
Paging in x86 and TLB

COMS W4118

1

References: Operating Systems Concepts (9e), Linux Kernel Development, previous W4118s
Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

x86 paging at a glance
• 1-level paging in x86-32 with 4KB pages possible?

– 20-bit page number à 1 million page table entries à 4MB
page table per process à way too big!

• 2-level paging in x86-32
– Default x86-32 paging mode: 10 + 10 + 12
– http://pdos.csail.mit.edu/6.828/2012/xv6/book-rev7.pdf

(page 26)
• 3-level paging in x86-32

– Physical Address Extension (PAE): 2 + 9 + 9 + 12
– Still limited to 4GB per process but up to 64GB RAM

• 4-level paging in x86-64
– Default x86-64 paging mode: 9 + 9 + 9 + 9 + 12

• 5-level paging in x86-64
– Available in Intel Ice Lake processors: 9 + 9 + 9 + 9 + 9 + 12
– CONFIG_X86_5LEVEL kernel option from Linux 4.14

2

http://pdos.csail.mit.edu/6.828/2012/xv6/book-rev7.pdf

Avoiding extra memory accesses

• Observation: locality
– Temporal: access locations accessed just now
– Spatial: access locations adjacent to locations accessed just

now
– Process often needs only a small number of vpnèppn

mappings at any moment!

• Fast-lookup hardware cache called associative
memory or translation look-aside buffers (TLBs)
– Fast parallel search (CPU speed)
– Small

3

VPN PPN

Paging hardware with TLB

4

Effective access time with TLB

• Assume memory cycle time is 1 unit time
• TLB Lookup time = e
• TLB Hit ratio = a

– Percentage of times that a vpnèppn mapping is
found in TLB

• Effective Access Time (EAT)
EAT = (1 + e) a + (2 + e)(1 – a)

= a + ea + 2 + e - ea - 2a
= 2 + e – a

5

TLB and context switches

• What happens to TLB on context switches?

• Option 1: flush entire TLB
– x86

• “load cr3” (load page table base) flushes TLB

• Option 2: attach process ID to TLB entries
– ASID: Address Space Identifier
– MIPS, SPARC

• x86 “INVLPG addr” invalidates one TLB entry

6

Page sharing

7

Copy-On-Write (COW)

• In fork(), parent and child often share
significant amount of memory
– Expensive to copy all pages

• COW Idea: exploit VA to PA indirection
– Instead of copying all pages, share them
– If either process writes to shared pages, only then

is the page copied

• Used in virtually all modern OS

88

Before Process 1 Modifies Page C

9

After Process 1 Modifies Page C

10

