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ABSTRACT
GRAND is an experimental extension of Git, a distributed
revision control system, which enables the synchronization
of Git repositories over Content-Centric Networks (CCN).
GRAND brings some of the benefits of CCN to Git, such as
transparent caching, load balancing, and the ability to fetch
objects by name rather than location. Our implementation
is based on CCNx, a reference implementation of content
router. The current prototype consists of two components:
git-daemon-ccnx allows a node to publish its local Git
repositories to CCNx Content Store; git-remote-ccnx im-
plements CCNx transport on the client side. This adds CCN
to the set of transport protocols supported by Git, alongside
HTTP and SSH.

1. INTRODUCTION
Content Centric Networking (CCN) is a new net-

work architecture that addresses some of the well-known
shortcomings of IP networks [10]. In IP based net-
works the underlying network architecture deals with
connections between hosts. This requires applications
to know the location of the data it wishes to obtain.
Complicated overlay systems, such as Content Deliv-
ery Networks (CDN) and Peer-to-Peer Networks (P2P),
emerged as a result. CCN eliminates the need for such
overlay networks. In CCN, applications fetch data by
name rather than by location, leaving the specifics of
storing and locating data to the network itself. Project
CCNx [7] is a reference implementation of CCN node
and application libraries.

The project offers developers a way to implement
applications on top of CCN. CCNx-based applications
benefit from transparent caching on nearby nodes, na-
tive support for broadcast and multicast data dissemi-
nation, and built-in data security. A community of re-
searchers porting applications to CCNx has been build-
ing around the project. Such attempts are important to
gain insight into whether CCN can offer any advantages
over IP networks for these applications. In this paper
we present our contribution: a port of Git to CCNx.

Git is a Revision Control System (RCS) for manag-
ing source code. Unlike traditional centralized systems,

such SVN [8] or CVS [1], Git is a distributed system.
Most operations in Git only access the local copy of
the repository, as opposed to their counterparts in SVN
or CVS which are performed over the network. Git
only requires network connectivity to synchronize the
local repository with a remote copy. To synchronize
two repositories over the network, Git needs to trans-
fer missing objects to each other. Git supports several
protocols including HTTP, SSH, and the Git server pro-
tocol [4].

Configuring the infrastructure needed for network syn-
chronization is not necessarily trivial. It requires setting
up a web server, a Git server, or giving users shell ac-
cess. Hosting sites like Github [5] can make that process
easier, but in that case one has to rely on a centralized
third-party service. There was a previous attempt to
use the Bittorrent peer-to-peer network [6] to synchro-
nize Git repositories, but the project has been aban-
doned.

Git is an appealing application for CCN. It’s data
model is a good fit for CCN’s named data. Git’s net-
work synchronization can benefit from some of the ad-
vantages offered by CCN, such as automatic caching at
nearby nodes, built-in security and broadcast data dis-
tribution.

We extended Git by adding CCNx to the set of sup-
ported transport protocols. Our implementation can
be used to synchronize Git repositories over CCNx net-
work. A node can export a Git repository via CCN.
Another node can clone the whole repository or fetch
incremental updates.

The rest of the paper is organized as follows. In Sec-
tion 2 we provide background information on Git inter-
nals and a brief overview of CCNx. Section 3 describes
the architecture and implementation details. We con-
clude and discuss future work in Section 4.

2. BACKGROUND

2.1 Git
Figure 1(a) shows the layout of a Git repository. The

repository is a simple key-value database stored on the
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531c5…  BLOB 

a8934…  COMMIT 

381e6…  TREE 

718bc3…  BLOB 

e2b40…  COMMIT 

…  … 

…  … 

v1.0 

master 

SHA-1 hash Object type 

(a) Git repository as a flat database of objects identified by
their SHA-1 digests. Branches are pointers to individual
objects.

e2b40… (COMMIT) 

tree  381e6… 

parent  a8934… 

author  joe 

commit message 

381e6… (TREE) 

blob  531c5…  README 

blob  718bc3…  hello.c 

531c5… (BLOB) 
This is Hello  
World package... 

718bc3… (BLOB) 
#include <stdio.h> 
... 

f67b1… (TAG) 

object  e2b40… 

tagger  joe 

tag message 

(b) Object types and their relationship. A tag points to a
commit; the commit references a filesystem tree; the tree
binds filenames with blobs; blobs contain file contents.

Figure 1: Simplified model of a Git repository.

local filesystem. Objects are stored either in individual
files, in compressed files called “packs”, or in combina-
tion of both. Each object is immutable and uniquely
identified by a SHA-1 digest of the object’s data. Cryp-
tographically generated IDs are necessary because Git
works without a central authority. In addition to ob-
jects, a repository contains a set of pointers called refs.
Refs point to objects using their IDs and they are typi-
cally used to implement branches, i.e., separate lines of
development. Figure 1(a) shows two such refs: master

points to the latest commit on the main branch; v1.0
points to the latest commit on a stable branch.

There are four types of objects: Commit, Tree, Blob,
and Tag. Figure 1(b) shows the relationship between
them. When the user commits a set of changes into the
repository, Git creates a new Commit object. The com-
mit object contains author information, commit mes-
sage, IDs of parent Commit objects, and an ID of a
Tree object which represents the state of the top-level
directory. A Tree object is a directory listing. Each
entry in the list contains the ID of a Blob a file or an-
other Tree object for a subdirectory. A Blob contains
the content of a file. Tag objects are used to assign la-
bels to Commit objects. The binding between the label
and the Commit object can be signed with the user’s
private key.

Objects in a Git repository form a directed acyclic
graph (DAG) through their pointers to other objects [2].
To synchronize two repositories, Git obtains the list of
branches from both. For each pair of branches that dif-
fers in IDs, Git transfers any missing objects by travers-
ing the DAGs. In order to support this operation, the
transport protocol must implement two basic primi-
tives: obtain a list of all branches and fetch an indi-
vidual object by its ID.

2.2 CCNx
There are two types of packets in CCNx: Interest and

Data. Applications send Interest packets and receive
matching Data from the network. An Interest packet
contains a name prefix, such as /git/linux/refs. Any
Data packet whose name matches the prefix can satisfy
the Interest packet. A Data packet can only be sent
to the network if there was a matching Interest. This
maintains a flow balance in the network.

When an Interest packet reaches a CCNx Content
Router, the Content Router searches its local cache of
Data packets, called the Content Store, for a matching
Data packet. If a matching Data packet is found, the
Content Router sends it back, satisfying the Interest
packet. CCNx requires that each Data packet is cryp-
tographically signed. This prevents the caching node
from tampering with the Data packet.

If there is no matching Data packet in the Content
Store, the Content Router saves the Interest and the
face it came from in the Pending Interest Table (PIT). A
face is a CCNx generalization of the network interface.
The Content Router then forwards the Interest packet
to one or more outgoing faces based on the Forwarding
Information Base (FIB). Figure 2 contains a simplified
diagram of the CCNx Content Router, labeled as“ccnd”
in Node A.

When the Content Router receives a Data packet,
the Content Router searching the PIT for a matching
Interest. If a matching Interest is found, the Content
Router forwards the Data packet over the face recorded
in the PIT entry, optionally caching the Data packet in
the Content Store. If there is no matching entry in the
PIT the Content Router drops the Data packet. PIT
entries in Content Routers record the path of an Interest
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packet across the network and are used to forward the
matching Data packet back to the source.

3. GIT OVER CCN
We extended Git with support for Content-Centric

Networking based on CCNx. The extended version can
export contents of Git repositories via CCN and syn-
chronize local copies with remote repositories published
via CCN. We focused primarily on scenarios using local
area networks with multicast in our experiments due to
lack of global routing in the current CCNx prototype.

3.1 Architecture
Figure 2 illustrates the overall architecture of the sys-

tem. Each node willing to join the CCNx network must
be running a local instance of ccnd, the CCNx-based
Content Router. For our initial experiments we config-
ured a small local area network and used multicast to
disseminate Interests among all nodes in the network.
Each node in the network can run both the client and
the server part simultaneously if needed.

Nodes running the server daemon git-daemon-ccnx,
which is described in Section 3.2.1, can export the con-
tents of their local Git repositories to other nodes in
the network. For example, users who have local clones
of well-known repositories can make them available to
other users on the same network via CCNx, saving band-
width and costs associated with obtaining the contents
of the repository from a remote server.

A node that wishes to synchronize its local copy with
a remote repository published via CCNx runs the Git
remote helper git-remote-ccnx, which is described in
Section 3.2.2. The purpose of the remote helper is to
translate requests for data to CCNx Interests and store
the data obtained from the network in the local reposi-
tory.

Our implementation follows a simple naming conven-
tion as shown in the top right box in Figure 2. Every
CCNx Name begins with a prefix common for all Git
repositories. We use /git as the common prefix in all
our examples. The component which immediately fol-
lows the common prefix contains the name of the Git
repository. The repository name should be preferably
same as the name used by the official public reposi-
tory of the project (without the optional .git suffix).
This simple convention allows clients to identify multi-
ple clones of the same repository available from CCN.
The next Component identifies the type of data and can
be either refs for lists of branches and tags or objects
for individual objects from the repository. Reference
lists have a timestamp-based version in Name. Indi-
vidual Git objects are identified by their SHA-1 digest
in ASCII form in Name. If an object was fragmented
then the last component of Name contains the fragment
number.

3.2 Implementation
Our implementation uses the client library from the

CCNx project [7]. All the code is implemented in C on
top of the latest Git source code available from its de-
velopment repository.1 Our application consists of two
parts: A server daemon called git-daemon-ccnx and a
Git remote helper called git-remote-ccnx. Figure 2
illustrates both components, their building blocks and
their relationships to other components of the system.
We describe both components in detail in the following
sections.

3.2.1 Server Daemon
The server part is implemented as a standalone dae-

mon running permanently and waiting for Interests from
ccnd. The daemon is configured with a directory on the
local filesystem which contains Git repositories to be ex-
ported over CCN. It connects to the local content router
ccnd upon startup and registers a “filter” for Interests
with the prefix common for all Git repositories in the
system (/git in the figure). The registration creates a
new entry in the Forwarding Information Base (FIB) of
ccnd. The daemon maintains the connection and regis-
tration permanently for its lifetime. When ccnd receives
an Interest that cannot be satisfied with existing data
from the Content Store and whose prefix matches the
prefix registered by our daemon, it forwards the Inter-
est over to the daemon via face 5, an internal network
interface created by ccnd when the daemon connected
to it.

Upon receiving the Interest from ccnd, the daemon
extracts the name of the Git repository from the Inter-
est’s prefix and checks whether the repository exists and
is accessible. If it is, the daemon spawns a new worker
process to handle all further Interests for that particular
repository. Having one process per repository was nec-
essary due to implementation peculiarities of Git. Being
primarily a command line oriented tool, Git functions
often terminate the current process on error. Handling
requests for individual repositories in separate processes
allows the daemon to continue running in such cases.

The new worker process opens a new connection to
ccnd, which creates a new face, and registers a filter
to match Interests for its repository. In addition to the
common prefix, the filter would also include the name of
the repository. That makes the corresponding FIB en-
try longer than the entry created by the dispatcher pro-
cess. Because ccnd uses longest prefix match to select
outgoing faces for Interests, it will prefer the worker’s
connection for Interests matching its repository name
over the connection of the dispatcher process. That
is, the dispatcher only receives Interests for repositories

1Git does not contain any shared libraries or header files
which would make it possible to distribute our code sepa-
rately without reimplementing significant portion of Git.
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Figure 2: System architecture. Three repositories on Node A are exported by git-daemon-ccnx to
the Content Store of local content router. Git on Node B uses git-remote-ccnx to translate requests
for Git repository objects to CCNx Interests with Names following the scheme shown in upper-right
box. The network diagram illustrates an exchange of packets among nodes in a small local network.

that have no dedicated worker processes running yet.
The worker generates a Data packet from the reposi-
tory to satisfy the Interest and sends the Data to ccnd.
In addition to forwarding the Data upstream, ccnd may
cache it in its Content Store. Our current implementa-
tion supports two types of Interests with prefixes shown
in the Name Format box in Figure 2: requests for lists
of references and requests for individual objects.

Upon receiving an Interest with refs component fol-
lowing the repository name in the prefix, the daemon
generates a Data packet with a list of all branches and
tags from the repository in a custom binary format.
For each branch the list contains the SHA-1 of the lat-
est commit on that branch; for each tag it contains the
SHA-1 of the object the tag points at. The daemon
also adds a timestamp-based version component to the
Name of the Data packet. Clients can use that compo-
nent to request the latest version of the list regardless
of versions available from the Content Store. The dae-
mon signs the content of the Data packet with a pre-
configured private key, but our current client prototype
does not verify the signature yet. Because branches

may get updated often, the Freshness attribute of the
Data is set to a low value (in the order of seconds).
Clients use such lists to determine which objects they
need to fetch in order to synchronize their local copy of
the repository.

To obtain an individual object, the client sends an In-
terest with objects component followed by the SHA-
1 ID of the desired object. Upon receiving the Inter-
est, the daemon obtains the object data from the cor-
responding Git repository, encapsulates the object (in
its compressed form) in a Data packet and sends the
Data packet to ccnd to satisfy the Interest. If the dae-
mon couldn’t find the desired object in the repository,
it does not respond to the Interest. A failure to locate
the object indicates that the local repository may be in-
complete, rather than invalid or corrupted. A daemon
running on another node may have a more recent copy
of the repository and could satisfy the Interest. The
Freshness attribute in Data packets carrying Git ob-
jects can be set to a high value because Git objects are
immutable. Once a copy of the object is in the Content
Store, there is no need to refresh it.
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Figure 3: An example exchange of Interest and
Data packets to retrieve a Git object that needs
to be fragmented. The client generates addi-
tional Interests to retrieve missing fragments
from Content Store.

Objects stored in Git repositories can be large and
may not fit into a single Data packet. In that case the
daemon has to split the object into a set of fragments.
Each fragment is then encoded into a Data packet of its
own. To facilitate reassembly in the client, such Data
packets must contain additional information. The dae-
mon appends the number of the fragment (counted from
0) as the last component of Data’s Name. The Final-
BlockID attribute in ServerInfo section inside the Data
packet is then set to the number of the last fragment in
the set. All fragments are then uploaded to the Con-
tent Store, one after another. Figure 3 illustrates that
scenario.

It may also happen that the daemon receives an In-
terest for an individual fragment (having the number
of the fragment in the last prefix component). That
can happen, for example, if one of the fragments ex-
pired or was removed from the Content Store. In such
case our current implementation repeats the steps de-
scribed before and simply re-uploads all fragments into
the Content Store in CCN.2

3.2.2 Remote Helper
The client part, labeled as Node B in Figure 2, is im-

plemented as a remote helper. Remote helpers are stan-
dalone programs used by Git to access remote reposito-
ries over a variety of transport protocols. Our remote

2Uploading multiple Data packets in response to one Interest
should be fine in this case, because ccnd is running on the
same host as our daemon and the Data packets will not be
forwarded any further.

helper implementation for CCNx is called git-remote-

ccnx. Git uses the remote helper whenever it needs to
interact with a remote repository available over CCNx.
Such repositories are identified with URLs starting with
ccnx scheme. When the user runs git-clone or git-

fetch to obtain the latest objects from such a reposi-
tory, Git starts git-remote-ccnx remote helper, con-
necting to its standard input and output via UNIX pipes
and setting the local copy directory to be modified as
the current working directory.

The remote helper receives commands from Git over
its standard input and translates them into CCNx Inter-
ests. Each Interest will have a prefix constructed from
the URL of the remote repository:

[remote "origin"]

fetch = +refs/heads/*:/refs/remotes/origin/*

url = ccnx:/git/ccnx

All Interests for data from repository “origin” in the
configuration example above will have prefixes start-
ing with /git/ccnx.3 Upon receiving Data packets the
remote helper either sends their content to Git over its
standard output (for branch lists) or writes the data into
the local repository (for individual objects). Our cur-
rent remote helper implementation supports two com-
mands: list and fetch.

To obtain the list of all branches and tags available
in a remote repository, Git sends the list command
to the remote helper. The Command Processor parses
the command, constructs a CCNx Interest and passes it
to the local instance of ccnd. When the corresponding
Data has been received, the Command Processor ex-
tract the list from the packet and compares the state
of remote branches and tags with those in the local
repository. For any branches and tags that differ in
their SHA-1 value, Git sends a fetch command to the
remote helper, asking the remote helper to fetch any
missing objects into the local copy of the repository.

The Tree Walker component4 of the remote helper
starts fetching missing objects, one by one, following
references and links in Git objects as shown in Fig-
ure 1(b), until all missing objects have been obtained
from the remote repository. For each missing object it
creates the corresponding Interest and waits for match-
ing Data to arrive. The content of the Data packet is
then stored in the local repository. If the received Data
contains only a fragment of the requested object, the
Tree Walker passes it to Object Reassembly.

Given an object fragment, the Object Reassembly
component generates a series of Interests to fetch all
missing fragments needed to complete the object. Be-

3To teach Git how to recognize URLs with only one leading
/ we had to improve its built-in URL parser.
4Our implementation re-uses the tree walker implementa-
tion from HTTP remote helper.
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cause each Data fragment carries its own fragment num-
ber as well as the number of the last fragment, it does
not matter which fragment from the set was received
first, each fragment contains all the information needed
to obtain the rest. After all fragments of the object have
been downloaded, the Tree Walker writes the complete
object into the local repository and continues traversing
the object tree.

3.3 Security Considerations
Individual objects in the Git database are identified

by their SHA-1 digest calculated over the content of
the object. Git verifies digest for every object retrieved
from the local database and reports an error if it is
invalid. This catches corrupted and maliciously mod-
ified objects. To protect the integrity of a repository
snapshot, the developer can create a tag and sign the
tag object with their private key. This allows other de-
velopers to verify the integrity of their repository copy
because they can verify the signature if they have the
public key. This mechanism allows us to verify the in-
tegrity of Git data obtained from CCN although our
current prototype does not implement CCNx-based se-
curity yet.

4. CONCLUSION & FUTURE WORK
We extended Git by adding CCNx to the set of sup-

ported transport protocols. Our implementation can
be used to synchronize Git repositories over CCNx net-
work. A node can export a Git repository via CCN.
Another node can clone the whole repository or fetch
incremental updates. We have successfully cloned some
of the biggest repositories, including the Linux kernel.
Our implementation is freely available from [3]. We also
setup a publicly available CCNx node with a number of
Git repositories to fetch from to encourage the CCNx
community to experiment with Git over CCN. The web
page contains detailed instructions on how to clone one
of those repositories.

Our implementation is in early stage and has sev-
eral shortcomings. We only implemented the most ba-
sic mode of network synchronization where objects are
transferred one-by-one, rather than in packs. This makes
our implementation slower than other existing transport
protocols. We plan to implement more efficient syn-
chronization in the future. Our client currently does
not verify the integrity of Data objects obtained from
the network. We rely on Git security described in Sec-
tion 3.3. Integrating CCNx security remains as fu-
ture work. Lastly, we plan to develop a better naming
scheme for Git objects. That would allow us to support
more sophisticated collaboration scenarios that are dif-
ficult to achieve using existing transport protocols, such
as discovery of repositories, or automatic caching of Git
repositories for backup and load balancing.

Our implementation can already be used to perform
actual development work with Git over CCN. Both cloning
and fetching of remote repositories are supported, al-
lowing the user to create the initial clone, as well as to
fetch incremental updates from the network. Because
the CCNx project manages its source files in Git, our
extension makes it possible to use Content-Centric Net-
working to develop CCNx itself!
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