
Flexible Network Address Mapping for
Container-based Clouds

Kyung-Hwa Kim, Jae Woo Lee, Michael Ben-Ami, Hyunwoo Nam, Jan Janak and Henning Schulzrinne
Columbia University, New York, NY, USA

Abstract—Container-based clouds have recently received great
attention from the industry. However, we notice that this new
type of cloud inevitably requires complex network setups and
configurations from both providers and customers when deployed
on an existing cloud system; Providers need to install additional
network elements such as proxy servers and Network Address
Translation (NAT), and customers need to use subdomain names
and randomly assigned port numbers to access their services.
Thus, we propose a new network architecture that performs M-
to-N mapping between network addresses and containers in order
to simplify the network setup and configuration. To achieve our
goals, we adopt a software-defined networking (SDN) approach.
We discuss the benefits and use cases of our approach, and present
detailed designs and implementation.

I. INTRODUCTION

Virtual machines (VMs) usually have been the only in-
stances of computing resources that customers can purchase in
the Infrastructure-as-a-service (IaaS) clouds. However, because
VMs in the clouds are frequently used to perform only a single
function (e.g., as Web server or database) [1], the question
exists as to whether every cloud customer always needs to
own VMs that contain a full operating system (OS) kernel and
an entire set of system libraries.

To answer this question, and to provide alternatives to
VMs, several technologies that enable lightweight cloud in-
stances have been developed. First, in the unikernel [1] system,
an application is compiled into a standalone bootable OS image
that contains a small set of system libraries and kernel func-
tionality that are used by the application. Second, container-
based clouds have recently received great attention from the
industry. A container is an instance of an OS-level virtual-
ization environment that has its own isolated resources, but
shares an OS kernel with other containers [2], [3]. Although the
containers are lightweight, they provide isolated environments
such as processes, system libraries, network namespaces, and
root file systems [4]. Because of these benefits, the container-
based IaaS cloud is rapidly growing in the market [5].

These approaches share the idea that thin instances are
necessary in order to reflect the trend of running a single
application on each cloud instance. Lightweight instances are
beneficial to cloud providers because they can provision more
number of instances on a host machine, and the migration time
decreases owing to the reduced image size. It also enables
providers to offer low-cost IaaS services to the customers who
are not satisfied with Platform-as-a-service (PaaS) environ-
ments which do not allow OS-level access to the compute

resources and provide limited functions to manage the life
cycle of instances (e.g., launching and terminating).

However, we notice that this new type of instance in-
evitably requires complex network configurations from both
providers and customers when deployed on an existing cloud
system. For example, a popular container-based cloud provider,
dotCloud, runs multiple containers on VMs in the Amazon
EC2, and sells the containers to their customers [6]. In
dotCloud system, several network elements and technologies
such as NAT, port mapping, and application-layer proxy
servers are involved to correctly deliver incoming packets to
the customers’ applications that are running on the containers.
This architecture enables containers to function properly as
network servers; however, it contains several limitations that
make configuration and management tasks confusing. For
example, containers are addressed by particular subdomain
names, rather than public IP addresses. In addition, applica-
tions on the containers are assigned random TCP/UDP ports
instead of the regular port numbers used by the applications.

Our goal is to simplify the network setup and configuration
by assigning public IP addresses and an appropriate port
numbers to the applications. An application running on a
container should be able to open any TCP/UDP port, regardless
of other tenants residing on the same host. Also, the application
could be routed directly through a public IP address, rather
than through randomly assigned subdomains or private IP
addresses.

Furthermore, we argue that decoupling of compute and
network resources brings great convenience in terms of
network management and configuration of applications. In-
stead of one-to-one mapping between IP addresses and con-
tainers, we propose to allow multiple containers to share the
same IP address, and a container to have multiple addresses
if needed. By doing this, we can avoid reconfiguring network
addresses in the configuration files of applications when the
instances are scaled up or down.

These goals cannot be achieved by using NATed networks
and ordinary routing mechanisms. Therefore, we adopt a
software-defined networking (SDN) approach using the Open-
Flow [7] controller and virtual switches for packet routing.
First, we explore the existing network architecture for a
container-based cloud, then describe the detailed designs of
our architecture and its benefits.

II. BACKGROUND: CONTAINER-BASED CLOUDS

A container refers to an instance in an OS-level virtual-
ization environment. Using the isolated namespace functions
of the Linux kernel, containers provide isolated virtual envi-
ronments that are composed of their own processes, system
libraries, network namespaces, and root file systems [2], [3].
Therefore, from the user’s perspective, containers can be
thought of as lightweight VMs because they provide isolated
environments and root permission [4]. The main disadvantage
of the container-based cloud is that users cannot choose guest
operating systems and must rely on the OS kernel installed on
the host.

A number of container implementations have been de-
veloped in different Unix-like operating systems including
LXC, OpenVZ and Linux-VServer (Linux), FreeBSD jails
(FreeBSD), and Solaris Containers (Solaris). According to the
measurements of Birke et al. [8], on average, about ten VMs
are running on a single physical server in today’s clouds. In ad-
dition, we expect greater number of containers will be running
on a single VM. In our experiment, we could run up to three
hundred containers on a single VM running on Amazon EC2.
Therefore, in theory, hundreds or thousands of containers can
run simultaneously on a single physical machine depending
on its hardware specification. This implies that providers can
offer lower-cost instances (containers) to customers who seek
lightweight instances in order to run thin applications without
buying an entire VM. Furthermore, since the containers can
be launched and terminated in only about few seconds, the
provisioning time decreases dramatically when the customers
scale up or down the number of instances. Further, it is
beneficial for providers because it facilitates increasing server
utilization and supports faster migration compared to the case
of VMs. Container-based clouds are different from existing
Platform-as-a-service (PaaS) clouds that do not allow OS-level
access to the compute resources and provide limited functions
to manage the life cycle of instances (e.g., launching and
terminating).

Recently, LXC [2] and its wrapper Docker [9] have re-
ceived significant market attention. OpenStack [10], an open-
source cloud management system, supports LXC and Docker.
Also, many companies are attempting to run their applications
on dotCloud [6], a cloud service based on Docker instances.

III. PROBLEMS AND CHALLENGES

In this paper, we focus on the network architecture of
container-based clouds. In order to run a network service (e.g.,
a Web server) that receives incoming packets from outside
networks, a container must have its own network interface and
address. However, this is not trivial because containers share
the host VM’s network interface and IP address. We briefly
describe several existing methods to configure a network for
this environment.

A. Nested NAT

First, one can use NAT inside a VM in order to host mul-
tiple containers. This approach has the advantage that it does
not require the cloud provider’s support because the owner of

DNS resolution

Cloud provider

VM 2VM 1

Private IP address:
192.168.0.101
Port: 3306

NAT / Port forwarding / ARP

HTTP Proxy:
Address mapping by HTTP header

Private IP address:
192.168.0.102
Port: 80

Private IP address:
192.168.0.103
Port: 3306

Private IP address:
192.168.0.104
Port: 80

container101.clou
d-provider.com

Port: 44123

container102.clou
d-provider.com

Port: 55123

container103.clou
d-provider.com

Port: 80

container104.clou
d-provider.com

Port: 80

Fig. 1. Architecture of dotCloud

the VM can configure NAT inside the VM and associate it
with the containers. Because common cloud systems already
use NAT to map a public IP address to a private IP address of a
VM, the address translation is carried out twice to address the
containers (nested NAT). dotCloud runs their container-based
cloud on Amazon EC2 using this method (Figure 1). However,
we argue that NAT is not the best solution because containers
behind the same NAT cannot listen on the same port because
of TCP/UDP port-number conflicts. Although dotCloud uses
port mapping for incoming and outgoing packets to support
the containers, a randomly assigned port number is exposed
to the external network instead of the application’s original
port number. Users who connect to a service via the Internet
must know the assigned port number of the container. dotCloud
uses a particular method to enable containers to use port 80
for Web servers. This is achieved by using HTTP proxies that
distinguish incoming traffic by the subdomain name indicated
in the HOST field in the HTTP header. However, this cannot
be applied to other protocols that do not explicitly indicate the
destination host name in their application headers.

B. Bridged network and public IP addresses

The second method is to configure a bridged network inside
a VM. One can create a virtual bridge on the VM and connect
the containers to that bridge. Then, the containers obtain their
own IP addresses from the cloud provider’s DHCP server. In
this case, because the container receives an IP address within
the same subnet of its host and other VMs, it will be considered
simply as one of the VMs in the view of the network topology.
This approach enables containers to run applications on any
port without conflict because they have their own network
addresses. However, this approach requires the provider to
assign public IP addresses to every container as it does to VMs.
This not only requires a large number of network addresses but
also imposes additional overhead to the provider in translating
the addresses because of the greater number of containers
compared to VMs.

Although these two methods are plausible, we argue that
neither of them is the best fit for containers because of their
limitations discussed above. More importantly, we claim that
it is not efficient that a container must have its own network
namespace even though they run a single thin application
which mostly uses a single port number.

For example, assume that a customer decides to purchase
five containers instead of one VM for a Web service (We as-
sume that five containers have the same amount of computing
power as one VM, which is approximately calculated by the
prices of dotCloud containers and Amazon EC2 m.small
instances). In this case, the containers have the advantage of
avoiding hot spots because they may be distributed over five
different physical locations. However, the cost of management
and configuration increases because the customer has five ma-
chines (containers) rather than a single machine (VM). When
the customer scales up the number of containers to acquire
more computing power, configurations of other applications
that are linked with the Web service, such as load balancers,
back-end servers, or databases must be updated to communi-
cate with the new containers. In the NAT and bridged-network
approaches, because of the one-to-one mapping between the
IP addresses and the containers, the configurations of those
applications have to be updated to include all the IP addresses
of new containers. This management and configuration effort
increases more sharply compared to the case of VMs, because
a larger number of containers are needed to acquire the same
amount of computing power.

IV. FLEXIBLE NETWORK ADDRESS MAPPING

We assert that the limitations of these two methods and
the management issue discussed above are caused by the tight
coupling of computing units (containers) and its identifiers
(IP addresses and port numbers). Thus, we propose a new
network architecture that separates the network identifiers from
the containers. The basic concept is that when a customer
purchases public IP addresses, the provider assigns them to
the customer rather than containers. Then, the IP addresses
and port numbers can be mapped to any container owned by
the customer in an M-to-N manner. In other words, multiple
containers can share the same IP address, and even one
container can have multiple IP addresses. For example, when
a customer runs two containers, one for a Web server and
the other for a database, these containers can be hosted on
different virtual machines; however, they can share the same
IP address. Because they have different port numbers, they
can be distinguished by combining the IP address and port
number. In other words, the identifier of the container is the
combination of the IP address and port number. The gateway
router forwards the incoming packets to different locations
depending on this identifier. Therefore, the providers can place
containers with the same public IP address on different VMs
and place containers with different public IP addresses within
the same VM. Customers can reuse their IP addresses on
multiple containers (applications) without concern for their
locations and port conflicts.

A. Benefits and use cases

The advantages of this approach are as follows.

1) Public IP address and port number: Each container can
be accessed through its own public IP address rather than an
arbitrary subdomain name. In addition, multiple containers can
open the same port even when running on the same host. In
Section IV-B, we describe an SDN approach that achieves
this goal without additional elements such as NAT and port
forwarding.

2) Simplifying static configurations: Static configuration
files of applications that connect to other applications can
be simplified since the code running on the containers would
have the logical view of the network we provide. For instance,
assume that a user plans to run a Web server and a database
server on two different containers for resilience and fault
tolerance. For simplicity in configurations, it would be much
easier to think of the Web and database components as living
on one logical network machine, as signified by having the
same IP address but different ports.

3) Scaling and migration: When a customer scales up
the number of instances of a stateless application, the newly
created containers can simply have the same IP address that
other containers use. In this case, SDN can be leveraged to
provide round-robin load balancing or even more sophisticated
load balancing algorithms based on customer demand without
maintaining the list of every container’s IP address. In addition,
since the addresses of containers are independent of host
VMs, the containers can be migrated to any locations without
changing the network addresses and the port numbers.

4) Maximizing server utilization: Because of the separation
of addresses and containers, providers are not required to place
containers that have the same IP address within the same host.
They can be located in any host in the cloud, thus increasing
flexibility in cloud provisioning and maximizing utilization of
the underlying physical machines.

B. Implementation

The proposed flexible address mapping system is diffi-
cult to implement with simple integration of NAT and port-
mapping. Several complex and customized routing technolo-
gies might be required to support the M-to-N mapping scenario
properly. However, our design goal is to build a transparent and
controllable system without obscure network architectures.

Furthermore, because containers will be created, termi-
nated, and migrated frequently owing to the business model
(providing cheap and lightweight instances), the mapping
tables are also expected to be updated very often. However,
altering the NAT table and port mapping rules repeatedly can
impose a significant overhead to the gateway router.

Therefore, in order to route packets correctly and support
frequent changes of routing paths, we propose to adopt a
software-defined networking (SDN) approach that uses a cen-
tralized controller connected to the switches. In this section,
we elaborate on detailed designs of the proposed approach.
First, we describe an architecture for cloud providers who own
underlying infrastructure. Second, we propose two provider-
agnostic architectures that can be built on existing public
clouds operated by other companies.

VM 1

Virtual Switch

IP address: X
Port: 80

veth0
AA:BB:02

IP address: X
Port: 3306

veth0
AA:BB:01

IP address: Y
Port: 3306

VM 2

 Virtual Switch

IP address: Y
Port: 80

IP address: X
Port: 80

IP address: Y
Port: 80

Switch

IP address: X
Port: 3306

IP address: Y
Port: 80

IP address: X
Port: 80

OpenFlow
Controller

Forwarding Table:

X:3306 => AA:BB:01
X:80 => AA:BB:02 or AA:BB:05
Y:3306 => AA:BB03
Y:80 => AA:BB:04 or AA:BB:06

Incoming packets

veth0
AA:BB:03

veth0
AA:BB:04

veth0
AA:BB:05

veth0
AA:BB:06

Fig. 2. Mapping IP addresses and TCP/UDP ports to containers in an M-to-N manner. A customer who purchased two IP addresses, X and Y, is running two
applications (on port 80 and 3306). IP addresses and port numbers can be assigned to the containers regardless of their locations.

1) A provider-supported architecture: We place OpenFlow-
supported switches between VMs and layer-2 devices (Fig-
ure 2). In addition, we install a virtual switch on each VM
that connects containers to the network. When a new con-
tainer is created, a software controller will be notified by our
management agents and the switches in the data center will
be updated to forward packets to the correct location. In our
prototype, we manipulate ARP tables in layer-3 routers in order
to fill the MAC address field of Ethernet packets destined to
the containers with a pre-defined special MAC address (ARP
spoofing can be also used on the switch connected to the router
in case we do not have access of the layer-3 routers. The
controller responds to ARP packets with the pre-defined MAC
address if the queried IP address belongs to the containers).

When a new packet flow arrives, the switches forward the
first packet to the controller to ask where to send the packets in
this flow. The controller can distinguish the packets destined to
the containers from other packets using the pre-defined MAC
address. Then, the controller queries the database using the
pair of destination IP address and port number of the packet
to determine the MAC address of the corresponding container.
Finally, the controller injects an OpenFlow rule to the switch.
The rule instructs to replace the following packet’s MAC
address with the container’s MAC address if the destination
IP address and port number match. By doing this, we achieve
M-to-N mapping between IP addresses and containers without

a proxy server and a NAT process.

Centralized control of address mapping in a data center is
not new. For example, several studies attempt to separate the
network address and the locations of the VMs in a data center.
PortLand [11] intercepts the ARP packets at the switches,
and responds with a pseudo MAC address that represents the
topological location of the queried IP address. VL2 [12] uses
IP-in-IP encapsulation to decouple the actual IP addresses and
logical IP addresses of the VMs to locate them at any place
within a data center. However, our goal is different from these
studies. We focus on the flexible assignment of public IP
addresses and port numbers to containers.

2) Provider-independent architectures: If the VMs are pro-
vided by an existing cloud system (e.g., Amazon EC2), the
network infrastructure between VMs will not be part of our
SDN control plane. Because the proposed approach involves
sharing IP addresses between containers, and Amazon uses
standard non-SDN layer-2 and layer-3 forwarding mechanisms,
a scenario could easily arise whereby Amazon will forward a
packet to VM A based on the destination IP address only,
while the real destination is on VM B. The SDN-controlled
virtual switch in VM A may still perform the lookup to find
the appropriate MAC address of the destination container, but
will not be able to use layer-2 forwarding because VM B is
in another place in Amazon’s network.

In this scenario, we first propose to use a layer-2 tunneling

between virtual switches running on the two VMs. We can
use VXLAN [13], which encapsulates the entire layer-2 packet
with layer-2 and layer-3 headers routable over the underlying
network. In this way, we can have one VM act as VXLAN
gateway, interfacing with the outside world, forwarding pack-
ets to the appropriate VM’s virtual switch based on layer-2
MAC address. VXLAN’s main use case is combating VLAN
exhaustion in large multi-tenant data centers, but has an added
benefit of providing layer-2 overlay tunnels at the hypervisor
level.

An alternative approach is to have dedicated VMs with
virtual switches acting as gateways between the outside world
and our network. These virtual switches would not have any
directly connected containers, but would share the container
location information with the rest of the SDN control plane.
All ‘access layer’ virtual switches could connect to one or
more gateways in a star topology. The dedicated gateways also
provide deterministic entry points into the network, advertising
customer routes to the Internet. If our system is riding on top of
one or more other cloud providers, it would be difficult to have
the providers advertise our routes to the Internet. They may
only advertise IP addresses that they provide, and may have
rules about how their public addresses are used in the VMs.
They may, for example, dictate that public IP addresses can
only be assigned to VM-level interfaces and not to containers
within the VM. In the ‘dedicated gateway’ scenario, traffic is
immediately encapsulated in VXLAN and can be forwarded to
the correct destination virtual switch, whether that destination
is in the same cloud provider or in another.

V. CONCLUSION AND FUTURE WORK

We investigated the network issues in the container-based
clouds, and proposed a new network architecture that avoids
complex network settings and reduces configuration tasks.
Although we focused on the container-based clouds to describe
our approach, we believe the proposed approach is applicable
to any system that leverages machine-inside-machine models
such as Inception cloud [14], which also adopts nested NAT
to build a private IaaS cloud on top of existing public clouds.

We have implemented a prototype of the provider-
supported architecture described in Section IV-B1 using Open-
Flow and Open vSwitch. In our prototype, container man-
agement and network management are performed by separate

custom built systems. It is useful to explore a unified cloud
platform like OpenStack, supporting Docker through the Nova
and Glance modules [15], and Open vSwitch through the
Neutron module. We also suggested two provider-independent
designs. To the best of our knowledge, this is the first study
of network architecture for a container-based cloud. Thus, we
plan to conduct an extensive evaluation in terms of perfor-
mance and usability.

REFERENCES

[1] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gaza-
gnaire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels: Library
Operating Systems for the Cloud,” in Proc. of ASPLOS, Houston, Texas,
USA, Mar. 2013.

[2] “LXC,” http://linuxcontainers.org/, [Online; accessed Dec 2013].
[3] “Linux Containers,” http://goo.gl/NzMbpU, [Online; accessed Dec

2013].

[4] “Linux Containers,” http://wiki.gentoo.org/wiki/LXC, [Online; accessed
Dec 2013].

[5] “Docker Challenges Virtualization Market with Containers,” http://goo.
gl/IsOiBt, [Online; accessed Feb. 2014].

[6] “dotCloud,” https://www.docker.io/, [Online; accessed Jan 2014].
[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, March 2008.

[8] R. Birke, A. Podzimek, L. Y. Chen, and E. Smirni, “State-of-the-practice
in data center virtualization: Toward a better understanding of VM
usage,” in Proc. of IEEE DSN, Budapest, Hungary, June 2013.

[9] “Docker,” https://www.dotcloud.com/, [Online; accessed Jan 2014].
[10] “OpenStack,” http://www.openstack.org/, [Online; accessed Jan 2014].
[11] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,

S. Radhakrishnan, V. Subramanya, and A. Vahdat, “PortLand: A Scal-
able Fault-tolerant Layer 2 Data Center Network Fabric,” in Proc. of
SIGCOMM, Barcelona, Spain, Aug. 2009.

[12] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in Proc. of SIGCOMM, Barcelona, Spain, Aug.
2009.

[13] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar,
M. Bursell, and C. Wright, “VXLAN: A Framework for Overlaying
Virtualized Layer 2 Networks over Layer 3 Networks,” Working Draft,
Internet-Draft draft-mahalingam-dutt-dcops-vxlan-07, Jan 2014.

[14] C. Liu and Y. Mao, “Inception: Towards a Nested Cloud Architecture,”
in Proc. of HotCloud, San Jose, CA, June 2013.

[15] “OpenStack and Docker,” https://wiki.openstack.org/wiki/Docker, [On-
line; accessed Feb. 2014].

