
Timer Reconsideration for Enhanced RTP Scalability

Jonathan Rosenberg Henning Schulzrinne
Bell Laboratories Columbia University

Abstract

RTP, the Real Time Transport Protocol, has gained
widespread acceptance as the transport protocol for voice and
video on the Internet. Its companion control protocol, the Real
Time Control Protocol (RTCP), is used for loose session control,
QoS reporting, and media synchronization, among other func-
tions. The RTP specification describes an algorithm for determin-
ing the RTCP packet transmission rate at a host participating in
a multicast RTP session. This algorithm was designed to allow
RTP to be used in sessions with anywhere from one to a mil-
lion members. However, we have discovered several problems
with this algorithm when used with very large groups with rapidly
changing group membership. One problem is the flood of RTCP
packets which occurs when many users join a multicast RTP ses-
sion at nearly the same time. To solve this problem, we present a
novel adaptive timer algorithm called reconsideration. We present
a mathematical analysis of this algorithm, and demonstrate that
it performs extremely well, reducing the congestion problem by
several orders of magnitude. We also back up these results with
simulation.

1 Introduction

There has recently been a flood of interest in the delivery of
multimedia services on the Internet. The growing popularity of
Internet telephony, streaming audio and video services (such as
those provided by Real Audio) and the Mbone are all indicators of
this trend. To support these applications, standards are being de-
veloped to insure interoperability. These include the ITU-T H.323
[1] specification for Internet telephony, the Session Initiation Pro-
tocol (SIP) [2] for multimedia session initiation, and RTSP [3] for
controlling multimedia servers on the Internet.

Interwoven with all of the above protocols is the Real Time
Transport Protocol (RTP) [4]. It is used by H.323 terminals as
the transport protocol for multimedia; both SIP and RTSP were
designed to control multimedia sessions delivered over RTP. Its
main function is to carry real time data, such as voice and video,
over an IP network. To do this, RTP packets contain payload type
identifiers, sequence numbers, end-of-frame markers, and times-
tamps, all of which aid in synchronization, loss detection, and
identification. RTP also contains a control component, called the
Real Time Control Protocol (RTCP). It is multicast to the same
multicast group as RTP, but on a different port number. Both data
sendersandreceivers periodically multicast RTCP packets. RTCP
packets provide many services. These include participant identifi-
cation (via the Source Descriptor (SDES) packet), QoS reporting
from receivers, and sender reports for inter-media synchroniza-
tion. This information is key for sender-based rate adaptation [5],
network monitoring [6], and conference control.

Since RTP was designed for multicast, it was engineered to
work well with both small sessions (such as a 5 party telecon-
ference) and large ones (such as an Mbone broadcast of a shuttle

launch, where group sizes of two hundred listeners have been re-
ported [7]). As the demand for multimedia continues to grow,
Mbone sessions with thousands of members will become com-
monplace. It has even been suggested that RTP might be the trans-
port protocol of choice for multicast distribution of multimedia in
future cable networks, where tens of thousands of users might be
the norm.

The principle difficulty in achieving scalability to large group
sizes is the rate of RTCP packet transmissions from a host. If
each host sends packets at some fixed interval, the total packet rate
sent to the multicast group increases linearly with the group size,
N . This traffic would quickly congest the network. To counter
this, the RTP specification requires that end systems utilizing RTP
listen to the multicast group, and count the number of distinct RTP
end systems which have sent an RTCP packet. This results in a
group size estimate,L, computed locally at each host. The interval
between packet transmissions is then set to scale linearly withL.
This has the effect of giving each group member (independent of
group size) a fair share of some fixed RTCP packet rate to the
multicast group.

The above scaling mechanism works well for small to
medium sized groups (up to perhaps a few hundred members).
However, it suffers from problems when applied to larger groups,
particularly ones whose group membership is dynamic. We have
identified three inter-related problems which arise with large, dy-
namic multicast groups.

The first difficulty is congestion. In many cases, the access
bandwidths for users will be small compared to network band-
widths (28.8 kb/s modems, for example, can now handle multime-
dia RTP sessions when RTP header compression [8] is used). We
also anticipate that many multicast RTP sessions will exhibit rapid
increases in group membership at certain points in time. This can
happen for a number of reasons. Many sessions have precise start
times. Multimedia tools such as vat and vic can be programmed to
join a session at the instant of its inception. Even without automa-
tion, users are likely to fire up their applications around the time
the session is scheduled to begin. Such phenomena are common
in current cable networks, where people change channels when
shows begin and end. Studies have been performed to look at the
group membership over time of some of the popular sessions on
the Mbone [9][7]. These studies show exactly this kind of “step-
join” behavior. The result of these step joins are inaccuracies in
the group size estimates obtained by listening to the group. Each
newly joined member believes that they are the only member, at
least initially. They send RTCP packets at their fair share of the
RTCP bandwidth (which each believes is all of it). Combined with
slow access links, the result is a flood of RTCP reports, causing
access link congestion and loss.

A second problem for RTCP scalability isstate storage. In
order to estimate group sizes, hosts must listen to the multicast



group and count the number of distinct end systems which send
an RTCP packet. To make sure an end system is counted only
once, its unique identifier (SSRC) must be stored. Clearly, this
does not scale well to extremely large groups, which would re-
quire megabytes of memory just to track users. Another difficulty
is delay. As the group sizes grow, the time between RTCP reports
from any one particular user becomes very large This interval may
easily exceed the duration of group membership. This means that
timely reporting of QoS problems from a specific user will not
occur, and the value of the actual reports is lost.

In this paper, we consider only the first problem, that ofcon-
gestion. It is our aim to solve this problem with asingle mecha-
nism, applicable to large groups and small alike. This means that
the use of summarizers [10] is not considered, for example, since
this solution makes sense for large groups only.

There has been a small amount of prior work on resolving dif-
ficulties with timers in Internet protocols. Most prominent among
this work is [11] and [12]. Sharma et. al. consider how to scale
soft state timers to varying link capacities and state quantities.
Their work considers only the point to point case. Our work con-
siders the case where the network state is distributed among many
nodes, connected by some sort of broadcast mechanism. Our work
can thus be viewed as a generalization of their’s to distributed mul-
ticast groups. As such, our algorithm for controlling the conges-
tion problem in RTP is applicable to other protocols and systems.
An extension to the Service Location Protocol [13] has been pro-
posed [14] which uses the reconsideration algorithm to control
congestion in the multicast group used to disseminate information
on network services. The algorithm is generally applicable to dis-
tributed systems where (1) control of bandwidth is desirable, (2)
the bandwidth is used to transmit state, (3) the state is used to
determine end system transmission rates, and (4) the state is dy-
namic. These constraints apply to BGP [15], for example, when a
route server is used and update rates are to be controlled.

2 Current RTCP Algorithm

Each useri in a multicast group using RTP maintains a single
state variable, thelearning curve, which we denote byL(t). This
variable represents the number of other users that have been heard
from at timet. The state is initialized toL(0) = 1 when the user
joins the group.

Each user multicasts RTCP reports periodically to the group.
In order to avoid network congestion, the total rate of RTCP re-
ports multicast to the group, summed across all users, is set at
5% of the total multicast session bandwidth (it is assumed in RTP
that this quantity is known a priori). We defineC as the average
interval between arrivals of RTCP packets (from any user) at end-
systems.C is then given by the average RTCP packet size divided
by 5% of the session bandwidth. To meet this criteria, each user
computes adeterministic interval, which represents the nominal
interval between their own packet transmissions required to meet
the 5% constraint. This interval is given by1:

Td = max(Tmin; CL(t));

1In actuality, the RTP specification allocates 75% of the RTCP bandwidth to
data senders, and the remaining 25% to listeners. In the remainder of the paper,
we assume that everyone is a listener. This simplifies the analysis and simulations,
all of which can be trivially extended to include the case where there are senders.

whereTmin is 2.5 s for the initial packet from the user, and 5 s for
all other packets. To avoid synchronization, the actual interval is
then computed as a random number uniformly distributed between
0:5 and1:5 timesTd.

The algorithm for sending RTCP packets follows directly.
Assume a user joins at timet = 0. The first packet from that
user is scheduled at a time uniformly distributed between1=2 and
3=2 of Tmin (which is 2.5 s for the first packet), putting the first
packet transmission time between1:25 and3:75 seconds. We de-
note this time ast0. All subsequent packets are sent at a timetn
equal to:

tn = tn�1 +R(�)max(5; CL(tn�1)); (1)

where we have definedR(�) as a random variable uniformly dis-
tributed between(1��) and(1+�). (� equals1=2 in the current
algorithm; we generalize because� has a strong impact on tran-
sient behavior).

The difficulty arises when a large number (say,N ) of users
all join the group at the same time. We call this astep-join. Since
all users start out withL(t) = 1, all schedule their first packet to
be sent betweent = 1:25 andt = 3:75, a fixed, 2.5 second inter-
val. The result is a flood ofN packets for 2.5 s, many of which
are lost if the access bandwidth is low. Since group size estimates
are based on the reception of these packets, losing them will con-
tinue to cause each user to have a low estimate of the actual group
size. This will cause continued congestion until enough packets
get through to make the group size estimates correct.

The flood of packets caused by the current RTCP algorithm
with a step join has both good and bad consequences. The rapid
arrival of RTCP packets causes a quick convergence to the correct
group size estimate, which is good. However, the real packets of
interest are the RTP media packets, not the RTCP packets. Be-
cause of the restricted amount of bandwidth available at many ac-
cess links, we believe that maintaining the RTCP rate at 5% of the
session bandwidth is the goal of any fix for the flooding problem.

3 Reconsideration
Our contribution is a new algorithm which we callreconsid-

eration. The effect of the algorithm is to reduce the initial flood of
packets which occur when a number of users simultaneously join
the group. This algorithm operates in two modes, conditional and
unconditional. We first discuss conditional reconsideration.

At time tn, as defined above, instead of sending the packet,
the user checks if the group size estimateL(t) has changed since
tn�1. If it has, the userreconsiders. This means that the user re-
computes the RTCP interval (including the randomization factor)
based on the current state (call this new intervalT 0), and adds it to
tn�1. If the result is a time before the current timetn, the packet is
sent, else it is rescheduled fortn�1+T 0. In other words, the state
at timetn gives a user potentially new information about the group
size, compared to the state at timetn�1. Therefore, it redoes the
interval computation that was done previously at timetn�1, but
using the new state. If the resulting interval would have caused
the packet to be scheduled before the current time, it knows that
its interval estimate was not too low. If, however, the recompu-
tation pushes the timer off into the future, it knows that its initial
timer estimate was computed incorrectly, and it delays transmis-
sion based on its new timer.



Intuitively, this mechanism should help alleviate congestion
by restricting the transmission of packets during the convergence
periods, where the perceived group sizesL(t) are rapidly increas-
ing.

In unconditional reconsideration, the user reconsiders inde-
pendently of whether the number of perceived users has changed
since the last report time. Thus, the RTCP interval is always re-
computed, added to the last transmission timetn�1, and the packet
is only sent if the resulting time is before the current time. Clearly,
when the group sizes are increasing, this algorithm behaves identi-
cally to conditional reconsideration. However, its behavior differs
in two respects. First, consider the case where group size esti-
mates have converged, and are no longer changing. In conditional
reconsideration, no timer recomputation is done. But for uncon-
ditional, it is still redone. Since group sizes have not changed, the
deterministic part of the interval remains the same. However, the
random factor is redrawn each time. This means that packets will
be transmitted when the recomputed random factor is smaller than
the previous factor, and packets will be delayed when the recom-
puted random factor is greater than the previous one. Note that
since the random factor is of finite extent (between1=2 and3=2),
packets are guaranteed to eventually be sent. However, the result
is an average increase in the interval between RTCP packets.

The behavior of unconditional reconsideration differs during
the initial transient as well. ConsiderN users who simultane-
ously join the group at time 0. They all schedule their first RTCP
packets to be sent betweent = 1:25 and t = 3:75. The users
whose packets were scheduled earliest (at a time a little bit after
t = 1:25) will not reconsider with conditional reconsideration,
and will always send their packets. This is because no one else
has sent any packets yet, and thus they have not perceived the
group size to have changed. In fact, because of network delays,
many users may send packets without reconsidering. Once the
first transmitted packet has reached the end systems, conditional
reconsideration “kicks in”, since users will perceive a change in
group size only then. With unconditional reconsideration, those
first few users do not wait for the first packet to arrive before using
the reconsideration algorithm. They will all recompute the timer.
Obviously, the group size estimate hasn’t changed, but the ran-
dom variable will be redrawn. For the first few users, the random
factor was initially extremely small (that’s why they are the first
few users to send). In all likelihood, when the factor is redrawn, it
will be larger than the initial factor, and thus the resulting interval
will be larger. This will delay transmission of RTCP packets for
those users. As time goes on, it becomes less likely than the new
random factor will be greater than the initial one. However, by
then, any RTCP packets which may have been sent will begin to
arrive, increasing the group size estimates for each user. In this
fashion, unconditional reconsideration alleviates the initial spike
of packets which are present in conditional reconsideration. These
arguments are all quantified in later sections.

Both modes of the algorithm are advantageous in that they do
not require any modifications to the current RTCP protocol struc-
ture. In fact, they operate properly even when only a subset of the
multicast group utilizes them. As more and more members of a
group use the algorithm, the amount of congestion is lessened in
proportion. This leaves open a smooth migration path to the new

version of the algorithm.

3.1 Simulations
We ran a number of simulations to examine the performance

of the reconsideration algorithms.
In our simulation model each user is connected to the net-

work via an access link of 28.8 kb/s downstream (i.e., from the
network to the user). We assume upstream links are infinitely fast,
since congestion occurs only downstream. This congestion is due
to the RTCP reports from all of the other users being sent to any
particular user. Multicast join latencies are ignored; this is rea-
sonable in protocols such as DVMRP [16] since initial packets
are flooded. We assume that the network introduces a delay ofD
seconds, whereD is uniformly distributed between 0 and 600 ms.
Each user has a 100 kB buffer on the downstream access link. We
assume all RTCP packets are 128 bytes in size.

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

N
um

be
r

Time (s)

Learning Curve

L(t) Current
L(t) Conditional Reconsideration

L(t) Unconditional Reconsideration
Ideal

Figure 1: Learning Curve, step join withN=10,000

1

10

100

1000

10000

100000

1e+06

1 10 100 1000 10000 100000

N
um

be
r

Time (s)

Cumulative Packets Sent

Packet Sent, Current
Packets Sent, Conditional Reconsideration

Packets Sent, Unconditional Reconsideration
Ideal

Figure 2: Total Packets Sent, step join withN=10,000

Figure 1 and Figure 2 depict state evolution for a single user
when 10,000 users simultaneously join a multicast group att = 0.
The figures depict the system with no reconsideration (the cur-
rent specification), conditional reconsideration, unconditional re-
consideration, and the ideal behavior. The graphs are plotted on
a log-log scale to emphasize the beginning and complete evolu-



tion of the system. Figure 1 depicts the learning curve, and Fig-
ure 2 shows the integral ofr(t), i.e., the total number of packets
sent, given thatr(t) is the packet transmission rate to the mul-
ticast group. Note the burst of packets sent in the beginning by
the current algorithm. Exactly 10,000 packets are sent out in a
2.5 s interval. This is almost 3000timesthe desired RTCP packet
rate. However, this burst is reducedsubstantiallyby the recon-
sideration mechanisms. Conditional reconsideration causes only
197 packets to be sent over a 210 ms interval, and unconditional
reconsideration causes merely 75 packets to be sent over a 327 ms
interval. We also observed similar improvements with a variety of
different link speeds, delays, and group memberships.

We noted that the startup burst with reconsideration was par-
ticularly disturbing when network delays were deterministic in-
stead of uniformly distributed. This is demonstrated in Figure
3, which looks at the cumulative number of packets sent when
10; 000 users simultaneously join att = 0, using conditional re-
consideration. In all cases, the mean network delay was300ms,
but the distribution varies. Exponentially distributed network de-
lays exhibited nearly identical performance to a uniform distribu-
tion. Later sections will demonstrate that the spike is dependent
on the amount of time until the first packet arrives. As the num-
ber of users in the step join becomes large, the number of users
who send their packets within the first� seconds aftert = 1:25
grows large for any�. Consider an� much smaller than typical
network delays, say 10�s. As far as computing arrival times at
end stations, these packets can be treated as though they were all
sent at the same time. The amount of time until the first of these
packets arrives at any end system is thus theminimumnetwork
delay experienced by all of those packets. If the network delays
are exponential, the expected minimum ofN exponential random
variables goes to zero asN grows. The same is also true for a
uniform random variable. For a deterministic variable, this is not
the case; the minimum is always the same. Therefore, the perfor-
mance is worse for network delays which are fixed.

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

Time (s) 

Cumulative Packets Sent

Uniform
Fixed

Exponential

Figure 3: Effect of Delay Distribution on Transient for Condi-
tional Reconsideration

We have also observed that the reconsideration mechanisms
cause a complete pause in packet transmissions after the initial
spike. This pause (which we call the “plateau effect”) lasts for a

time proportional to the number of packets in the spike. This has
both positive and negative implications. On the plus side, it gives
network buffers time to clear. However, it also causes the send rate
to deviate from our desired fixed1=C packets per second. The
phenomenon occurs because the spike of packets in the beginning
causes the system to reconsider, and not send, all packets after the
spike. A more detailed explanation of the phenomenon is given
in Section 4. However, after the spike and plateau, the packet rate
behaves fairly well, sending packets at a nearly constant rate.

We also ran simulations to observe performance in linear
joins, where groups of users join the system at times� seconds
apart, for some small�. The results are shown in Figure 4 and
Figure 5. Both plots depict the cumulative number of packets sent
by all users. The simulation parameters are identical to the above
cases, except network delays are deterministic 300 ms. The first
plot depicts conditional reconsideration, and the second, uncondi-
tional. In all cases, 2500 users join the system, but the rate that
they do so is varied. Both plots depict the step join, and joins at a
rate of 5000, 2500, and 500 users per second. The plots indicate
that linear joins quickly eliminate the initial transient of packets
and the plateau period, with the reduction being better for uncon-
ditional reconsideration.

We have done some analysis to examine how the behavior
of reconsideration changes under linear joins. Our analysis has
shown that as soon as the number of users who join, times�, ex-
ceeds the network delays, the initial bursts in the reconsideration
algorithms begin to disappear, whereas they remain for the cur-
rent specification. All other aspects of the system performance
(including long term growth ofL(t)) are identical to the step-join
case.

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140 160 180 200

N
um

be
r

Time (s)

Cumulative Packets Sent, Linear Join

Slope = 5000/s
Slope = 2500/s

Slope = 500/s
Step Join

Figure 4: Linear Joins: Conditional Reconsideration

4 Analysis
In this section, we present a mathematical analysis of the re-

consideration mechanism. We first consider the case where there
are no network delays. This results in a differential equation
which describes the learning curve. The analysis also applies to
networks with delay, but only models the post-transient behavior
of the system. However, this is sufficient to compute the post-
transient packet rate and system convergence times. We then ex-
tend this analysis to the case of network delays, and derive ex-



0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

Time (s)

Cumulative Packets Sent, Linear Join

Slope = 5000/s
Slope = 2500/s

Slope = 500/s
Step Join

Figure 5: Linear Joins: Unconditional Reconsideration

pressions which describe the transient spikes and plateaus in the
learning curve. We also analytically demonstrate the reasons for
improved performance from unconditional reconsideration, which
only exist in the presence of network delays.

4.1 No Delay
We consider a system where all of the users join the network

at the same time,t = 0. It is assumed that the network introduces
neither delay nor loss, and that access links have infinite band-
width. The result is that when a user sends an RTCP packet, it
is received by all of the users simultaneously at the time it was
transmitted.

In the model considered here, all users will have exactly the
same state (in terms ofL(t)) at all times. Thus, we trace state
evolution as seen by a particular user. The user estimate has con-
verged whenL(t) = N , the number of users actually in the group.
Our model also assumes a fluid behavior for packet arrivals, as in
[17], so thatL(t) is a continuous variable.

Whenever a packet is reconsidered, it is either sent, or it is not,
depending on whether the newly computed send time is before or
after the current time. We can therefore view the reconsideration
mechanism as causing any packet to be sent with some probability
P . In the most general case,P is a function of the current time
t, the time of the last RTCP report, and the number of users ob-
served att, L(t). Fortunately, the learning curve is only affected
by packets which are initial, that is, sent by users which have not
yet sent a packet. For all such users, the last report time is initial-
ized tot = 0, so that the send probability is a function oft and
L(t) only.

If we consider some small interval of time, the change inL(t)
is equal to the number of initial packets scheduled to be sent dur-
ing this interval, times the probability of sending a packet in that
interval. Based on this, we can immediately write the differential
equation:

dL

dt
= d(t)P (t; L(t)); (2)

whered(t) is the rate of packets scheduled for transmission during
some time interval. What remains is the evaluation of the sched-
uled rated(t) and probabilityP (t; L(t)). We first consider the
send probability.

Consider an initial packet scheduled to be transmitted by a
user at timet. Since the number of perceived users,L(t) has
surely changed over any time interval, this packet is reconsidered
2. At time t, the user perceivesL(t) other users in the system. It
thus calculates a new packet interval, which is equal to:

T = R(�)max(Tmin; CL(t))

SinceCL(t) is larger thanTmin most of the time, we ignore
themax operator. Keeping in mind that the previous report time is
alwayst = 0, we can immediately write the probability of sending
a packet using Equation (1):

Psend =
t�(1��)CL(t)

2�CL(t) (1� �)CL(t) < t < (1 + �)CL(t) (3)

(1−α) CL(t) (1+α) CL(t)

2α CL(t)

t

send reconsider

Figure 6: ComputingPsend with reconsideration

The numerator represents the range of times in the interval
widow which fall below the current timet, while the denominator
represents the total range over which the times for the interval are
selected. This is illustrated in Figure 6. Note that this probability
only makes sense whent is between(1��) and(1+�) ofCL(t).
Whent is to the left of the reconsideration window, the probability
is zero, and whent is to the right of the window, it is one.

An important implication of this equation is that the send
probability is zero whent < (1� �)CL(t). This places an upper
bound on the learning curve; if the learning curve should reach
this bound, no initial packets would be sent, and the curve would
remain flat until it fell back below this upper bound. We therefore
define themaximum learning curveLmax(t) to be:

Lmax(t) =
1

(1� �)C
t (4)

The actual learning curveL(t) is always belowLmax(t).
The next step is to compute the scheduled rate, which is sig-

nificantly harder. In the ideal case, the rate that packets have
been scheduled at should equal the number of users in the sys-
tem,N , divided by the average RTCP interval size perceived by
those users at timet, namelyCL(t). At any point in time the frac-
tion of packets to be sent which are initial is(N � L)=N . Thus,
the scheduled rate of initial packets is roughly given by:

d(t) =
N � L(t)

CL(t)

The curves of Figure 1 show that the reconsideration algorithms
exhibit linear behavior between roughlyt = 100 andt = 9000

2It is for this reason that we make no distinction between conditional and un-
conditional reconsideration here



(thus ignoring the transient behavior in the beginning few sec-
onds). We therefore attempt to determine the slopea of this line
based on the differential equation. SubstitutingL(t) = at into
(2):

a =
N � L(t)

CL(t)

1� (1� �)Ca

2�Ca

For smallt, L(t) < N , so we can ignore theL in the first term’s
numerator. Thus:

2�C2L(t)

N
a2 + a(1� �)C � 1 = 0

Thus, for largeN and smallt, L(t)� N , and we can neglect the
a2 term, and obtain the desired result:

a =
1

(1� �)C
(5)

Not coincidentally, this is also the slope of the maximum learning
curve. The equation indicates, therefore, thatL(t) grows at its
maximum rate until the approximation is no longer valid, at which
point its growth tapers off.

As mentioned previously, the equation for the scheduled rate
d(t) is very approximate. We have done some more extensive
analysis, and found that a slightly better approximation is given
by:

d(t) =
N � L(t)

C 1��
2��L(t)

(6)

This is of the same form as the previous equation, but tends to
model the nonlinearities of the system better.

Now, with the density and send probabilities computed, we
can write the final differential equation, which is:

dL

dt
=

N � L(t)

C 1��
2��L(t)

t� (1� �)CL(t)

2�CL(t)

This ODE allows us to compute a numerical solution, which
can be compared against the simulations. Figure 7 shows the
learning curve, with 10,000 users joining att = 0, for both anal-
ysis and simulation. In the simulation, however, we take into ac-
count non-zero delays and finite link speeds; network delays are
a deterministic 300 ms, and link speeds are 28.8 kbps. Note that
despite this change in assumptions, the analytical expressionstill
comes extremely close to the simulations for a large portion of the
convergence period. In particular, it is very close during the pe-
riod of linearity ofL(t) and less accurate afterwards. In addition,
the differential equation does not capture the behavior ofL(t) for
0 � t � 20, where the simulated curve exhibits the spike and
plateau (this is difficult to see in Figure 7 because of the x axis
scale).

We believe that network delays only impact the behavior of
L(t) when they are on the order ofCL(t). This is somewhat intu-
itive; the timescale of transmission events for any particular user
is CL(t). If network delays are much smaller than this, they are
almost instantaneous as far as sending packets goes, and therefore
do not affect the system behavior. It is for this reason that network
delays only impact the learning curve during the first minute or
so.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
um

be
r

Time (s)

Average Number of Observed Users L(t)

Simulation
Analysis

Figure 7: Simulated vs. analytical learning curve

With an understanding of the behavior ofL(t), we are now
in a position to discuss the real quantity of interest; the aggregate
bit rate generated by these sources as they move towards conver-
gence. We call this quantityr(t). Since the integral of this quan-
tity is the total number of packets sent, we have, as an immediate
consequence:

r(t) �
d

dt
L(t)

Experimentally, we have observed thatr(t) is actuallyequal
to the derivative ofL(t) for a large fraction of the time until con-
vergence. The reason for this is that the reconsideration mech-
anism favors packets from users who have not yet sent a packet
(initial packets). Consider two packets, both scheduled to be sent
at some timet. One is an initial packet, and the other is from a
user who has sent a packet previously. For the initial packet, the
last report time is att = 0, whereas for the other packet, the last
report time is at some timet�, not equal to zero. In the latter case,
the bottom edge of the interval window is att� + C(1 � �)L(t).
Thus, the probability of sending a non-initial packet at timet is:

Psendold =
t� t� � C(1� �)L(t)

2�CL(t)
(7)

This quantity isalwaysless than the send probability for ini-
tial packets as given in (3). In fact, for smallt, L(t) is equal to
t=C(1� �). Plugging this in to (7), we get that the numerator of
the fraction is negative, so the send probability is exactly zero.3.
Therefore,r(t) is exactly equal to the derivative ofL(t) while
L(t) is linear. We expect it to continue to track the derivative
closely even asL(t) tapers off.

OnceL(t) has converged toN , packets are sent at a rate of
1=C with conditional reconsideration. With unconditional recon-
sideration, this rate is somewhat less. Therefore,r(t) exhibits a
dual-constant behavior; it starts at1=(1 � �)C, stays there for
some time, then reduces to1=C, where it remains from then on.

3Note that plugging inL(t) = t=C(1� �) to equation (3) yields a numerator
of zero, and thus a probability of zero also. In fact, the send probability is zero
only in the limit forN = 1; it is slightly positive for all real cases. This is in
contrast to the send probability for non-initial packets, which is exactly zero for
finite N.



The final step is to approximate the convergence time. Un-
fortunately, the precise time depends on the non-linear regime
of L(t), which we cannot capture adequately. However, we can
bound the convergence time by assuming linear behavior until
L(t) equalsN . Since the actualL(t) is less than this curve, the
convergence timeTc is easily bounded on the left by:

Tc � NC(1� �)

This bound grows linearly with the group size, as expected.
It is possible to compute an upper bound as well. Consider

the last initial packet to be sent. Before it is sent,L(t) = N � 1.
As long as the send probability is less than one, it is possible that
this last initial packet will not be sent. But, according to (3), the
send probability is one whent > (1 + �)CL(t). This means that
the last initial packet must be sent as soon ast = (1+�)C(N�1).
This gives us an upper bound of:

Tc � NC(1 + �)

4.2 Modeling Delay and Loss
In this section, we consider the reconsideration algorithm in

the presence of network delay and link bottlenecks. We compute
the size of the spike during the initial transient, and the duration of
the plateau. We also demonstrate the superiority of unconditional
reconsideration in reducing these startup effects.

The spike and plateau are easily explained. Att = 0, all
N users join the system. They schedule their packets to be sent
between(1 � �)Tmin and(1 + �)Tmin. At time (1 � �)Tmin,
packets begin to be sent. Lets say the network introduces a delay
of D seconds. This means that no packets will arrive at any end
system until time(1 � �)Tmin + D. During theseD seconds,
many packets will be sent by end-systems, causing the initial spike
of packets. AfterD seconds, this burst of packets will arrive. This
causes a sharp increase in the perceived group sizeL(t). This, in
turn, increases the packet transmission interval, and moves the left
hand side of the interval window well beyond the current time, so
thatPsend = 0. The result is a complete halt in transmissions until
real time catches up with the left hand side of the reconsideration
window.

This qualitative description of the system is easily quantified.
For a large enoughN , the flood of packets starting at time(1 �
�)Tmin will saturate the access linksD seconds later, independent
of whether conditional or unconditional reconsideration is used.
While the links remain saturated, packets arrive at a continuous
rate at the link speed, which we denote asm packets per second.
We can therefore express the arrival time of thenth packet as:

tn = (1� �)Tmin +D +
n

m
(8)

Since each packet arrival increasesL(t) by one, we can setn equal
toL(t) in the above equation and solve forL(t):

L(t) = m(t� (1� �)Tmin �D) (9)

This flood of packets will cause the learning curveL(t) to ad-
vance very quickly, beyond its maximum as given in (4). When
the learning curve exceeds this maximum, all sending will stop.
Call this stopping timetstop. It can be obtained as the solution to:

(1� �)CL(tstop) = tstop (10)

Plugging in 9:

tstop = (1� �)Tmin +D +
(1� �)Tmin +D

(1� �)Cm � 1
(11)

We can then plug this back into (9) and solve for the number of
packets which have arrived at this point,nstop:

nstop =
(1� �)Tmin +D

(1� �)C � 1=m
(12)

The next step is to determine the number of packets sent up to
this point. This quantity differs based on whether the reconsider-
ation mechanism is conditional or unconditional. We first look at
conditional.

The number of packets sent consists of two terms. Before the
arrival of the first packet (at time(1 � �)Tmin + D + 1=m), all
packets scheduled to be sent are actually sent, since no users have
observed a change in the group size (which would activate the
reconsideration mechanism). The number of packets sent is then
the rate of packets scheduled to be sent (which isN=2�Tmin)
times the amount of time until the first packet arrives. We call this
quantityns1c (thec is for conditional, and1 is for the first term):

ns1c =
N

2�Tmin

�
D +

1

m

�
(13)

Once the first packet arrives, reconsideration kicks in, and not
all packets will be sent. Each will be sent with some probability,
P . Unfortunately, this is not the same probabilityPsend as defined
in Equation 3. That equation ignored the max operator, assuming
L(t) was large most of the time. This is not true in the very begin-
ning, where it takes a few packets to increaseCL(t) beyondTmin.
We assume that once enough packets have arrived to do this, the
result will be to move the left hand side of the reconsideration
window ahead of the current time (this is true whenD < C). In
other words, we assume the left hand side of the reconsideration
window is always at(1� �)CTmin until tstop.

With this in mind, the send probability between the arrival of
the first packet, and the stopping of transmission, is given by:

P =
t� (1� �)Tmin

2�Tmin
(14)

The number of packets sent is given by the integral of the sched-
uled packet rate times the send probability:

ns2c =

Z tstop

(1��)Tmin+D+1=m

d(t)Pdt (15)

Since the scheduled rate isN=2�Tmin during this time period of
interest, the number of packets sent is obtained by:

ns2c =

Z tstop

(1��)Tmin+D+1=m

N

2�Tmin

t� (1� �)Tmin

2�Tmin
dt (16)

This integral results in a growth in the number of sent packets as
t2 until complete cutoff attstop. The solution to the integral is:

ns2c =

N
8�2T 2

min

��
(1��)Tmin+D
(1��)Cm�1 +D

�2
�
�
D + 1

m

�2� (17)



And the total number of packets sent, using conditional reconsid-
eration, during this transient spike is:

nsc = ns1c + ns2c (18)

These analytical results are compared with simulation in Fig-
ure 8. The figure displays the cumulative number of packets sent
for a step join. For the simulation, 100,000 users join the system
at t = 0. Network delays are deterministic and equal to 300 ms,
and link speeds are 28.8 kbps. The plot shows only the initial tran-
sient. The linear and thent2 behavior is clear from the simulation.
Our approximation for bothns1c andns2c is quite good. The anal-
ysis also predicts that sending will stop attstop = 1:72s, which
agrees with the simulation. Also note that the number of packets
sent is dominated by thens1c term.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 1.2 1.4 1.6 1.8 2

N
um

be
r

Time (s) 

Cumulative Packets Sent

Conditional
nsc1

nsc

Figure 8: Transient with Conditional Reconsideration

For unconditional reconsideration, the number of packets sent
during the transient is different. In the conditional case, the total
consisted of two parts; one before the arrival of the first packet (as
the reconsideration mechanism had not “kicked in” yet), and one
after. In the case of unconditional, we do not need to wait for the
arrival of a packet for the mechanism to activate. Therefore, the
number of packets sent is given by an equation similar to that for
ns2c above. It is the integral of the scheduled rate, times the send
probability. In this case, the integral is between(1 � �)CTmin

andtstop, instead of just between the arrival of the first packet and
tstop. The number of packets sent for unconditional is therefore:

nsu =

Z tstop

(1��)Tmin

N

2�Tmin

t� (1� �)Tmin

2�Tmin
dt (19)

Solving, we obtain:

nsu =
N

8�2T 2
min

�
(1� �)Tmin +D

(1� �)Cm � 1
+D

�2

(20)

This quantity is small compared tons1c for conditional re-
consideration, thus the improved performance. These results are
compared with simulation in Figure 9. The simulation model is
identical to that in Figure 8, except unconditional reconsideration
is used. As the plot indicates, only thet2 behavior is present here.

0

500

1000

1500

2000

2500

3000

1 1.2 1.4 1.6 1.8 2

N
um

be
r

Time (s) 

Cumulative Packets Sent

Unconditional
nsu

Figure 9: Transient with Unconditional Reconsideration

The total number of packets sent during the transient is much re-
duced, and reasonably well predicted by our analysis.

The next step is to determine the duration of the plateau pe-
riod. Packet sending will start again when the current time catches
up with the left hand side of the interval window, which will have
quickly advanced to(1��)Cnsc. The time at which this happens,
tstart is (for conditional reconsideration):

tstart = (1� �)Cnsc (21)

If we assumensc � ns1c , we obtain:

tstart =
C(1� �)N

2�Tmin

�
D +

1

m

�
(22)

The duration of the plateau period itself is given by:

Tplat = tstart � tstop (23)

5 Summary and Future Work
RTP was meant to support real-time communications rang-

ing from two-party telephone calls to broadcast applications with
very large user populations. It incorporates an adaptive feedback
mechanism that allows scaling to moderately sized groups, but
shows a number of deficiencies once the group size exceeds on
the order of a thousand. The problems can be summarized as con-
gestion, convergence delays and state storage problems. We have
solved the congestion problem via a simple algorithm called re-
consideration. Both analysis and simulation have shown that the
algorithm reduces the initial congestion by orders of magnitude
under a variety of conditions. Furthermore, the algorithm is back-
wards compatible with the existing RTCP algorithm, allowing for
a simple migration path.

The reconsideration algorithm has been implemented as part
of a generic RTP Library, and is now operational in several com-
mon Mbone tools, such as rat and Nevot. It has also been pro-
posed to the IETF as an improvement to the RTP specification,
and is likely to be incorporated into the next release.

Future work involves considering the problem of simultane-
ous leaves, and resolving the other RTP scalability problems: state
storage and delay.



6 Acknowledgments
The authors wish to thank Steve Casner, T.V. Lakshman, San-

jay Mithal, Daniel Rubenstein, Bernhard Suter, and Don Towsley
for their insightful comments and discussion.

References
[1] ITU-T, Recommendation H.323 - Visual Telephone Systems

and Equipment for Local Area Networks which Provide Non-
Guaranteed Quality of Service, February 1996.

[2] Mark Handley, Henning Schulzrinne, and Eve Schooler,
“SIP: Session initiation protocol,” Internet Draft, Internet
Engineering Task Force, Dec. 1996, Work in progress.

[3] Henning Schulzrinne, “A real-time stream control protocol
(RTSP’),” Internet Draft, Internet Engineering Task Force,
Dec. 1996, Work in progress.

[4] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson,
“RTP: a transport protocol for real-time applications,” Re-
quest for Comments (Proposed Standard) 1889, Internet En-
gineering Task Force, Jan. 1996.

[5] Ingo Busse, Bernd Deffner, and Henning Schulzrinne, “Dy-
namic QoS control of multimedia applications based on
RTP,” Computer Communications, vol. 19, no. 1, pp. 49–
58, Jan. 1996.

[6] J. Robinson and J. Stewart, “Multimon - an ipmulti-
cast monitor,” The MultiMON web page can be found at
http://www.merci.crc.doc.ca/mbone/MultiMON.

[7] Kevin Almeroth and Mostafa Ammar, “Multicast group be-
havior in the internet’s multicast backbone (mbone),”IEEE
Communications Magazine, vol. 35, no. 6, June 1997.

[8] Steve Casner and Van Jacobson, “Compressing IP/UDP/RTP
headers for low-speed serial links,” Internet Draft, Internet
Engineering Task Force, Nov. 1996, Work in progress.

[9] K. Almeroth and M. Ammar, “Collecting and modeling
the join/leave behavior of multicast group members in the
mbone,” in Proceedings of the Symposium on High Per-
formance Distributed Computing, Syracuse, NY, Aug. 1996,
pp. 209–16, IEEE.

[10] Bernard Aboba, “Alternatives for enhancing RTCP scalabil-
ity,” Internet Draft, Internet Engineering Task Force, Jan.
1997, Work in progress.

[11] Puneet Sharma, Deborah Estrin, Sally Floyd, and Van Jacob-
son, “Scalable timers for soft state protocols,” inProceed-
ings of the Conference on Computer Communications (IEEE
Infocom), Kobe, Japan, Apr. 1997.

[12] P. Sharma, D. Estrin, S. Floyd, and V. Jacobson, “Scalable
timers for soft state protocols,” Technical report, University
of Southern California, June 1996.

[13] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan, “Service
location protocol,” Request for Comments (Proposed Stan-
dard) 2165, Internet Engineering Task Force, June 1997.

[14] Jonathan Rosenberg, Bernd Suter, and Henning Schulzrinne,
“Wide area network service location,” Internet Draft, Inter-
net Engineering Task Force, July 1997, Work in progress.

[15] Y. Rekhter and T. Li, “A border gateway protocol 4 (BGP-
4),” Request for Comments (Draft Standard) 1771, Internet
Engineering Task Force, Mar. 1995, (Obsoletes RFC1654).

[16] T. Pusateri, “Distance vector multicast routing protocol,”
Internet Draft, Internet Engineering Task Force, Sept. 1996,
Work in progress.

[17] D. Anick, Debasis Mitra, and M. M. Sondhi, “Stochastic the-
ory of a data-handling system with multiple sources,”Bell
System Technical Journal, vol. 61, no. 8, pp. 1871–1894,
Oct. 1982.


