
What did we do?
• OS theory

– Usual OS topics: Concurrency, Synchronization, System calls,
Interrupts, Run queues & wait queues, Scheduling, Virtual
memory, File systems

– But in the context of current Linux implementations
– Skimmed/skipped the following:

• Deadlock theory
• I/O systems
• Network file system (NFS)

• Advanced UNIX programming
– APUE book & multi-server assignments
– Many advanced topics including:

• Signal handling
• Multi-threaded programming, concurrency, locking
• Non-blocking I/O, select(), mmap()
• IPC – pipes, shared memory, domain sockets

What else did we do?
• Linux kernel programming

– HW1: intro to crazy OS-level C
– HW4, aka Tabletop: intro to kernel hacking
– HW5, aka Fridge: wait queues and kernel locking
– HW6, aka Freezer: simple new scheduler for Linux
– HW7, aka Farfetch’d: Linux virtual memory architecture
– HW8, aka Pantry: simple file system from scratch!
– We skimmed/skipped:

• Interrupt handlers and bottom half
• Kernel synchronization using RCU
• Kernel memory management & block I/O layer
• Virtualization

Please

• Fill out CourseWorks evaluation

• Remember your pledge
– Don’t share class materials with friends
– Don’t post any class-related code to GitHub
– Don’t post any class materials to Chegg,

CourseHero, etc.

The most important thing I learned was not be afraid.

That's a harder lesson to learn that it sounds, because
the only way to really learn it is to do the things you
think sound hard. . . . this was the biggest takeaway
for me from the kernel development work in OS.

- Andrew Kiluk

