
Introduction to Paging

COMS W4118

1

References: Operating Systems Concepts (9e), Linux Kernel Development, previous W4118s
Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

Multiple address spaces co-exist

2

AS1

AS2

AS3

Logical view Physical view

max

max

max

0

0

0 0

Memory management wish-list

• Sharing
– Multiple processes coexist in main memory

• Transparency
– Processes are not aware that memory is shared

• Protection
– Processes cannot access data of other processes or kernel

• Efficiency
– Reasonable performance
– Do not waste too much memory by fragmentation

3

Memory Management Unit (MMU)

• Translate program-generated logical address
(virtual address) to real RAM address (physical
address) at every reference

• Also check range and permissions
• Programmed by OS, executed by hardware

4

CPU MMU MEMORY

Virtual Addresses

Physical Addresses

x86 address translation

1. Segmentation unit
– Segment & offset à linear address

2. Paging unit
– Linear address à physical address

• Segmentation
– Holdover from the olden days (16-bit x86 CPUs)
– Used only minimally at this point

5

Segmentation

• Virtual address space divided into logical segments,
each mapped to physical address region

6

code

data

stack

heap

code

dataheap

stack

x86 segmentation hardware

7

selector offset
031015

base limit perm
base limit perm

base limit perm

Global descriptor table

Logical address

+

Linear address
031

Compute: base + offset
Check: offset <= limit
Check: permissions

Paging overview

• Goal
– Eliminate fragmentation due to large segments
– Don’t allocate memory that will not be used
– Enable fine-grained sharing

• Paging: divide memory into fixed-sized pages
– For both virtual and physical memory

• Another terminology
– A virtual page: page
– A physical page: frame

8

Page translation

• Address bits = page number + page offset
• Translate virtual page number (vpn) to

physical page (frame) number (ppn/pfn) using
page table

pa = page_table[va/pg_sz] + va%pg_sz

9

CPU vpn off ppn off

Page table

ppnvpn

Memory

ppn

Page translation example

10

Page 0

Page 1

Page 2

Page 3

Page 0

Page 2

Page 1

Page 3

Page table

Physical
Memory

Virtual Memory

0

1

2

3

1

4

3

7

Page translation exercise
• 8-bit virtual address, 10-bit physical address, each page is 64 bytes
1. How many virtual pages?

– 2^8 / 64 = 4 virtual pages
2. How many physical pages?

– 2^10/64 = 16 physical pages
3. How many entries in page table?

– Page table contains 4 entries
4. Given page table = [2, 5, 1, 8], what’s the physical address for

virtual address 241?
– 241 = 11110001b
– 241/64 = 3 = 11b
– 241%64 = 49 = 110001b
– page_table[3] = 8 = 1000b
– Physical address = 8 * 64 + 49 = 561 = 1000110001b

11

Page translation exercise

12

m-bit virtual address, n-bit physical address, k-
bit page size
• # of virtual pages: 2(m-k)

• # of physical pages: 2(n-k)

• # of entries in page table: 2(m-k)

• vpn = va / 2k

• offset = va % 2k

• ppn = page_table[vpn]
• pa = ppn * 2k + offset

Page protection

• Implemented by associating protection bits with
each virtual page in page table

• Why do we need protection bits?

• Protection bits
– present bit: map to a valid physical page?
– read/write/execute bits: can read/write/execute?
– user bit: can access in user mode?
– x86: PTE_P, PTE_W, PTE_U

• Checked by MMU on each memory access

13

Page protection example

• What kind of pages?

14

Page 0

Page 1

Page 3

Page 0

Page 1

Page 3

Page table

Physical
Memory

Virtual Memory

0

1

2

3

1

4

3

7

110
000
111

pwu
101

Implementation of page table

• Page table is stored in memory
– Page table base register (PTBR) points to the base

of page table
• x86: cr3

– OS stores base in process control block (PCB)
– OS switches PTBR on each context switch

• Problem: each data/instruction access
requires two memory accesses
– Extra memory access for page table

15

Page table size issues

• Given:
– A 32 bit address space (4 GB)
– 4 KB pages
– A page table entry of 4 bytes

• Implication: page table is 4 MB per process!

• Observation: address space are often sparse
– Few programs use all of 232 bytes

• Change page table structures to save memory
– Hierarchical page tables

16

