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A Survey of Correlation Clustering

Abstract

The problem of partitioning a set of data points into clusters is found in many applications.
Correlation clustering is a clustering technique motivated by the the problem of document
clustering, in which given a large corpus of documents such as web pages, we wish to find
their optimal partition into clusters. While most commonly used clustering algorithms such
as k-means, k-clustering sum and k-center require prior knowledge of the number of clusters
that we wish to divide the data into, for the case of classifying web documents, finding the
number of clusters is not a trivial task. Correlation Clustering, introduced by Bansal, Blum
and Chawla [1], provides a method for clustering a set of objects into the optimal number of
clusters, without specifying that number in advance. In this paper we present two different
approximation algorithms for the Correlation Clustering problem. We then discuss some open
problems and give our intuition as to how to approach them.

1 Introduction

Clustering is the task of partitioning data points into groups based on their similarity. Clustering
techniques are commonly used in fields such as machine learning and data mining. This project
is motivated by the problem of clustering a large corpus of documents, such as web pages, when
we do not want to establish a set number of clusters k to partition the data into. Most known
clustering algorithms such as k-means, k-sum and k-center, require the user to specify the number
of clusters they wish to obtain prior to the execution of the algorithm. However, in the case that
one does not want to place such a constraint on the task, as in the case of clustering web pages
where the number of clusters cannot be easily determined, the mentioned algorithms do not apply.

Recently, [1] came up with a new clustering technique named Correlation Clustering that does
not require a bound on the number of clusters that the data is partitioned into. Rather, Correlation
Clustering divides the data into the optimal number of clusters based on the similarity between
the data points. In their paper, [1] Bansal et al. discuss two objectives of correlation clustering:
minimizing disagreements and maximizing agreements between clusters. The decision version of
these optimization problems was shown in [1] to be NP-Complete using a reduction from X3C.

We assume that there exists a classifier function f , such that given two data points x and y,
outputs ’+’ if x, y are similar and ’-’ if they are dissimilar. We can view the data points as nodes
in a connected graph G whose edges are labeled according to the classifier. The task of maximizing
agreements is therefore trying to maximize the number of ’+’ edges connecting nodes in the same
cluster plus ’-’ edges connecting nodes across clusters, while minimizing disagreements is trying to
minimize the ’-’ labeled edges inside cluster plus the number of ’+’ edges across clusters.

Correlation Clustering can be viewed as an agnostic learning problem, where we try to learn the
classifier function f from past data, and our goal is to partition the current data in order to optimize
the correlation with f . The problem of agnostic learning is trying to find the best representation of
the target function f using a hypothesis class with limited representational power. More specifically,
the edges of the graph can be viewed as labeled examples and we try to represent the classifier
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f using a hypothesis class of vertex clusters. So whenever we have (u, v) and (v, w) as positive
examples, (u, w) must also be a positive example, therefore we might not be able to represent f in
the best possible way.

Most of the work on this clustering method is fairly new, as it was only introduced in 2002 by
[1]. For the rest of this paper, we will discuss some of the major results as well as a couple of open
questions and an intuition for their solution.

2 Definitions

Let G = (V,E) be a graph on an vertices with edge weights ce ≥ 0. Let e(u, v) ∈ {+,−} be the
label of the edge (u, v). The positive neighborhood of u is N+(u) = {u}∪{v : e(u, v) = +} and the
negative neighborhood of u is N−(u) = {u} ∪ {v : e(u, v) = −}. Let OPT represent the optimal
clustering, and for a clustering C, we let C(v) be the set of vertices that are in the same cluster as v.
Consider a clustering C = {C1, C2, . . . , Cn}. A negative labeled edge inside a cluster is considered
a negative mistake and a positive labeled edge between clusters is considered a positive mistake. If
our goal is to minimize disagreements, we minimize the weight of positive edges between clusters
and absolute valued weight of negative edges inside clusters. When maximizing agreements we
wish to maximize the weight of positive edges inside clusters plus the absolute valued weights of
negative edges between clusters.

3 Previous Work

3.1 Overview

In the original paper that introduced the problem, Bansal et al. [1] showed a constant fac-
tor approximation algorithm for minimizing disagreements, based on the principle of counting
erroneous triangles which are triangles with two positive labeled edges and one negative labeled
edge. In addition, they also showed a PTAS for maximizing agreements similar to the PTAS for
MAXCUT on dense graphs, focusing on complete graphs, as well as graphs with edge labels -1 and
1.

The work on minimizing disagreement was extended in [3] where an O(logn) approximation
algorithm is given for general graphs is presented using linear programming and region-growing
techniques. Demaine and Immmorlica [3] also proves that the problem of minimizing disagreements
is as hard as the APX-hard problem minimum multicut.

Charikar et al. [2] gave a factor 4 approximation algorithm for minimizing disagreements on
complete graphs, and also a factor O(logn) approximation for general graphs. In addition they
showed a factor 0.7664 approximation for general graphs and proved that finding a PTAS is APX-
hard. Similar results on the hardness of minimizing disagreements were obtained independently
by Emanuel et al.[4]. Lastly, Swamy [6] gave a 0.7666-approximation algorithm for maximizing
agreements in general graphs with non-negative edge weights using semidefinite programming.

We will show the constant factor approximation algorithm for minimizing disagreements in com-
plete graphs presented in [1] as well as the O(logn) approximation algorithm of [3] for minimizing
disagreements in general graphs. Each of these algorithms uses a different method for approximat-
ing and optimizing the clustering. Looking at these different methods is useful when considering
the open questions related to this topic.
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3.2 Minimizing Disagreements in Complete Graphs

Bansal et al. [1] show an approximation algorithm for clustering by minimizing disagreements in
complete graphs. Their approach is to show that the number of errors (disagreements) made by
the algorithm is bounded by a constant factor of OPT. They argue that the number of mistake
that the algorithm makes can be attributed to the number of erroneous triangles, where two edges
are labeled postive and one edge is labeled negative. We will first present the argument that if we
get a partial clustering that is sufficiently ”clean” then we can attribute the errors to erroneous
triangle such that the triangle we choose are almost completely edge disjoint (Lemma 1). We will
then argue that must exist a clustering OPT’ which is close to optimal, where every non-singleton
cluster is sufficiently ”clean”. At the end we can present an algorithm that will guarantee such a
clustering with the number of mistakes in singleton clusters bouned by OPT’ and the number of
mistakes in ”clean” clusters bounded using Lemma 1.

Definition 1 A vertex v is δ-good with respect to cluster C ⊆ V if

• |N+(v) ∩ C| ≥ (1− δ)|C|

• |N+(v) ∩ (V \ C)| ≤ δ|C|

A vertex v that is not δ-good with respect to C is said to be δ-bad with respect to C.
C is δ-clean if all v ∈ C are δ-good with respect to C.

Lemma 2 The number of mistakes made by a clustering of V where all clusters are δ-clean for
delta ≤ 1/4 is at most 8 times the number of mistakes made by OPT.

Proof We bound the number of mistakes made by OPT by the number of edge-disjoint erroneous
triangles, which are triangles with two ’+’ edges and one ’-’ edge. We can do so since OPT must
make at least one mistake for each such triangle. We therefore present a bound on the clustering
of V , which is at most 8 times the number of edge-disjoint erroneous triangles. Since the total
number of mistakes made by the algorithm is the number of negative mistakes plus the number of
positive mistakes, we need to consider both possibilities.

For negative mistakes, pick a negative labeled edge (u, v) such that u and v belong to the same
cluster Ci. We then choose a node w ∈ Ci such that (u, w) and (v, w) are both positive labeled
edges, and therefore (u, v) will be a negative edge in the erroneous triangle (u, v, w). We need
to argue that for all (u, v) we can choose a w such that no other negative edges having either
u or v as one of their endpoints, also choose w. We know that Ci is δ-clean, so by definition u
and v have at most δ|Ci| neighbors in Ci. Therefore for (u, v) we can choose at least (1 − 2δ)|Ci|
vertices w such that (u, w) and (v, w) are positive. We can also infer that at most 2δ|Ci| − 2
could have been chosen by other negative edges containing either u or v. We thus have at least
(1− 2δ)|Ci| − (2δ|Ci| − 2) = (1− 4δ)|Ci|+2. choices of w. Since we have δ ≤ 1/4, there will always
be a w for (u, v) to choose. Since each positive edge (v, w) can be chosen for negative mistakes on
v or negative mistakes on w, (v, w) may be chosen at most twice. Therefore, if we use edge disjoint
erroneous triangles, we can account for at least 1/4 of the negative mistakes.

For positive mistakes, consider the edge (u, v) where u ∈ Ci and v ∈ Cj , since a positive mistake
refers to an positive edge between clusters. We choose a node w ∈ Ci such that (u, w) is positive
and (v, w) is negative. Similarly, there will be at least |Ci|+ δ(|Ci|+ |Cj |) vertices that obey this
condition, of which at most δ(|Ci| + |Cj |) will be taken. Just as in the case of negative mistakes,
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each positive edge can be chosen at most twice so we can account for at least 1/4 of the positive
mistakes by using edge-disjoint erroneous triangles.

Therefore, having both positive and negative mistakes we can choose edge disjoint erroneous
triangles to account for at least 1/8 of the mistakes made by the clustering. �

Lemma 3 There exists a clustering OPT’ such that all non-singleton clusters are δ-clean and the
number of mistakes made by OPT’ is at most ( 9

δ2 +1) times the number of mistakes made by OPT.

Proof We apply a ”clean-up” procedure to the optimal clustering that results in the clustering
OPT’. Let C1, C2, ..., Cn be the clusters of OPT. Let S = ∅.

• For i = 1 to k do:

- If there are more than δ
3 |Ci| δ

3 -bad vertices in Ci, ”dissolve” the cluster Ci by letting
C ′

i = ∅ and S = S ∪ Ci.
- Else let Bi be the set of δ

3 -bad vertices in Ci. Then S = S ∪Bi and C ′
i = Ci

Bi

• Output the clustering of OPT’ = C ′
1, C

′
2, ..., C

′
n, {x}x∈S .

We will show that the mistakes made by OPT and OPT’ are related, starting by showing that
each C ′

i is δ-clean. This claim is trivial when C ′
i is empty. Otherwise, we know that |Ci| ≥ |C ′

i| ≥
(1− δ

3)|Ci|. For every vertex v in cluster C ′
i the following holds:

|N+(v) ∩ C ′
i| ≥ (1− δ

3
)|Ci| −

δ

3
|Ci| > (1− δ)|C ′

i|

Also, for C̄ ′
i = V \ C ′

i

|N+(v) ∩ C̄ ′
i| ≤

δ

3
|Ci|+

δ

3
|Ci| ≤

2δ

3
|C ′

i|
1− δ/3

< δ|C ′
i|(asδ < 1)

This shows that every C ′
i is δ-clean. Next, we determine the number of mistakes. In the case

where we dissolve a cluster Ci then the number of mistakes associated with it is at least δ
3

2|Ci|2/2.
Thus, the number of mistakes we get by dissolving this cluster is at most |Ci|2/2. If the cluster Ci

was not dissolved then the number of mistakes associated with it is at least δ
3 |Ci||Bi|/2. So using

the above procedure we only add at most |Ci||Bi| mistakes. Note that dissolving a cluster adds at
most δ2

9 fraction of the mistakes made by the optimal cluster, and not dissolving a cluster adds at
most δ

6 < δ2

9 fraction of the mistakes made by the optimal cluster. Therefore, we have shown the
existence of a clustering OPT’ in which all non-singleton clusters are δ-clean and the number of
mistakes made by OPT’ is at most ( 9

δ2 + 1) times the number of mistakes made by OPT.
�

We now present an algorithm that tries to find clusters similar to OPT’. Note that the clusters
C ′

i in OPT are non-singleton clusters, while the clusters added to S are singleton clusters.

Algorithm I
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• Choose a vertex v arbitrarily from the set of vertices V

1 Let A(v) = N+(v)

2 While there exists a vertex x in A(v) such that x is 3δ-bad with respect to A(v), remove
x from A(v).

3 Let Y = {y|y ∈ V, y is 7δ-good with respect to A(v)}. Add all vertices in Y to A(v).

• Remove all vertices of A(v) from the set of vertices V

• Repeat until

- No vertices are left in V

- All sets A(v) are empty, in which case output all remaining vertices as singleton clusters.

Let A1, A2, A3, . . . be the clusters that the algorithm outputs, and let Z be the set of singleton
clusters. We would like to show that the number of mistakes made by Algoritm I is within a
constant factor of the number of mistakes made by OPT. To do so, we want to use the following
theorem.

Theorem 4 ∀j∃i such that C ′
j ⊆ Ai, and every Ai is 11δ-clean

Since the proof of this theorem is lengthy and based on several lemmas, we will not detail it
here but rather give a brief sketch. For the complete proof please refer to [1].

Proof sketch: First, we must show that if v ∈ C ′
i where C ′

i is a δ-clean cluster in OPT’, then any
vertex w ∈ C ′

i is 3δ-clean with respect to N+(v). We then show that given an arbitrary set X, if
v1 ∈ C ′

i and v2 ∈ C ′
j then v1 and v2 cannot be both 3δ-good with respect to S. From these two

facts, we get that after step 2 of the algorithm, no two vertices from distinct C ′
i and C ′

j can be both
in A(v). Then we claim that each Ai is either a subset of S or contains exactly one of the clusters
C ′

j .
Then we go on to show that for every j, ∃i such that C ′

j ⊆ Ai. We do so by proving that for any
vertex v chosen by the algorithm such that v ∈ C ′

j , the algorithm does not remove any vertex from
N+(v)∩C ′

j during step 2. This can be easily shown by induction. We get that at the end of step 2
of the algorithm, A′

i contains at least (1−δ)|C ′
j | vertices of C ′

j . The first part of the theorem follows.
Then we finally show that every Ai is 11δ-clean, using the fact that in step 3 we add vertices that
are 7δ-good with respect to A′

i. We use this to show that N+(v) ∩ Āi ≤ 7δ|A′
i| ≤ 11δ|Ai|.

�

We bound the number of mistakes of our algorithm by the number of mistakes made by OPT’
and OPT. We refer to mistakes for which both vertices are associated with some clusters Ai and
Aj as internal mistakes, and mistakes that have one node in the set Z as external mistakes.

Lemma 5 The total number of external mistakes made by Algorithm I is less than the number of
external mistakes made by OPT’.

Proof We know that no vertex v ∈ C ′
i can be contained in the set of singleton clusters Z. There-

fore, Z ⊆ S. Any external mistakes made by the algorithm correspond to positive labeled edges
with one endpoint in Z. These are also mistakes in OPT’ since those edges are incident on vertices
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in S. The lemma follows. �

We now need to relate the number of internal mistakes made by Algorithm I to the number of
internal mistakes made by OPT’ and OPT. Using Lemma 2, we can see that the clustering of the
vertices obtained using Algorithm I

Lemma 6 The total number of internal mistakes made by Algorithm I is at most 8 times the
number of mistakes made by OPT.

Using lemmas 5, 6 and 3, we proved that our algorithm gives a constant factor approximation
to OPT.

Theorem 7 The number of mistakes made by algorithm I is at most 9( 1
δ2 + 1) times the mistakes

made by OPT.

3.3 Minimizing Disagreements in General Weighted Graphs

In this section, we present an O(logn) approximation algorithm for minimizing disagreements in
general weighted graphs which was given by Demaine et al. [5]. This algorithm uses a combination
of Linear Programming, Rounding and Region-Growing techniques. This algorithm first solves a
linear program and then uses the resulting fractional values to determine the distance between two
vertices, where larger distance corresponds to weaker similarity. In the last step of the algorithm, we
use the region-growing technique to group close vertices together and round the fractional values.

Consider the graph G = (V,E). Let xuv be a boolean variable representing the edge label of
e(u, v) ∈ E , u, v ∈ V . Given a clustering C, let xuv = 0 if u and v are in the same cluster,
and xuv = 1 if they are in different clusters. Recall that the number of mistakes in clustering
C is the sum of the positive and negative mistakes. We define the weight of the clustering as
the sum of the sum of the weight of erroneous edges in C. For a clustering C, the weight of
the clustering is w(C) = wp(C) + wn(C) where wp(C) =

∑
{e = (u, v) ∈ E+, u /∈ C(v)} and

wn(C) =
∑
{e = (u, v) ∈ E−, u ∈ C(v)}. Note that (1−xuv) = 1 if the edge (u,v) is inside a cluster

and (1− xuv) = 0 otherwise. Let ce denote an edge e(u, v) ∈ E, we can rewrite the weight of C as

w(C) =
∑

e∈E−

ce(1− xe) +
∑

e∈E+

cexe

In order to minimize disagreements, we need to find an assignment to xuv that minimizes the
weight such that xuv ∈ {0, 1} and xuv satisfies the triangle inequality. We formulate the problem
as a linear program

Minimize
∑

e∈E−

ce(1− xe) +
∑

e∈E+

cexe

Such that xuv ∈ [0, 1] , xuv = xvu and xuv + xvw ≥ xuw.
We show a procedure to round this LP in order to get an O(logn) approximation using the

region-growing technique. Region-growing refers to the procedure of growing a ”ball” around nodes
in a graph by iteratively adding nodes of fixed distance r to the ball, until all nodes belong to some
”ball”. In our algorithm, the set of nodes contained in each ball corresponds to the set of nodes
that make up each cluster.
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Definition 8 A ”ball” B(u, r) of radius r around a node u is the set of nodes v such that xuv ≤ r,
as well as the subgraph induced by these nodes and the ( r−xux

xvw
) edges (v,w) with only one endpoint

v ∈ B(u, r).

Definition 9 The cut of a set S is the weight of the positive edges with exactly one endpoint in S.

Cut(S) =
∑

|(v,w)∩S|=1,(v,w)∈E+

cvw

The cut of a ”ball” is Cut(S) where S = {v|v ∈ B(u, r)}.

Definition 10 The volume of a set S is the weighted distance of edges (u, v) such that u, v ∈ S.

V ol(S) =
∑

(v,w)⊂S,(v,w)∈E+

cvwxvw

The volume of B(u, r) includes the fractional weighted distance of the positive edges leaving
B(u, r). If (v, w) ∈ E+ is a cut positive edge of B(u, r) with v ∈ B(u, r) and w /∈ B(u, r) then
(v, w) contributes weight of cvw(r−xuv) to the volume of B(u, r). Let I be the initial volume of the
”ball”, so the volume of B(u, 0) is I.

We would show an algorithm that rounds a fractional solution to an integral solution. Let F be
the volume of the graph G. Assume that the weight of the positive mistakes made by the fractional
solution is F . Let the initial volume I = F/n and let c be a constant.

Algorithm II

• Arbitrarily choose a node u ∈ G.

• Set radius r = 0.

• Increase r by min{(duv − r) > 0 : v /∈ B(u, r)} so that B(u, r) includes another edge. Repeat
until Cut(B(u, r)) ≤ c ln(n + 1)× V ol(B(u, r)).

• Output the set of nodes in B(u, r) as one cluster of C.

• Remove the vertices and incident edges of B(u, r) from G.

• Repeat the above steps until G is empty.

We now analyze this algorithm to show that the cost of the resulting solution is not significantly
larger than the cost of the fractional solution. We use OPT to refer to the optimal solution and
FRAC(xuv) and Round(xuv) to refer to the fractional and rounded solutions of xuv in the LP
respectively. We show that Algorithm II gives an O(logn) approximation to the cost of positive
between clusters edges and the cost of negative edges inside clusters.

Let B be the set of balls found by Algorithm II.

wp(ROUND) =
∑

(u,v)∈E+

cuvROUND(xuv) =
1
2

∑
B∈B

Cut(B) (1)
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Since our algorithm grows each B until Cut(B) ≤ c ln(n + 1)× V ol(B) we get from (1)

wp(ROUND) ≤ c

2
ln(n + 1)×

∑
B∈B

V ol(B) (2)

By the design of the algorithm, all generated balls are disjoint so using (2) and our prior
assumption F = wp(FRAC) we get

wp(ROUND) ≤ c

2
ln(n + 1)×

 ∑
(u,v)∈E+

cuvFRAC(xuv) +
∑
B∈B

F

n


≤ c

2
ln(n + 1)× (wp(FRAC) + F )

≤ c ln(n + 1)× wp(FRAC)

To observe the O(logn) approximation we claim that the balls returned by the algorithm have
radius r ≤ 1/c, which follows from the lemma [5], [10]

Lemma 11 For any vertex u and a family of balls B(u, r), the condition Cut(B(u, r)) ≤ c ln(n +
1)× V ol(B(u, r)) is achieved by some r ≤ 1/c.

We now show that the algorithm guarantees an O(1) approximation to the cost of negative
edges. We do so by using the above lemma to guarantee the bound on the radius and proving that
the solution is a c

c−2 -approximation of the cost of negative edges inside clusters. Let B be the set
of balls found by Algorithm II. We get,

wn(FRAC) =
∑

(u,v)∈E−

cuv(1− FRAC(xuv)) (3)

≥
∑
B∈B

∑
(u,v)∈B∩E−

cuv(1− FRAC(xuv)) (4)

≥
∑
B∈B

∑
(u,v)∈B∩E−

cuv(1− 2/c) (5)

≥ (1− 2/c)
∑
B∈B

∑
(u,v)∈B∩E−

cuv(1− 2/c) (6)

=
c− 2

c
wm(ROUND) (7)

Equation (5) follows from (4), the triangle inequality and the fact that r ≤ 1/c. The algorithm
guarantees an O(1) approximation given that c > 2 in the approximation-ratio c

c−2 .
We therefore get the total number of mistakes made by the algorithm to be

w(ROUND) = wp(ROUND) + wn(ROUND)

≤ c ln(n + 1)× wp(OPT ) +
c

c− 2
× wn(OPT )

max

{
c ln(n + 1),

c

c− 2

}
w(OPT )
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So in total the number of mistakes made by Algorithm II is O(logn) of OPT, where c > 2.

4 Open Problems

Although the majority of the open problems posed by the authors of the original paper [1] were
solved in subsequent papers, some of them as recently as February of 2005, there are several
questions that remain open and improvements that can still be made to some of the approximation
factors. The first problem proposed in [3], [5], is to find an O(logn) approximation algorithm
for minimizing disagreements in general weighted graphs, that is combinatorial rather using LP.
However, given the hardness results shown in [5] it is unlikely to find an approximation to this
problem better than O(log n).

Another problem mentioned in [1], [3], [5] is trying to use Correlation Clustering with different
objective functions. In particular, an interesting objective would be maximizing agreements minus
disagreements, which corresponds to maximizing the correlation. The only known result for this
objective was given by [11] using an (Ω(1/ log n))-approximation algorithms. There is still room
for improvements on algorithms for maximizing the correlation, as it was even described by the
authors of [11] as being ”a long way from the best-known hardness of approximation result”.

For maximizing agreements on weighted general graphs, there is a trivial 1/2-approximation by
either putting all nodes in one cluster or every node in a separate cluster depending on the number
of positive edges. The .7776-approximation algorithm is given in [6] using semidefinite programming
for general unweighted graphs. It is still open whether we can get a better approximation for general
weighted graphs.

4.1 Approach and Intuition

We decided to look at several approaches to tackle these open problems. For the problem of giving
a combinatorial O(log n) approximation for minimizing disagreements in general weighted graphs,
we looked at the method presented in this paper, which gives a constant-factor approximation for
minimizing disagreements on complete graphs by counting the number of erroneous triangles. Since
the bound given by counting triangles will not be a sufficient approximation, we attempted to find
an algorithm that bounds the number of error by the number of erroneous cycles in a cycle cover
of the graph, although no results were found. Due to our limited background on approximation
algorithms, it was necessary to gather information from several sources such as [8] [9] and [12]
on construction methods for approximation algorithms. In particular, we were interested in linear
programming and semidefinite programming formulations since these techniques proved useful for
approximating some of the related problems. We also decided to look into the obvious relation of
the correlation clustering problem to the MIN/MAX CUT. This seemed to be a likely direction to
turn to since the PTAS given for maximizing agreements in [1] is modeled using the PTAS given for
MAX CUT on dense graphs. Also, [5] and [2] gave hardness of approximation results for minimizing
disagreements in general weighted graphs based on the minimum Multicut problem. Our intuition
was that this would be of particular interest when trying to give a better approximation for general
unweighted graphs, but it was difficult to find a comparable approximation algorithm that could be
adapted to solve our problem as well. Lastly, the region-growing technique for solving the problem
of minimizing disagreements that was presented in this paper seemed like an approach that would
be useful in practice. We chose to implement the algorithm using this approach for clustering a large
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set of Web pages. We selected different samples of 200 pages each from different genres to test the
clustering algorithm on. The accuracy of the algorithm compared to clustering by manual inspection
was about than 95%. Even though the results have a dependency on the classifier function used
to decide whether two documents are similar, we believe that the accuracy of the results points to
the fact that using the region-growing technique can help get better approximation results for the
open correlation clustering problems that were not shown to have a tight approximation factor.
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