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Abstract

In this paper, we develop and evaluate several probabilistic
models of user click-through behavior that are appropriate for
modeling the click-through rate of items that are presented
to the user in a list. Potential applications include modeling
the click-through rates of search results from a search engine,
items ranked by a recommendation system, and search ad-
vertisements returned by a search engine. Our models cap-
ture contextual factors related to the presentation as well as
the underlying relevance or quality of the item. We focus
on two types of contextual factors for a given item; the posi-
tional context of the item and the quality of the other results.
We evaluate our models on a search advertising dataset from
Microsoft’s Live search engine and demonstrate that model-
ing contextual factors improves the accuracy of click-through
models.

Introduction
The modern search engine uses ranking techniques in order
to improve the quality and relevance of search results, in the
way which would best reflect the user’s intent. Researchers
have used various different approaches to quantify this
notion of relevance. The most obvious way to capture user
preferences is by using human experts to explicitly evaluate
search results. However, this approach is time consuming,
and most users are reluctant to give this type of feedback
due to the intrusive and prolonged nature of the task. On
the other hand, the use of implicit feedback obtained from
search engine logs is a more feasible technique for inter-
preting the user’s link preferences. These logs are abundant
as they are easy to collect, and they do not interfere with the
user’s search experience.
The problem with using query logs for making implicit
inference of link relevance is that these logs capture an
inherently biased view of user preferences. This bias may
be due to several factors that are related to the original
quality and presentation of search results from which the
logs where generated, as well as the way in which the users
examine the results. It was shown (Joachims et al. 2005)
that the order of presentation of the search results has an
effect on the click-through rates. Since users typically
do not scan all of the search results before making their

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

selection, it is important to consider the position of a link on
a particular results page as a factor that may affect its click
probability. It may also be the case that the probability that
a link is clicked is affected by the quality of the alternative
links in the result set. If the results above a particular link
are relevant to the user’s query, the probability that the link
will be clicked may be affected by the fact that the previous
search results already satisfy the user’s search goals. We are
interested in incorporating these types of external factors
that bias the user selection when modeling click-through
rates using query logs.
In this paper we look at click-through rates of search adver-
tisements. Search advertisement query log data is especially
useful for learning the effect of the link’s position on click-
through rates since the positions at which the advertisement
links are shown exhibit greater variation than those of the
main search results. If every link is always shown in a
particular position, it is hard to separate the advertiser and
positional effects on its click-through rate, unless we use
some global measurement of positional effects. For these
reasons, we focus on modeling click-through of search
advertisement data. We perform our experiments on a
search advertising dataset collected from logs of a major
search engine.
In the first part of this paper, we consider two approaches
for learning the click-through rate as a function of both the
position and the advertisement itself. The first is a straight
forward discriminative approach shown in a graphical
form in figure 1a. The second approach, shown in figure
1b, assumes that there is a binary hidden variable which
corresponds to the event that the user looks at a link. The
idea behind the second approach is that users always look at
a link before clicking, and whether or not they actually click
on an advertisement link depends both on the link quality
and the event that they looked at the link. The ”look” event
in turn depends on the position at which the link is shown.
We examine these alternative approaches against a baseline
click-through rate calculation that does not incorporate any
positional information.

In the second part of the paper we describe a new
click-through rate prediction model, which incorporates
contextual features such as relative placement in the result
set and surrounding link quality. We compare our results
across the different models that we considered in this paper.



Figure 1: Graphical Representation of Click-though Models

Related Work
An important and active area of machine learning research
focuses on leveraging user behavior as a source of implicit
feedback to build and improve systems. For instance, Oard
and Kim (1998) use implicit feedback to build recommender
systems and Joachims (2002) uses click-through data to op-
timize a search engine. In these and other frameworks, users
interact with a system through ranked lists of items. Ex-
amples of such ranked lists are search results from search
engines, items from recommendation systems and advertise-
ments from search-engine-advertisement systems.
A variety of implicit feedback techniques have been exam-
ined by different researchers. Oard and Kim (2001) present
a general framework for modeling the content of informa-
tion objects based on observation of user interaction with
these objects when seeking information. They illustrate the
potential of these techniques with respect to collaborative
filtering, citation indexing and web search.
Fox et al. (2005) examine the correlation of different im-
plicit measures of user search result preferences such as
dwell time and scrolling events, to user satisfaction. Their
study also showed a relationship between explicit and im-
plicit measures of relevance and gave significant evidence
that implicit measures are important in predicting user satis-
faction, especially click-through data. White et al. (2005)
also present results from a study which established that im-
plicit relevance feedback is preferable to explicit relevance
feedback, especially since users wish to reduce the burden of
providing such feedback explicitly. Radlinski and Joachims
(2005) use query chains, a sequence of reformulated queries,
as input to an algorithm for inferring preference judgments.
Agichtein et al. (2006) show improvement in click-through
interpretation by modeling user behavior using different im-
plicit measures as features. For a survey of other implicit
feedback measures see Kelly and Teevan (2003) .
Our focus is on modeling click-through behavior of an item
give its context. Click-through behavior is one of the most
readily available and most powerful types of implicit feed-
back; clicks can be viewed as a passive endorsements of the
items that are clicked. In addition, clicks can have intrinsic
value to the system as is the case with search advertisements
where advertisers are charged on the basis of user clicks on

their advertisement (see Edelman et al. 2006 ).
Not surprisingly, the mode of presentation of the ranked lists
of items affects the way in which users behave. In the con-
text of search results, Joachims et al. (2005) , have demon-
strated both apositionalfactor and acontextual qualityfac-
tor in user behavior through their analysis of eyetracking
data and click behavior. Agichtein et al. (2006) have shown
similar effects for search results with click behavior and rel-
evance data. In this paper, we develop and evaluate proba-
bilistic models of user click-through behavior that are appro-
priate for modeling the click-through rate of items that are
presented to the user in a list. We concentrate on developing
models that incorporate both positional and contextual qual-
ity factors.
There is a large body of work on using click-through data as
implicit feedback. Xue et al.(2004) use click-through data
to improve search engine performance by viewing clicks as
a way to associate a particular query with a set of links. We
are interested in using click-through data for improving rel-
evance of search advertisements.
Most of the work on using click-through data to improve
search relevance has focused on the problem of extracting
pairwise user preference from click-through logs. For ex-
ample, Radlinski and Joachims (2006) introduce a method
for generating bias-free training data by collecting pairwise
link preferences. Agichtein et al. (2006) also evaluate their
model on pairwise agreement between preferences and re-
sults.
Unlike this related work, our focus is on directly modeling
the click-through of each item given its context. For some
applications, one is interested in a quantitative measure of
click-through rather than a qualitative preference relation-
ship. In the case of search advertisements, for example, one
needs models of click-through rate to compute expected rev-
enue for alternative rankings. Furthermore, we suspect that
in some ranking applications, it will be necessary to go be-
yond pairwise preferences to capture contextual quality fac-
tors and building click-through models to capture contextual
effects is a first-step.

Notation
In this section, we describe the notation that we will use
throughout the remainder of the paper. We use upper-case
letters (e.g.,X) to denote random variables. We sometimes
use corresponding lower-case letters (e.g.,x) to denote val-
ues of those variables.
We concentrate on the following search-application sce-
nario: a user visits a search site and types in a particular
query. In addition to the “organic” search results, a number
of advertisement links are shown to the user. Our goal is to
model the probability that the user will click on a particular
advertisement link. We use the binary variableC to indicate
whether or not the user clicks on the link, withC = 1 de-
noting a click, andC = 0 denoting a non-click. All of our
models use, as input, the position of the link in the result
set. We use the discrete variableP to indicate this position;
the values ofP distinguish among the possible placements
of the link. For example,P = p1 might indicate that the
link was the top-most advertisement on the page. Finally,



all of the models also use the advertiser identity of the link
as input. We use the discrete variableA to denote the ad-
vertiser identity. The values ofA correspond to the different
advertisers whose advertisements can be shown to the user.
For simplicity, we assume that any particular advertiser has
exactly one advertisement that can be shown.
The probabilistic models that we describe in this paper de-
fine, for a given advertiserA = a and a given position
P = l, the probability that a user will click on that adver-
tisement:

p(C = 1|A = a, P = l)

In Section 5, we will extend the models to include ad-
ditional context about the advertisement link, such as the
quality of the surrounding links and relative position on the
results page.

Modeling the Location and Advertiser Effects
We consider two simple models for representing the adver-
tiser and position effects on link click-through rates. The
first model is a standard discriminative model that we learn
using logistic regression. In our model, we have a separate
feature for each advertiser and each position. In particular,
we compute:

X(a, p) = µ +
|A|∑
i=0

αiI(a, ai) +
|P |∑
j=0

λjI(p, pj) (1)

whereI(x, y) is the indicator function that is one ifx = y
and zero otherwise. Then, the click-through probability is
modeled as

p(C = 1|A = a, P = l) =
eX(a,p)

1 + eX(a,p)

To learn the parameters of the model (i.e.,µ, α1, ..., α|A|,
andλ1, . . . , λ|P |), we apply a standard gradient descent al-
gorithm; we use a Gaussian prior on the parameters that is
centered on zero.
We can interpret theα parameters as the advertiser effects;
if αi > αj , then for any particular position, the predicted
click probability will be higher for advertiserai than for ad-
vertiseraj . Theseα parameters may be potentially useful in
detecting advertisement quality since they capture the effect
of the advertiser alone on the click-through rate of the link.
Similarly, we can interpret theλ parameters as positional ef-
fects. Experiments and results for this model are described
in the following section.
For our second model, we introduce a hidden binary variable
H and model the click probability as follows:

p(C = 1|A = a, P = l)
= p(C = 1|A = a,H = 1)p(H = 1|P = l) (2)

The second model is motivated by the intuition that before
a user clicks on a link, he will almost certainly look at the
advertisement first. If we interpret the eventH = 1 as “the
user looks at the advertisement”, then our model can be un-
derstood as making the following assumptions: (1) the click
event is independent of the position of the link once we know

the advertiser of the link and we know that the user looked at
the link, (2) whether or not a user looks at a link depends on
the position of the link but not on the advertiser, and (3) the
probability that the user clicks on the link without looking at
the link is zero.
Usingαi = p(C = 1|A = ai,H = 1) andλj = p(H =
1|P = pj), we see that the second model also has parame-
ters corresponding to the advertiser effect and the location
effect. We learn these parameters in the second model us-
ing a standard Expectation Maximization algorithm, with a
uniform prior on the conditional probabilities (see Bilmes
1997).
The main difference between our two models is in the way
that they treat the advertiser and location effects. The log-

odds functionlog
(

p(C=1)
p(C=0)

)
used by the logistic regression

model for prediction is a linear function ofX(a, p). In the
hidden-variable model, on the other hand, the log probabil-
ity log(p(C = 1)) is linear inX(a, p).

Experimental Comparison
In this section, we compare the two models described above
using advertisement click-through log data from Microsoft’s
Live search engine (http://www.live.com). We train our
models using data from the most frequent queries to our
search engine and evaluate the performance of the models
on our test data using log likelihood scores. We train various
different “local” models using query-specific training data;
each query has its own model withα andλ coefficients for
the given query’s advertisers and positions. We also train
one ”global” model using data across all queries, meaning
that we use the sameλ coefficients to predict the positional
effect for all queries (similarly forα coefficients, although
many advertisers are query-specific by nature). We use
query-specific test datasets to test both the “global” model
and the “local” model for the particular query. As a baseline
experiment, we compute click-through rates by dividing the
number clicks on an advertisement link by the number of
impressions of that link.
We first look at the performance of the logistic regression

Figure 2: Local vs. Global Logistic Regression

models with respect to a baseline method, in terms of their
log likelihood scores. Figure 2 shows the difference between
the log likelihood of the logistic regression models and the



baseline, weighted over the baseline, for a random subset of
our datasets. Regardless of their performance with respect to
the baseline, the local logistic regression models have bet-
ter log scores than the global model across all of our test
datasets. We will therefore focus our analysis on the local
logistic regression models.
Figure 3 shows the difference between the log likelihood
scores of the logistic regression models and a baseline click-
through prediction method which captures no contextual ef-
fects. These log scores are computed for every one of our
test datasets and are weighted over the baseline. Ally-values
greater than0 imply that the logistic regression model out-
performs the baseline. We can therefore see that our local
logistic regression models are the best predictors of click-
through rates among the approaches that we have considered
so far. Using a sign test we determine that these results are
statistically significant (p < 0.0001).

We also examine the performance of the hidden variable

Figure 3: Logistic Regression Log Scores over the Baseline

model with respect to the baseline approach. By compar-
ing the local and global hidden variable models we deter-
mine that once again the local models outperform the global
models and therefore we focus on the local models exclu-
sively. Figure 4 shows the difference between the log like-
lihood scores of the hidden variable model and the base-
line, weighted over the baseline, for each one of our query-
specific datasets. A positive difference implies better perfor-
mance for the hidden variable model over the baseline for
the given query. Using a sign test, the hidden variable model
is also significantly better than the baseline withp < 0.0001.
Next we compare the logistic regression and the hidden vari-
able models against each other. Log likelihood scores of the
logistic regression and hidden variable local models for a
random subset of our datasets are presented in table 1. Us-
ing the log scores for all of our datasets, we test for statistical
significance using a sign test and determine that the logis-
tic regression models perform significantly better than the
hidden-variable models withp = 0.004.

Since the local logistic regression models have higher log
likelihood scores click-through rate predictors, we would
like to examine them more carefully. The logistic regression
coefficients can be useful in determining the contribution of
each feature toward the event of a click. In order to analyze

Figure 4: Hidden Variable Log Scores over the Baseline

Query Logistic Regression Hidden Variable
cars -0.031022 -0.034205
chat -0.058847 -0.060784

cingular -0.101937 -0.103076
real estate -0.052306 -0.060316
superman -0.059982 -0.085866
weather -0.089299 -0.090457

Table 1: Logistic Regression and Hidden Variable Log
Scores

the positional effect on click-through, we look at the logis-
tic regression coefficients for the different positions. Table 2
contains the positional coefficients of the logistic regression
models for several queries. A larger value for the coefficient
implies a greater contribution to the eventC = 1. Note that
the general trend shows that higher positions have larger co-
efficient values, implying that a user is more likely to click
on links that are displayed at higher positions in the result
set. Values that do not follow the trend may be attributed to
particularly relevant links appearing frequently in the same
position. Another possible factor may be related to the rela-
tive position of the advertisement link on the page.

Query pos 1 pos 2 pos 3 pos 4
amazon -1.362 -2.017 -1.231 -3.919

debt consolidation -0.921 -1.312 -1.365 -1.850
games -3.434 -3.805 -3.679 -5.415
mp3 -0.507 -1.062 -1.580 -2.569

ringtones -1.198 -1.226 -1.481 -2.954
white pages -1.161 -0.407 -1.194 -4.901

Table 2: Logistic Regression Position Coefficients

Given that the logistic regression results proved to be sig-
nificantly better than the baseline approach and the hidden-
variable model, we extend this logistic regression model in
the next section, to include contextual features such as sur-
rounding link quality and relative placement.



Adding Contextual Features
So far we only considered the effect of the advertiser and
the position on click-through rate prediction. In this section,
we expand our feature set to include additional contextual
information regarding the advertisement’s relative position
and quality. The new features are meant to capture the qual-
ity of the alternative links; intuitively, if the link of interest
is placed below a particularly good advertisement link, we
expect that the click rate will be lower than if it is placed
below a particularly bad advertisement link. Given the re-
sults in the previous section, we consider the added contex-
tual features only in the logistic-regression model; for future
work, we plan to incorporate these features into the hidden-
variable model as well.
In our search engine, advertisement links are displayed ei-
ther on the main line of the results page, preceding the or-
ganic results, or on a side bar located on the right hand side
of the page. The number of advertisements shown on the
main line and the side bar varies and sometimes there are
no main line or side bar links at all. In the new model, we
use this distinction between the two groups of links since
their different locations on the results page may affect click-
through. An example of the advertisement links layout on a
results page can be seen in figure 5.

Figure 5: Search Results with Advertisement Links

The new features that we add to our models include con-
textual information denoting relative placement of advertise-
ment links in the result set, as well as different functions
of the advertiser-effect parameters of alternative links from
the logistic regression model. In particular, we consider in-
cluding features such as the link’s physical position on the
page: main line versus side bar, whether the quality of link
above/below is better and the number of links above/below
which are better.
We extend the logistic regression model to include these fea-

tures as follows:

X(a, p) = µ+
|A|∑
i=0

αiI(a, ai)+
|P |∑
j=0

λjI(p, pj)+
|Q|∑
k=0

θkQk(a, p)

(3)
A graphical representation of this model can be seen in

figure 6.

Figure 6: Contextual Model - Graphical Representation

Learning the model parameters of the extended logistic-
regression model is problematic because the quality features
are functions of theα parameters; we can no longer apply
standard methods to learn the parameters. We apply the
following boosting-style algorithm to learn the parameters
of the extended model. First, we setQk = 0 for all k,
and run the standard gradient-descent algorithm. Next, we
update theQk values using theα values that resulted. We
then re-run the gradient-descent algorithm to learn new
values for the parameters, keeping theQk values constant.
We iterate this process of defining constantQk values in
terms of theα values from the previous iteration. After
each iteration, we record the log-likelihood of the data.
We stop this process after the first iteration in which the
log-likelihood decreases, and we use as our final model the
one from the previous iteration in which the log-likelihood
was the highest.
We compare the results of the simple local logistic re-
gression model, our best performing model so far, to the
contextual model that was trained using the gradient descent
algorithm. From table 3 we observe that while there is a
difference in performance between the two approaches, it is
not as apparent as it was with the previous improvements to
the baseline approach.

Query Logistic Regression Contextual Model
astrology -0.012498 -0.012285

britney spears -0.049658 -0.050804
debt -0.013555 -0.012102

expedia -0.152005 -0.151790
insurance -0.023235 -0.018511

music -0.010922 -0.010875

Table 3: Logistic Regression and Contextual Model Log
Scores

Figure 7 shows the weighted relative gain of the contex-
tual model with respect to the simple local logistic regres-
sion model per query. While the contextual models perform



significantly better than the simple logistic regression using
a sign test (p < 0.04), they do not yield a very large gain
with an average of≈ 0.01 weighted difference. This im-
plies that from a practical standpoint, it may be beneficial
to forgo the extra contextual features in favor of the simpler
model in order to improve complexity.

Figure 7: Contextual Model Gain over Logistic Regression

Conclusion
In this paper we presented several approaches for model-
ing the click-through rates of advertisement links on a large-
scale search engine. In such an application, it is particularly
important to learn parsimonious models that capture the pre-
sentation and advertiser effects on click-through rates; the
choices that we make for which advertisements to show in
what contexts have an immediate impact on the amount of
revenue that we gain from the system.
We considered two simple models for learning the adver-
tiser and positional effects, and compared their performance
to a standard method for click-through rate prediction. Both
of our modeling approaches, logistic regression and hidden
”look” variable, proved to be significantly better than the
baseline withp < 0.001 using a sign test. Since the success
of both approaches shows that modeling the advertiser and
position information improves click-through rate prediction,
we were interested in extending one of these models to in-
clude other contextual information. After evaluating the two
approaches against each other, we determined that the lo-
gistic regression models were the better click-through rate
predictors.
Using this information, we decided to extend the logistic re-
gression models to include contextual features such as rela-
tive position on the page and quality of the alternative links
in the result set. Although the results are statistically sig-
nificant, the relative difference between the log likelihood
scores is not a large one. We note here that in practical ap-
plications one should consider the tradeoff between the ac-
curacy and complexity of these approaches. For instance,
given the small gain from the additional contextual features
and scalability issues for using local models, a global logis-
tic regression model trained using a sample of the data may
be the best approach.

One limitation of the contextual model is that it can only
learn about differences that appear in data. For future work,
we plan to study the trends in our data as well as expand our
datasets in order to identify other useful features to model.
We would also like extend the hidden-variable model to in-
clude contextual features, and determine if a different mod-
eling approach could yield a significant performance gain.
Other directions for future work include utilizing click in-
formation about surrounding advertisement links in training
a predictive model of click-through, developing models for
predicting the probability of the set of click-through sessions
for a page, and modeling the probability of click-through us-
ing features of the users previous behavior.
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