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We present a large-scale analysis of mRNA coexpression based on 60 large human data sets containing a total of
3924 microarrays. We sought pairs of genes that were reliably coexpressed (based on the correlation of their
expression profiles) in multiple data sets, establishing a high-confidence network of 8805 genes connected by
220,649 “coexpression links” that are observed in at least three data sets. Confirmed positive correlations between
genes were much more common than confirmed negative correlations. We show that confirmation of coexpression in
multiple data sets is correlated with functional relatedness, and show how cluster analysis of the network can reveal
functionally coherent groups of genes. Our findings demonstrate how the large body of accumulated microarray
data can be exploited to increase the reliability of inferences about gene function.

[Supplemental material is available online at www.genome.org and http://microarray.cpmc.columbia.edu/tmm.]

Gene expression microarray data is a form of high-throughput
genomics data providing relative measurements of mRNA levels
for thousands of genes in a biological sample. In the last few
years, hundreds of laboratories have collected and analyzed mi-
croarray data, and the data are beginning to appear in public
databases or on researchers’ Web sites. These resources serve at
least two purposes. One is as an archive of the data, which allows
other researchers to confirm the results that have been published
by the originator of the data. A second use is to permit novel
analyses of the data, that go beyond what was envisioned or
possible at the time of the original study. A novel analysis could
involve just a single data set, or a meta-analysis of many data sets
(where a “data set” is a group of microarrays that were collected
together, and typically described as a group in a single publica-
tion). The combined analysis of multiple data sets forms the
main topic of this paper.

Most existing studies that have analyzed multiple indepen-
dently collected microarray data sets have focused on differential
expression, comparing two or more similar data sets to look for
genes that distinguish different sets of samples (Breitling et al.
2002; Rhodes et al. 2002; Yuen et al. 2002; Choi et al. 2003;
Detours et al. 2003; Ramaswamy et al. 2003; Sorlie et al. 2003;
Xin et al. 2003). Another type of comparison is exemplified by a
study that examined the variability of expression for individual
genes in several human and mouse data sets (Lee et al. 2002).
These studies have generally been able to exploit the availability
of multiple data sets to identify more robust sets of genes than
would be found using a single data set.

Another way of using microarray data is to exploit gene
coexpression instead of differential expression. In this approach,
genes that have similar expression patterns across a set of
samples are hypothesized to have a functional relationship. It has
been shown in a number of studies that coexpression is corre-
lated with functional relationships, such as physical interaction
between the encoded proteins, though coexpression does not
necessarily imply a causal relationship among transcript levels
(Eisen et al. 1998; Ge et al. 2001; Jansen et al. 2002; Kemmeren et
al. 2002). Because microarray data are noisy, there has been an

interest in seeking supporting evidence for predictions made
based on coexpression. Although several studies have combined
microarray data with other data types (Marcotte et al. 1999;
Greenbaum et al. 2001; Kemmeren et al. 2002; von Mering et al.
2002), the reproducibility of coexpression patterns between mi-
croarray data sets has not been studied in much detail. Graeber et
al. (Graeber and Eisenberg 2001) identified a number of coex-
pression patterns found in several tumor data sets, but their
analysis was focused on a small number of genes (receptors and
their ligands). A recent study identified a subset of coexpression
patterns that were common to multiple model organisms (Stuart
et al. 2003). A direct comparison of two closely related mouse
brain data sets showed a high degree of reproducibility of expres-
sion profiles between the studies as long as the data were strin-
gently filtered prior to analysis (Dabrowski et al. 2003). Such an
analysis requires that the samples in the two data sets be directly
comparable, and Dabrowski et al. did not consider coexpression
as such. In contrast to the positive findings of Dabrowski et al., a
study comparing two data sets, both obtained from the National
Cancer Institute reference tumor cell lines (NCI-60) but on two
different microarray platforms, found that clustering results were
not reproducible (Kuo et al. 2002).

In this paper we describe an analysis of gene coexpression in
60 large human microarray data sets, and we assess the func-
tional relevance and reproducibility of the coexpression patterns
we detected. We found that a substantial number of correlated
expression patterns occur in multiple independent data sets. This
confirmation of correlated expression provides a useful way to
improve the confidence in any particular correlated expression
pattern. Indeed, we show that coexpression patterns that are con-
firmed are more likely to be functionally relevant. The database
and methods we describe can form the basis for further large-
scale exploration of gene coexpression data.

RESULTS
We analyzed pairwise correlation of gene expression in a large
corpus of microarray data of 60 diverse data sets (Table 1). This
corpus contains a total of 62.2 million expression measurements
distributed among 3924 microarrays; all of the data sets have at
least 10 samples (microarrays), and the largest contains 255
samples. We analyzed correlation of gene expression profiles
within each data set, selecting for further study the “coexpression
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links” that were deemed to be statistically significant (see Meth-
ods). For the analysis presented in this paper, we considered a set
of 16,511 human genes from RefSeq, of which 15,700 were de-
tectably expressed in at least one data set.

This analysis yielded 9.7 million different “raw” coexpres-
sion links between genes. A total of 11 million occurrences of
these links were found, indicating that some links occur in mul-
tiple data sets. Of the 9.7 million different links, 5.39 million
(56%) had positive correlations, compared to 4.31 million nega-
tive correlations. This imbalance apparently occurs because nega-
tive correlations tended to be less common than positive corre-
lations in the raw data, and fewer of them reach significance in
our primary analysis. Between 673 and 1.5 million correlated
gene pairs (raw coexpression links) were stored for each data set
(median 56,000; Table 1). Of the genes tested, 15,458 (98%) had
at least one coexpression link, with a median of 990 per gene. For
the most part, the number of links a data set yielded was propor-
tional to the number of genes represented on the array, but this
was also affected by the number of samples in the data set (data
not shown). This is because our criteria for link acceptance takes
into account the number of samples in the calculation of statis-
tical significance.

Coexpression Link Confirmation
For a variety of reasons, some of the coexpression links for a gene
are likely to be artifacts or of questionable biological relevance. A
primary goal of this work was to evaluate the reoccurrence of
links in multiple data sets, with the expectation that this will
improve the reliability of the inferences that might be made on

the basis of coexpression. We refer to this as “coexpression link
confirmation” (Fig. 1). A second type of link confirmation occurs
within data sets, when genes are represented by multiple probes
or probe sets on the same microarray. A preliminary analysis of
such “intra-data set” link confirmation is presented as Supple-
mental data.

Figure 2A shows the number of times a link is confirmed in
a given number of data sets. This figure shows that whereas most
links are not confirmed in our database, many links are con-
firmed and some links are found in numerous data sets. The
largest number of data sets a link was seen in was 31. Of the links
in our original selected pool of 9.7 million, none were testable in
all 60 data sets (the maximum was 57), because as mentioned
none of the genes we considered occurred or were considered
detectable in all 60 data sets. The wide variety of microarray
platforms represented in our database lead to most links being
tested in far fewer than 60 data sets, and the links in the original
pool were tested in a mean of 18 data sets (median 15).

Although confirmation of coexpression suggests greater re-
liability, we expect some confirmations to occur purely by
chance, due to the large number of data sets we tested. To esti-
mate the statistical significance of link confirmation, we created
randomized databases where the number of links per gene and
per data set had the identical distributions as in our real data, but
the links were created between genes within a data set at random.
These randomized databases produce links confirmed in three or
more data sets (hereafter denoted as “3+ confirmed”) at a rate of
5.24�0.08% (mean � standard deviation) of that observed using
the original data, and produce very few links confirmed in more

Table 1. Summary of the Microarray Data Sets Useda

Referenceb Samplesc Genesd Raw linkse Reference Samples Genes Raw links

(Alizadeh et al. 2000) 96 1759 25748 (Nielsen et al. 2002) 46 3359 25175
(Allander et al. 2001) 19 1205 1251 (Perou et al. 1999) 26 3027 42105
(Armstrong et al. 2002) 72 8242 213456 (Perou et al. 2000) 84 5701 167826
(Bhattacharjee et al. 2001) 203 8243 243303 (Pomeroy et al. 2002) 90 5418 85909
(Bittner et al. 2000) 38 4382 16141 (Ramaswamy et al. 2001) 255 9528 372500
(Butte et al. 2000) 68 4906 81755 (Rickman et al. 2001) 51 5418 60169
(Chang et al. 2002) 50 13079 328274 (Rosenwald et al. 2001) 102 3751 129814
(Chaussabel et al. 2003) 28 8243 80559 (Ross and Perou 2001) 24 12437 3409
(Chen et al. 2002) 207 9169 597313 (Ross et al. 2000) 68 5837 45468
(Cheok et al. 2003) 120 8243 258731 (Shipp et al. 2002) 77 5418 87486
(Dhanasekaran et al. 2001) 53 5613 161097 (Singh et al. 2002) 20 4119 19895
(Diehn et al. 2002) 68 10400 1635022 (Smith et al. 2003) 102 8242 248952
(Dyrskjot et al. 2003) 31 5418 60343 (Sorlie et al. 2001) 85 9132 1578
(Dyrskjot et al. 2003) 40 5418 58461 (Sorlie et al. 2003) 122 13121 14351
(Erraji-BenChekroun et al., in prep.) 75 12057 824563 (Staunton et al. 2001) 11 8257 4760
(Garber et al. 2001) 73 9171 258866 (Su et al. 2002) 12 8257 128303
(Golub et al. 1999) 72 5418 52283 (Tezak et al. 2002) 24 12057 12944
(Greenberg et al. 2002) 12 8243 5280 (Unpublished, GSE443) 60 5418 51286
(Gruvberger et al. 2001) 58 2756 24781 (Unpublished, GSE470) 85 8243 241088
(Hedenfalk et al. 2001) 22 2253 1265 (Unpublished, GSE474) 10 5418 7941
(Hedenfalk et al. 2003) 16 3312 673 (Vahey et al. 2002) 30 5418 60268
(Huang et al. 2003) 89 8257 137512 (van’t Veer et al. 2002) 117 11312 752390
(Huang et al. 2001) 16 8243 9634 (Virtaneva et al. 2001) 21 4804 5923
(Jazaeri et al. 2002) 61 3644 46187 (Welle et al. 2001) 12 8243 2670
(Khan et al. 2001) 88 1952 19868 (Welsh et al. 2001) 49 5418 52459
(Khatua et al. 2003) 13 8257 10072 (Welsh et al. 2001) 55 8258 260155
(Leung et al. 2002) 126 12657 993195 (West et al. 2001) 49 5418 84842
(Luo et al. 2001) 25 4354 14873 (Whitfield et al. 2002) 114 12801 1547199
(Ma et al. 2003) 61 1569 10086 (Yeoh et al. 2002) 248 8257 257979
(MacDonald et al. 2001) 31 1309 3179 (Yoon et al. 2002) 12 5418 53305

aA version of this table with additional information is available as Supplemental data.
bIn three cases where the data are not published, the Gene Expression Omnibus accession number is given.
cThe number of samples (microarrays) in the data set.
dThe number of unique RefSeq genes represented on the array that were included for analysis.
eThe number of raw coexpression links between the RefSeq gene selected for inclusion in the database.
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than four data sets (less than 0.5% of those found in the un-
shuffled data). However, for 2+ confirmed links the rate is 34%.
We note that these tests examine the random occurrence of con-
firmed links, not the random occurrence of links within single

data sets. When we instead shuffled the
microarray expression profiles before
raw link determination, we obtained al-
most no 3+ confirmed links (<10). For
much of the remainder of our analysis
we focus on 3+ confirmed links.

Out of 9.7 million unique coexpres-
sion links, 220,649 (2.2%) are seen in at
least three data sets (3+ confirmed). In
addition, 8805 of the genes tested have
at least one 3+ confirmed link, encom-
passing 60% of the 14,172 genes that
were expressed in at least three data sets
(and thus capable of having 3+ confirm-
able links). Not surprisingly, genes with
many raw links tended to have more 3+
confirmed links (Spearman’s rank corre-
lation 0.81; Fig. 2B).

Figure 2C shows the number of 3+
confirmed links per gene. The distribu-
tion approximately obeys a power law
distribution, as is observed for many bio-
logical as well as other types of networks
(Barabasi and Albert 1999; Jeong et al.
2001; Bhan et al. 2002; Featherstone and
Broadie 2002). Thus most genes have
only a few confirmed links, whereas a
small number of genes have many 3+
confirmed links (up to a maximum of
913). No gene had all of its raw links
confirmed: the highest 3+ confirmation
rate was 0.19, and the highest 2+ confir-
mation rate was 0.66.

Although the numbers of positive
and negative correlations we selected
were fairly similar, a much larger frac-
tion (88.8%) of confirmed links were for
genes that showed positive correlations
(a positive correlation in one data set
and a negative correlation in another
data set was not considered a confirma-
tion). The overall 3+ confirmation rate
for negative correlations was 0.5%, over
seven times lower than the rate for posi-
tive correlations of 3.6%. Very few nega-
tive correlations (694) were confirmed at
higher levels than 4+, and none were
confirmed in more than eight data sets.

Functional Relevance of
Link Confirmation
We predicted that as the level of confir-
mation of a link increases, it is more
likely that the link is between two genes
that are already known to have a func-
tional relationship. We evaluated this by
examining the overlap of Gene Ontol-
ogy (GO) annotations for each pair of
linked genes. This semantic similarity
metric is reasonable because it reflects
both the extent to which each gene has
a known function, and the extent to

which they are similar. This method will fail to detect known
functional associations for genes that have poor GO annotations.

As links are increasingly confirmed, the semantic similarity
of the genes also tends to increase (Fig. 3). Importantly, the dis-

Figure 1 Schematic of the methodology. Only two data sets are shown here; our analysis made use
of 60 data sets. The schematic outlines the analysis of a hypothetical “Gene X” in two data sets. First
(top) in data set 1 we seek genes with expression profiles that are similar to that of Gene X, generating
a set of raw “coexpression links.” Only links that are deemed statistically significant in the context of
data set 1 are stored. Then, we repeat this analysis in data set 2 (bottom). We then seek coexpression
links that are common between the two data sets. This procedure is then repeated for each gene, and
in more data sets. It is important to note that the profiles themselves need not be similar between data
sets, nor do the profiles need to be “relevant” to any sample groups in the data sets. The data sets can
also be from different microarray platforms, tissues, or species (though we present only human com-
parisons here). See Methods for details.
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tribution of GO term overlap for links that are seen only in a
single data set is significantly different from randomly generated
links (signed-rank test, P < 10�15). This suggests that our initial
link selection procedure is at least somewhat effective in selecting
biologically relevant links, even if they are never confirmed in
other data sets. Links that are confirmed two or more times have
higher GO term overlaps than those seen only once (P < 10�15),
and those 3+ confirmed are significantly more similarly anno-
tated than those at 2+ (P < 10�15), each confirmation corre-
sponding to about one additional GO term in common, on av-
erage. At high levels of confirmation, a high degree of known
functional relatedness of the pairs is very likely, as shown by the
curve for 15+ confirmations (Fig. 3). These findings were also
confirmed using an alternative measure of semantic similarity
(Lord et al. 2003). These results suggest that functional inferences
based on confirmed coexpression have increased reliability. In-

terestingly, the effect of confirmation on increasing semantic
similarity was weaker for negative correlations considered alone,
and the genes in these pairs generally had lower semantic simi-
larity scores (see Supplemental data).

Cluster Analysis of the Confirmed
Coexpression Network
The set of coexpression links forms a network among the genes.
The density of the 3+ network (the ratio of links between genes to
the number of possible links) is 0.0057, with a diameter of 10 (the
longest minimal path between two genes). The network can be
broken into just 49 unconnected components, the largest of
which contains almost all the genes (8705). The remaining 48
components contain only two or three genes each.

We used two clustering approaches to gain further insight
into the structure of the gene interaction network predicted from
confirmed coexpression. First, we used hierarchical clustering
(Methods; Fig. 4). Because of the large size of the 3+ network, for
this analysis we used the set of 7+ confirmed links, further lim-
iting the analysis to those genes having at least six 7+ links (720
genes and 10,089 links). By applying hierarchical clustering to a
matrix representation of the network, we identified a series of
“core clusters” that appear along the diagonal of the matrix (left-
hand side of Fig. 4). Interactions between genes in these core
clusters appear as spots off the diagonal. The right-hand side of
Figure 4 is a visualization of GO categories associated with each
gene. The columns of the GO matrix were also clustered to put
terms with similar patterns near each other.

A statistical analysis (see Methods) allowed us to associate
many of the clusters with specific GO terms, illustrated by the
color coding on the right-hand side of Figure 4. For example, a
cluster of genes at the upper right is clearly associated with the
GO terms related to protein translation including “cytosolic ri-
bosome,” and indeed includes many ribosomal proteins and
translation initiation and elongation factors. A smaller identifi-
able cluster is represented by MHC II protein coding genes. The
MHC II genes are associated with several other clusters contain-
ing many genes related to the immune response (in the lower left
of the matrix, orange box). The middle of Figure 4 is dominated
by a large, fairly diffuse cluster of about one-third of the genes
(indicated by the light blue box) that contains within it several
tighter groups of genes associated with GO terms related to RNA
processing, DNA replication, and the cell cycle. The many links
between these groups of genes (off the diagonal) may represent
robust interactions between these processes. We stress that all of

Figure 3 Relationship between link confirmation on semantic similarity
of the selected genes. The x-axis indicates GO term overlap (see Meth-
ods). The cumulative distributions of semantic similarity scores for sets of
links selected by different criteria are plotted. The dashed line indicates
the distribution for randomly selected pairs of genes. Each solid curve is
the cumulative probability distribution measured for pairs of genes iden-
tified by coexpression links at varying levels of confirmation (including
both positive and negative correlations). The black curve is the distribu-
tion for coexpression pairs that are not confirmed. Confirmed links tend
to have higher levels of GO term overlap. The x-axis is truncated at 30
(there are only 694 2+ pairs with more than 30 terms in common; the
maximum is 95, for one pair).

Figure 2 General properties of coexpression confirmation in the database. (A) Distribution of links at different levels of confirmation. The vertical
dashed line marks the total number of data sets analyzed (60). Most links are not confirmed, but some links are confirmed in up to 31 data sets. (B) The
number of “raw links” (those that are confirmed or not) plotted against the number of links that are confirmed in at least three data sets. Each point
represents one gene. Genes with many raw links tend to have more confirmed links. (C) Degree distribution of links confirmed in at least three data sets.
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the coexpression events in Figure 4 were seen in at least seven
different microarray data sets.

Although the hierarchical clustering approach yields a high-
level overview, it is difficult to study individual genes in the
network in this manner, and it was difficult to analyze larger
networks. Therefore to analyze the network of 3+ confirmed
genes, we used a second approach based on MCODE, an algo-
rithm designed to identify groups of highly interconnected genes
from networks (Bader and Hogue 2003). MCODE uses different
criteria than hierarchical clustering to place genes in groups and
can be used fruitfully on much larger networks. MCODE found
between 29 and 363 clusters (depending on the input parameters
for MCODE).

Two illustrative clusters are shown in Figure 5. Figure 5A
shows a cluster of 15 genes, several of which are associated with
the GO terms “cell junction” (CLDN3, CLDN4, CLDN7, CDH1)
and “epidermal differentiation” (ELF3, CRABP2). Many of the
other genes in this cluster have identified or suspected roles in

the regulation of cell motility or tumor cell invasiveness (includ-
ing DDR1, SPINT2, HRIHFB2122, TACSTD1, and WNT5A; Vogel
et al. 1997; Seipel et al. 2001; Weeraratna et al. 2002). Our find-
ings provide further evidence of a role for these genes in regula-
tion of cell motility, and may be particularly useful in elucidating
the functions of less clearly described genes in this cluster, such
as MAL2 (Wilson et al. 2001). Another example is given in Figure
5B, a cluster of eight genes that includes seven genes known to
play roles in sterol biosynthesis. The final gene, C14Orf1, has not
been functionally characterized in mammalian cells and is
poorly annotated in the public databases. However, it has been
predicted to play a role in sterol biosynthesis based on the analy-
sis of its yeast homolog, ERG28 (Gachotte et al. 2001). The co-
expression pattern of C14Orf1 that we identified further suggests
a role for this gene in sterol biosynthesis in humans. These ex-
amples serve to illustrate how the network of confirmed gene
coexpression can be used to make new inferences or add support
to existing hypotheses.

Figure 4 Hierarchical clustering of the coexpression network at a high level of confirmation. The left-hand side of the figure is the (diagonally
symmetric) interaction matrix for 506 genes. Each color-coded entry is an interaction that is seen in seven or more data sets. The colored boxes indicate
the main clusters, which are labeled according to their functional theme. A light blue box indicates a large diffuse cluster that dominates the upper half
of the figure. A second box (orange) indicates several immune system-related clusters that are placed near each other. Blue lines connect many of the
smaller clusters to the right-hand side of the figure, which depicts GO annotations for the same genes. On the right-hand side, each column represents
a different GO term. The columns (495 GO terms) were arranged by hierarchical clustering, placing terms with similar annotation patterns together.
The entries of the matrix are colored according to the status of the cluster-GO term association for the gene and term (see Methods). Green indicates
term-cluster associations that were significant. Dark gray indicates the best GO term-gene cluster associations but that did not meet all criteria. Light
gray points indicate GO terms-gene combinations that were not associated with a high-scoring cluster. These groups were used to define the cluster
labels in the left half of the figure.
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DISCUSSION
This study provides information on the structure of correlation-
based links between genes in multiple microarray data sets. Our
main goal was to establish whether comparing analyses across
data sets is relevant to understanding gene function. The primary
evidence that this is the case is that many genes show patterns of
correlated expression that are reproducible across data sets, and
that there is a clear relationship between confirmation of corre-
lated expression and related gene function.

Reproducible coexpression links are found for numerous
genes. This suggests that this type of analysis can be used rather
broadly, and is not confined to use on a small set of genes. On the
other hand, only a small fraction of all links were confirmed in at
least three data sets. Though this suggests that many links seen
only once may not be biologically relevant, our Gene Ontology
analysis shows that even links that are never confirmed are sub-
stantially more informative than random data (Fig. 3). The ob-
vious difficulty with using results that are never confirmed is
identifying the meaningful novel relationships, and therefore fo-
cusing on confirmed coexpression seems preferable.

In order for a link to be confirmed, several criteria must be
met. First, the pairs of genes must be present and detectably
expressed in multiple data sets; a gene that is only represented in
one data set will never have any confirmed links. In our database,
not a single gene was considered detectable in all 60 data sets; the
maximum was 57, for seven genes, and 5667 were detectable in
25 or more data sets. We also expect that confirmation of a link
might be sample-type specific, even if the genes are expressed in
all cases. Thus, two genes might be coexpressed only in leukemia
data sets, even though they are expressed in other types of data
sets. Because we used a fairly wide variety of data sets in our
study, the lack of confirmation of many links could be due sim-
ply to lack of including appropriate data (there may also be a
positive bias to the links discovered due to the particular data sets
we studied). Finally, we may miss confirmations if our link se-
lection criteria are too stringent.

When a link is seen in many data sets, it is increasingly likely
that it represents a known functional relationship. This means
that, to a certain extent, it is unlikely that many novel functional
relationships will be found by seeking coexpression that is ubiq-
uitous. We believe that confirmation near the 3+ level, or even 2+
for smaller data corpuses, will yield a higher fraction of novel
relationships while still having a high enough degree of reliabil-
ity. The exact level of confirmation required before one is moti-
vated to seek additional evidence or perform follow-up studies is
difficult to generalize, and our method provides a high degree of
flexibility in how the results are interpreted. For some purposes,

a higher level of confirmation may be
worth the risks of losing information,
whereas in other cases even links seen
only a single time can be of value.

Most previous studies of gene net-
works have used data from unicellular
organisms, primarily the budding yeast
Saccharomyces cerevisiae. In yeast, it has
been estimated that there are at least
30,000 interactions among the ∼6000
protein gene products in the genome,
based on a combined analysis of RNA
microarray and protein–protein interac-
tion data (von Mering et al. 2002). This
yields a network density of about 0.0016
(the fraction of the possible interac-
tions). In our network, which is based
solely on microarray data, at the 3+ con-
firmation level we find over 220,000 co-

expression relationships for 15,000 genes, or a density of about
0.002, although more than 6000 of these genes are “orphans”
having no connections. When we consider only genes that are
part of the network, the density is 0.0057, higher than the pro-
tein-protein interaction network density of 0.0013 found by
Bader and Hogue (2003) for 4825 yeast genes. This apparent dis-
crepancy might be explained by the difference in the types of
interactions detectable by mRNA analysis compared to proteins,
by species differences, and by the diversity of sample types and
tissues our database contains. A commonality among the net-
works we obtain and those observed in previous work on yeast is
that the link degree distribution follows a power law (Jeong et al.
2001; Bhan et al. 2002; Featherstone and Broadie 2002).

Negative correlations were much less likely to be confirmed
in independent data sets. This was counter to our expectation
because, in principle, negative correlations seem less likely to be
the product of technically induced artifacts. Thus we expected
the raw pool to be “cleaner” than for the positive correlations.
There are several possible explanations for this result. One is that
biologically meaningful negative correlations are harder to detect
using microarrays, and our failure to detect them is due to ex-
perimental or analytical shortcomings. We may also not have
appropriate data sets to confirm negative correlation links. A fi-
nal explanation is that there may be biological reasons to favor
positive coregulation of gene expression. We are unaware of any
global analysis of this issue, though it may be relevant that active
gene-specific transcriptional repression is a relatively uncommon
regulatory mechanism in eukaryotes (Struhl 1999). Confirmed
negative correlations were also less “biologically relevant” as
measured by GO semantic similarity analysis. It is possible that
this reflects limitations in available annotations.

We envision that databases of correlated expression will
have many uses for biologists. One is to discover or confirm
functional relationships that could only be made with low con-
fidence from a single data set. Taken as a whole, the database
represents a complex network of correlated expression that can
be used for the analysis of large-scale properties of biological
networks. It will also be of interest to integrate the information
from correlated expression with other types of ‘links,’ including
the GO approach we have taken thus far, as well information
mined from literature databases and other experimental sources
such as yeast two-hybrid data. Careful integration of heterog-
eneous data types will be essential to making full use of the ac-
cumulated expression data. Another topic of interest is coexpres-
sion that is conserved across species (Stuart et al. 2003). Our
current database is also skewed towards tumor data, and we bear
in mind that some of the interactions we observe may reflect a

Figure 5 Examples of clusters extracted from the 3+ network with MCODE. See text for details.
Increasing thickness of lines denotes increasing numbers of data sets in which the link was observed.
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disease state. Analysis of particular sample types or comparing
sample types will be of interest.

To make our findings and database available for further
evaluation and use by the scientific community, we have devel-
oped a simple Web interface to the database that can be accessed
at http://microarray.cpmc.columbia.edu/tmm. The interface per-
mits simple queries to extract the links for a gene at a desired
degree of confirmation stringency. The interface also displays
visualizations of the original microarray data that generated the
coexpression links, and has hyperlinks to external databases for
each set of linked genes to facilitate exploration of the results. We
are also making available extracted tables of coexpression links
from the entire database that can be used for further bioinfor-
matic analysis.

METHODS

Data Preparation
Sixty human microarray data sets were included in this study,
totaling 3924 arrays. All but one of the data sets is currently
publicly available (the exception is the ‘Sibille-pfc’ data set). Ma-
jor data sources were the Stanford Microarray Database (Sherlock
et al. 2001) and the Gene Expression Omnibus (Edgar et al. 2002).
Data sets were not subjected to any additional normalization, as
all had been normalized when we obtained them. No imputation
was used to replace missing data. For Affymetrix data sets, we
downloaded “signal” or “average difference” data as supplied by
the source; for ratiometric data, we obtained or computed log-
transformed (base 2) ratios. These expression metrics were the
inputs to the rest of the analysis. We filtered each data set to
remove genes or data points with very low expression. Excep-
tions were two ratiometric data sets, where only unfiltered nor-
malized ratios were available, and some data sets that had already
been filtered by the originator. For data from Affymetrix
GeneChips, the 30% of the probe sets with the lowest maximal
expression across the samples in the data set were removed.
Probe sets having all negative “average difference” values were
excluded before applying this filter. For the 13 ratiometric data
sets obtained from the Stanford database, measurements with
signal to background ratios of less than 1.5 in both channels were
removed. For all ratiometric data sets, genes missing more than
25% of the data were excluded from further analysis, up to the
removal of 30% of the genes unless there were fewer than five
data points present in a gene (to keep the filtering comparable to
that used for the Affymetrix arrays). The identities of genes across
microarray data sets was established using public annotations,
primarily based on Unigene (Wheeler et al. 2001). Genes are re-
ferred to by their official names where known, based on infor-
mation from RefSeq (Pruitt and Maglott 2001). Further details
of the data sets used are available at http://microarray.cpmc.
columbia.edu/tmm.

Coexpression Link Identification
After filtering, each gene expression profile was compared to all
others using the standard Pearson correlation coefficient. Com-
parisons between genes involving fewer than five data points due
to missing values were discarded. The significance of each corre-
lation was assessed by assuming that the distribution of correla-
tions under the null hypothesis of no correlation follows a t-
distribution with n � 2 degrees of freedom, where n is the num-
ber of measurements in the expression profile (the number of
samples). The assumptions inherent in this test were validated by
comparing these P-values to those obtained by a permutation-
based test on a subset of the data, indicating that large deviations
from the assumptions were rare. P-values were corrected using
Bonferroni correction for the number of genes tested such that
the family-wise error rate was controlled at �=0.01 per data set
(Westfall and Young 1993). In addition, pairs were only consid-
ered for further study if they were among the top 0.5% or lowest
(most negative) 0.5% of correlations in the data set. This criterion

was implemented to penalize data with many ‘nonspecific’ high
correlations. The combination of criteria means that for all but
the largest data sets, correlations with magnitudes below ∼0.6–
0.7 were rejected.

Correction for Multiply Represented Genes
An additional Bonferroni multiple test correction was applied to
tests of genes that occurred multiple times on the array. For ex-
ample, the required P-value threshold for a gene that occurred
twice on an array was adjusted (multiplied) by a factor of two
before comparison to the desired alpha of 0.01. When two such
genes were compared, the adjustment was multiplicative. Due to
this correction, 1.9 million raw links were rejected.

Link Confirmation
A coexpression link between two genes was termed “confirmed”
if the link was observed in more than one data set. To measure
the statistical significance of link confirmation, we created
“shuffled” databases by generating random links between probes
in each data set, maintaining the same degree distribution and
number of links per data set as in the real data. The proportion of
negative to positive correlations was also maintained. We created
and analyzed 100 such databases to collect statistics on the oc-
currence of link confirmation by chance.

GO Similarity Metric
Each gene was characterized by the set of GO terms it is associ-
ated with (according to publicly available sources on the Gene
Ontology Web site; Ashburner et al. 2000). Eighty-five percent of
the genes analyzed had at least one GO term. Included in this set
of terms are all parent terms in the GO hierarchy of the directly
annotated terms. Genes that have many terms associated with
them in this manner are described in greater detail than genes
with only a few terms. The similarity k of a pair of genes A and B
is measured simply by the number of terms they share,
|GOA ∪ GOB| where GOx denotes the set of GO terms for gene x.
Pairs of genes where one or both genes have no terms are given
scores of zero (i.e., k = 0 where GOA = � or GOB = �). We also
tested an alternative semantic similarity metric suggested by Lord
et al. (2003). This metric appears to be highly correlated with our
overlap metric (R ∼0.7). We measured semantic similarity for all
pairs of genes identified at each level of coexpression link con-
firmation as well as for 5,000,000 randomly selected pairs of
genes. The resulting distributions were then compared.

Cluster Analysis
For hierarchical clustering, we express the network as an inter-
action matrix, which is a symmetric square matrix with entries
indicating how many times a link was replicated (we provision-
ally consider the number of replications as a crude measure of the
“strength” of a coexpression link). We applied hierarchical clus-
tering to the rows and columns of the interaction matrix using
“Xcluster” (http://genetics.stanford.edu/∼sherlock/cluster.html)
using the default parameters, combined with visualization using
matrix2png (Pavlidis and Noble 2003). We also used a novel
implementation of the MCODE algorithm (Bader and Hogue
2003), with Pajek visualization (Batagelj and Mrvar 1998). Pajek
was also used to analyze global properties of the network. Indi-
vidual MCODE runs used a vertex weight threshold of 0.05 or
0.0, with and without the ‘fluff’ procedure, run at a fluff thresh-
old of 0.1 (Bader and Hogue 2003). The 3+ network was first
filtered to remove 176 highly connected genes (those with more
than 350 links) before applying MCODE.

To compare hierarchical clustering with GO annotations,
we first identified all GO terms that were associated with at least
five genes in the set under consideration, but that did not apply
to more than 20% of the genes (to avoid overly general or specific
terms). For each term we examined each branch of the hierarchi-
cal clustering tree to identify the branch with the highest over-
representation of the term relative to the rest of the genes, flag-
ging clusterings with P < 0.05 (cumulative hypergeometric distri-
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bution and Bonferroni-corrected for the number of GO terms
examined), which contained at least five genes, and had an av-
erage pairwise correlation of at least 0.5 (to avoid always detect-
ing the entire data set as the optimal cluster). The GO annota-
tions were then represented as a binary matrix, where each entry
indicates whether a gene and GO term were associated. Note that
this procedure only analyzes relative GO term enrichment within
the genes used for clustering, not the entire database. We per-
formed a similar analysis to help identify MCODE clusters that
were enriched in particular GO terms.
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