might exist. In particular, practically every programming
language has facilities for sampling from Uniform [0, 1], which has pdf

funiform(y) =

{

1 if 0 ≤ y < 1

0 otherwise

and cdf

Funiform(x) =











0 y < 0

y 0 ≥ y < 1

1 y ≥ 1.
Assuming that Y is sampled from Uniform [0, 1] then, Pr (Y < y) = y and for
any strictly monotonic increasing function g : [0, 1]→ R

Pr (g(Y ) < g(y)) = y.

Now note that g(Y ) is itself a random variable that we can call Z. Letting
z = g(y)

Pr (Z < z) = g−1(z) (2)

where g−1 is the inverse of g in the sense that g−1(g(y)) = y. Equation (2) shows
that the cdf of Z is just g−1. Coming back to our original problem and letting
g = F−1 we see that X = Z will be exactly the random variable satisfying (1)
that we were looking for.
In the specific case of the normal distribution,

F (x) =
1

2
+
1

2
erf

(

x/
√
2
)

where the error function erf(u) is defined

erf(u) =
2√
π

∫

u

0

e−t
2

dt,

so 2F (x) + 1 = erf
(

x/
√
2
)

and erf−1(2y + 1) = F−1(y)/
√
2. Hence if Y ∼

Uniform [0, 1] then
√
2 erf−1(2Y + 1) ∼ Normal(0, 1).

1



Note that the the error function (or its inverse) cannot be expressed in closed
form, so this is actually probably not the best way to sample from a Gaussian
in practice. Instead we can just take N independent symmetric binary random
variables τ ∈ {−1, 1}. As N becomes large, by the law of large numbers the
distribution of

1√
N

N
∑

i=1

τi

will quickly tend to Normal(0, 1).

2


