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Multiple address spaces co-exist
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Memory management wish-list

• Sharing
– Multiple processes coexist in main memory

• Transparency
– Processes are not aware that memory is shared

• Protection
– Processes cannot access data of other processes or kernel

• Efficiency
– Reasonable performance
– Do not waste too much memory by fragmentation
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Memory Management Unit (MMU)

• Translate program-generated logical address 
(virtual address) to real RAM address (physical 
address) at every reference

• Also check range and permissions
• Programmed by OS, executed by hardware
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x86 address translation

1. Segmentation unit
– Segment & offset à linear address

2. Paging unit
– Linear address à physical address

• Segmentation
– Holdover from the olden days (16-bit x86 CPUs)
– Used only minimally at this point  
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Segmentation

• Virtual address space divided into logical segments, 
each mapped to physical address region
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x86 segmentation hardware
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Paging overview

• Goal
– Eliminate fragmentation due to large segments
– Don’t allocate memory that will not be used
– Enable fine-grained sharing

• Paging: divide memory into fixed-sized pages
– For both virtual and physical memory

• Another terminology
– A virtual page: page
– A physical page: frame
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Page translation

• Address bits = page number + page offset
• Translate virtual page number (vpn) to 

physical page (frame) number (ppn/pfn) using 
page table

pa = page_table[va/pg_sz] + va%pg_sz
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Page translation example
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Page translation exercise
• 8-bit virtual address, 10-bit physical address, each page is 64 bytes
1. How many virtual pages?

– 2^8 / 64 = 4 virtual pages
2. How many physical pages?

– 2^10/64 = 16 physical pages
3. How many entries in page table?

– Page table contains 4 entries
4. Given page table = [2, 5, 1, 8], what’s the physical address for 

virtual address 241?
– 241 = 11110001b
– 241/64 = 3 = 11b
– 241%64 = 49 = 110001b
– page_table[3] = 8 = 1000b
– Physical address =  8 * 64 + 49 = 561 = 1000110001b
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Page translation exercise
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m-bit virtual address, n-bit physical address, k-
bit page size
• # of virtual pages:   2(m-k)

• # of physical pages: 2(n-k)

• # of entries in page table: 2(m-k)

• vpn = va / 2k

• offset = va % 2k

• ppn =  page_table[vpn]
• pa = ppn * 2k + offset



Page protection

• Implemented by associating protection bits with 
each virtual page in page table

• Why do we need protection bits?

• Protection bits
– present bit: map to a valid physical page?
– read/write/execute bits: can read/write/execute?
– user bit: can access in user mode?
– x86: PTE_P, PTE_W, PTE_U

• Checked by MMU on each memory access
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Page protection example

• What kind of pages?
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Implementation of page table

• Page table is stored in memory
– Page table base register (PTBR) points to the base 

of page table
• x86: cr3

– OS stores base in process control block (PCB)
– OS switches PTBR on each context switch

• Problem: each data/instruction access 
requires two memory accesses
– Extra memory access for page table
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Page table size issues

• Given:
– A 32 bit address space (4 GB)
– 4 KB pages
– A page table entry of 4 bytes

• Implication: page table is 4 MB per process!

• Observation: address space are often sparse
– Few programs use all of 232 bytes

• Change page table structures to save memory
– Hierarchical page tables
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