
A VoIP Emergency Services Architecture and
Prototype

Matthew Mintz-Habib, Anshuman Rawat, Henning Schulzrinne, and Xiaotao Wu
Department of Computer Science

Columbia University
{mm2571,asr,hgs,xiaotaow}@cs.columbia.edu

Abstract— Providing emergency services in VoIP networks is
vital to the success of VoIP. It not only presents design and
implementation challenges, but also gives an opportunity to
enhance the existing emergency call handling infrastructure.
We propose an architecture to deliver emergency services in
SIP-based VoIP networks, which can accommodate PSTN calls
through PSTN to SIP gateways. Our architecture addresses
the issues of identifying emergency calls, determining callers’
locations, routing emergency calls to appropriate public safety
access points (PSAP), and presenting required information to
emergency call takers. We have developed a prototype imple-
mentation to prove our architecture’s feasibility and scalability.
We expect to undertake a pilot project at a working PSAP with
our implementation once it is thoroughly tested.

I. INTRODUCTION

VoIP telephony services are increasing in residential and
enterprise communication market penetration due to their
attractive service enhancements and cost savings. One fea-
ture from the traditional public switched telephone network
(PSTN) that is essential for VoIP telephony is the ability to
summon emergency services, such as by dialing “911” in the
United States and “112” in parts of Europe. Transitioning
to VoIP networks offers the opportunity to add significant
enhancements to emergency call handling services, rather than
simply duplicating the existing feature set. The enhancements
include higher resilience, faster call setup, better information
presentation, multimedia support, and lower costs. To achieve
the enhancements, we designed an architecture and developed
a prototype of our architecture that can provide emergency
services in VoIP networks based on the Session Initiation
Protocol (SIP) [1]. Our architecture can also accommodate
PSTN calls bridged into VoIP networks through gateways.
Even though our architecture is based on SIP, the same
concepts and design principles can also be applied to other
VoIP networks, such as H.323-based VoIP networks.

SIP is an application layer signaling protocol for initiating
sessions between hosts to exchange media content. In SIP,
sessions can be negotiated by SIP user agents (UAs) com-
municating directly with each other, or through a series of
SIP servers, using SIP methods like INVITE, REGISTER, or
BYE. Typically, SIP UAs are configured with an outbound
proxy that forwards SIP messages on their behalf. SIP uses
REGISTER requests to bind users’ logical addresses to their
physical addresses. This way, SIP can easily handle routing
services, like the follow-me service, on an inbound SIP

proxy server. Our architecture involves efforts on different SIP
entities, including both caller and emergency call taker’s user
agents, and inbound and outbound SIP proxy servers.

SIP does not transport media content itself, but facilitates
communicating parties to agree on what media to exchange
and how to exchange it. Specifically, this is accomplished
by using an offer/answer model with the Session Description
Protocol (SDP) [2] as SIP message content. Note that SIP
uses MIME [3] to format its content so we can put other
information, such as location information, in addition to media
description to form a multipart entity in SIP message content.
Location information is essential for emergency call handling.

Proxy servers require emergency callers’ location informa-
tion to route calls to proper public safety answering points
(PSAP), which are responsible for coordinating local or re-
gional emergency services, because each PSAP is dedicated
to a specific geographic area. Location information is also
necessary for dispatching help to emergency callers. Since
VoIP callers are nomadic, their location may not be readily
apparent. Considering a user located in New York communi-
cating through a SIP proxy in Hong Kong over a VPN tunnel.
If the user were to request emergency services, the call should
be routed to a call center in New York, not Hong Kong! Our
architecture defines several methods to determine the location
of VoIP callers.

Location information can be geographic coordinates, such
as latitude, longitude, or altitude values, or civic location infor-
mation, such as country, city, and street names. Civic location
information needs to be general enough in an international
context, since the Internet knows no national boundaries.

While there are currently no accepted standards on VoIP
emergency services, related work can be found in several
Internet Drafts addressing the subject [4], [5], [6]. The Na-
tional Emergency Number Association’s (NENA) [7], the
organization promoting a universal emergency service number
in the United States, recently published a list of requirements
for IP enabled PSAPs [8]. Our prototype fulfills most of the re-
quirements listed. Similarly, Arai and Kawanishi are pursuing
VoIP emergency services requirements in Japan [9]. Within
Columbia University, we have spent some time working on
the VoIP emergency services problem [11], [12], [13], [14].

Our work brings together design features from various
sources into one cohesive architecture, contributes novel de-
sign elements at the PSAP, and implements the system as a



prototype. We have demonstrated our prototype implemen-
tation at working PSAPs, for local and state authorities, as
well as for the members of the NENA’s Next Generation E9-
1-1 committee. Our demo works very well, and we expect
to undertake a pilot project at a working PSAP with our
implementation once it is thoroughly tested.

The remainder of our paper is organized as follows. Sec-
tion II describes our emergency call handling architecture.
Section III discusses challenges implementing our prototype.
Section IV provides system performance and security analysis.
Section V concludes the paper and discusses future work.

II. ARCHITECTURE

Identify
Emergency

Calls

Present 
Call to 

Calltaker

Route to 
Correct 
PSAP

Determine 
Location

Fig. 1. Control flow for emergency call handling

Emergency call handling can be divided into four steps that
are executed in sequence for each emergency call (Fig. 1).
Each step involves one or more entities in the system archi-
tecture as shown in Fig. 2. The first step identifies emergency
calls. For outgoing calls, the caller’s user agent and outbound
proxy server are responsible to check whether the call is an
emergency call or not. Once an emergency call is identified,
the second step determines the caller’s location, and integrates
the location information into call setup messages. The third
step finds an appropriate PSAP based on the location infor-
mation. A proxy server can then route the emergency call to
the PSAP. The fourth step presents the emergency call to the
emergency call taker at the PSAP. The emergency call taker
utilizes the information in the call setup messages to handle
the emergency call, such as pinpoint the caller on a map and
bring police, fire, and medical supports into a conference call.
At any point, a SIP entity may query third party services for
information, such as caller location or medical records. We
discuss each component in detail below.

Emergency
Call Caller

SIP UA
Outbound
SIP Proxy

Calltaker
SIP UA

PSAP 
SIP Proxy

DHCP 3rd Party
ServiceDNS

Internet

Location

PSAP
URI

PSAP
URI

Location

Call Route
Optional Query
Internet Route

Extra Info

Fig. 2. Emergency services system architecture

A. Identifying emergency calls

Emergency calls are identified by their destination URIs and
the location of the caller. Work is in progress to standardize

the use of “sos” as the username part of a SIP URI [5]
to represent an emergency call. Telephone URIs [15] for
conventional emergency numbers, such as “tel:911”, can
be aliased to the emergency URI “sos”, either by a SIP proxy
or a SIP UA, based on the location of the caller.

B. Determining location

There are several ways to determine a calling party’s
location, either by the calling UA’s outbound proxy or by
the calling UA itself. The outbound proxy can determine the
caller’s location based on the calling UA’s MAC address. In
enterprise networks, the location of ethernet jacks and desktop
machines, as well as the MAC addresses of the desktop
machines are usually stored by system administrators. The
outbound proxy can determine the location of the emergency
caller simply by sending a DHCPINFOM query with the MAC
address retrieved from the packets it received.

The calling UA can determine its own location directly,
such as from a GPS receiver, a bluetooth beacon, DHCP
options, or manually entered by a user. It can also get location
information from a location server. For example, through
triangulation calculation, multiple wireless access points can
pinpoint a mobile station’s location and store the location
on a location server. The mobile station can subscribe to its
own location from the location server by using SIP event
notification architecture [16].

C. Routing emergency calls

Different location information require different techniques
to determine appropriate PSAPs to route emergency calls
to. Location information in an emergency call can be civic
location, geographic coordinates, or no location. We use DNS
Naming Authority Pointer Resource Records (NAPTR) [17]
to find appropriate PSAPs.

To determine the correct PSAP for calls with civic location,
the caller’s location elements can be transformed into a period-
separated form hierarchically from most granular to least
granular location element. The corresponding NAPTR record
has the service type “SOS+ECC”, indicating that it represents
an emergency call center’s URI. DNS is first queried for the
most granular location, and if no match is found, successive
layers of granularity are stripped and queried until a match is
found. Each location entry is suffixed with sos-arpa.net
as the top level of the hierarchy, thus ensuring a default match
if no better match is found. Upon success, a NAPTR record
is returned with the emergency URI [6]. The example below
shows the DNS record for the location “Houston, TX”.
houston.tx.us.sos-arpa.net IN NAPTR 50 50 "u" "SOS+ECC"
"/.*/sip:houston_tx@emergency.info/i" .

We can also use DNS to determine the proper PSAP URI
based on geographic coordinates, but with a different service
type: “SOS+POLYGON” [6]. The result of the DNS query will
be a pointer to an XML document defining a specific geo-
political boundary, such as a state, county, or PSAP coverage
area. These boundaries are unlikely to change often, so the



DNS record can be set with a large TTL value and the returned
boundary information can be cached.

tx.us.sos-arpa.net IN NAPTR 50 50 "u" "SOS+POLYGON"
"/.*/http:\/\/www.emergency.info\/polygons\/texas.xml/i" .

The example above shows the record pointing to the XML
document defining the polygon boundary for the state of Texas
(special characters escaped). A proxy server can search the
“SOS+POLYGON” records from least granular to most granu-
lar, linearly, to check whether a polygon contains the caller’s
geographic coordinates or not. Once the most granular match
is found, the corresponding URI found in the “SOS+ECC”
record is returned for emergency call routing.

Emergency calls that contain no location can be routed to
a default PSAP URI. This URI can be determined by the
outbound SIP proxy server of the calls. The proxy server
queries DNS for the PSAP URI based on its own location.
The default PSAP URI can also be stored as a configuration
parameter in the SIP proxy.

D. Call presentation at the PSAP

A general feature list for presenting emergency calls to
emergency call takers has been defined by NENA [18], which
also documents features specifically for IP-enabled PSAPs [8].
PSAPs need to display caller locations on a map, automatically
distribute incoming calls to available call takers, log emer-
gency call details to database, archive call media content, view
call logs and generate statistics, and monitor currently active
calls. We have achieved these requirements in our prototype
implementation, which we will discuss in detail below.

III. IMPLEMENTATION

We implemented a prototype based on the architecture
defined above. To place VoIP calls, we use the Columbia SIP
User Agent (SIPC) [19], as well as hardware UAs, like the
Cisco 7960 [20] SIP phone. Location can be entered manually
into SIPC, automatically looked up using host-specific DHCP
options, received from GPS receivers, acquired from a location
server through SIP event notifications, or queried through
MapInfo’s Envinsa [21] platform.

For call routing, we use the Columbia InterNet Extensible
Multimedia Architecture (CINEMA) [10] architecture for SIP
services, and use SIP-CGI [22] Perl scripts to make routing
decisions. PSAP identification is accomplished by using Map-
Info’s Envinsa service or DNS-based lookups.

To present caller information to call takers, we use Geo-
Comm’s GeoLynx Dispatch Mapping System [23] to display
caller location on a map and have SIPC interface with Geo-
Lynx through TCP connections. Also at the PSAP level, we
created a system to distribute calls among multiple call takers,
enabled conferencing of multiple parties using CINEMA or
the Brooktrout Technology’s Snowshore Media Server [24],
enhanced SIPC to log call details, and created a web-based
system to manage PSAP end-systems.

A. Identifying emergency calls and determining locations

Identifying emergency calls was straightforward to im-
plement simply by identifying calls addressed to “sos” as
emergency calls. We also aliased the URIs “911” and “112”
to the emergency URI for ease of use. To speed up the dialing
process in an emergency, SIPC has an SOS button to quickly
make emergency calls.

The more challenging aspect was determining caller loca-
tion. Our prototype uses manual location entry in SIPC, though
it is also capable of utilizing GPS measurement and acquiring
location information from a location server. Many SIP UAs
may not support manual location entry, or cannot measure or
lookup their location. To accommodate such UAs, we imple-
mented an automatic lookup feature at the outbound SIP proxy
as described in Section II-B based on DHCPINFOM queries for
the caller’s MAC address. This ensures that every SIP UA can
participate in emergency services without modification to the
UA. We leave the issue of MAC address availability for calls
passing through layer 3 devices as future work, though it may
simply be included as a SIP header.

Complementing the DHCP lookup, the proxy can find
locations for calls originating from a PSTN-to-VoIP gateway
by querying the source telephone number in MapInfo’s En-
vinsa server over an HTTP SOAP interface. This allows us
to find the GPS location of cellular phones from a set of
demonstration units.

Once the proxy gets the location for an incoming SIP
INVITE request, it can encode the location in presence-based
GEOPRIV location object format [25], and incorporate the
encoded document into the message body of the INVITE
request to form a multipart message body in MIME format.

These features are diagrammed in Fig. 3, which also shows
the logical information flow. A user optionally enters location
information into SIPC manually (1a), then makes an emer-
gency call (1b). The call is sent to the outbound proxy (2),
and may or may not include location information, depending
if the location was entered manually. The outbound proxy
receives the emergency call, and launches a SIP-CGI script. If
necessary, the script looks up the location, either using DHCP
for local callers (3a), or using MapInfo’s Envinsa service for
calls brought in over an IP gateway (3b). In either case, the
script returns the location information (4a,4b), and further
processing for routing decisions ensues.

B. Routing emergency calls

We have described the DNS-based routing strategy in Sec-
tion II-C. Complimentary to the DNS lookups, we also utilize
MapInfo’s Envinsa platform to look up PSAP information
for geographic locations. We use SIP-CGI scripts running on
users’ outbound proxy servers to handle emergency call rout-
ing. We allow proxy server administrators to choose Envinsa
or DNS for geographic lookups by configuring the SIP-CGI
scripts. If SIPC knows both civic and geographic location
information, it will send both in its outgoing INVITE requests.
In that case, the outbound proxy will check civic location first.



Envinsa ServerDHCP Server

911
112

sip:sos@domain or
tel:911@domain

w/location or 
w/out location

SIP UA

DHCPINFORM
MAC Address

Outbound SIP Proxy

HTTP SOAP
Telephone #

Location 
Info

Manually entered 
location

(1b)

(1a)

(2)

(3b)(3a)

(4a) (4b)

Fig. 3. Identifying emergency calls and determining location

Fig. 4 shows the overview of these features. The proxy
receives an emergency call (1). If no location is available,
the proxy attempts to determine the location as described
in Section III-A. If location is still not available, the proxy
simply routes the call to a default PSAP URI (4). If the proxy
receives geographic coordinates, it will either query MapInfo’s
Envinsa server (2a) or DNS for PSAP boundary information
(2b), depending on how the administrator of the proxy server
configured the SIP-CGI script. If a civic address is received,
the system queries DNS (2c) for the PSAP URI (3c). Once the
SIP-CGI script get the PSAP URI (3a,3b), it will proxy the the
call to the PSAP URI (4) along with the location information.

DNS ServerEnvinsa Server

sip:sos@outbound
w/location or 
w/out location

Outbound SIP Proxy

HTTP SOAP
geo location

PSAP 
info

sip:psap@domain
w/location or 

sip:psap@default
w/out location

(2a) (2c)

(1) (4)

(3a)
(3b)

(2b)

DNS Query
geo location

DNS Query
civic location

(3c)

Fig. 4. Routing emergency calls

C. Call presentation at the PSAP

Once an emergency call reaches an appropriate PSAP, the
PSAP UA will display the location details graphically using
GeoComm’s GeoLynx dispatch mapping system. When the
call taker ends the session, locations are cleared from the
GeoLynx display. We use SIPC as the PSAP UA, which
uses TCP sockets to communicate with GeoComm’s GeoLynx
system. SIPC also has a button allowing emergency call takers
to manually refresh location information for mobile stations
using MapInfo’s Envinsa platform.

SIPC has an interface to classify calls, log additional details
and notes, and speed dial buttons to request police, fire,
or medical support. SIPC can also transfer calls to another
PSAP. For PSAPs using SIP hardphones, we implemented a
mechanism for the Cisco 7960 series SIP phones to display

location information, which is encoded in XML format, and
retrieved via HTTP.

We use an automated controller system at the PSAP to
handle all calls. The controller is responsible for distributing
incoming calls to available call takers and logging the details
of each call. In our prototype system, we treat every call as a
conference call to allow multiple parties, including emergency
call takers, police, fire, and medical support, to participate in
the conference call. We have integrated two conference mod-
ules, one is CINEMA’s conference server, SIPCONF, and the
other is Brooktrout’s Snowshore media server, both of which
can be used interchangeably. The controller is responsible for
managing and logging these conferences as well. Logging is
performed at the earliest opportunity to provide accountability
for incomplete calls.

To assist in the management of the PSAP components, we
created a web interface to browse and search call logs, view
call statistics, view and join active calls, update incident types,
and manage associated DNS records.

Fig. 5 shows the general PSAP architecture and logical
information flow. The controller receives an incoming call (1),
starts logging the details (2), then creates a conference for
the call (3). The controller then selects among the available
call takers (4), who joins the conference in turn (5). At this
point, the caller is connected to a call taker. The call taker
may choose to update the caller’s location information from
the Envinsa Server (6a), which is then displayed in GeoLynx
(7a). If necessary, the call taker may conference in additional
parties such as police (6b,7b). These actions are logged (6c),
and the call taker is able to log additional notes and classify the
call (6c). The web management system uses the information
in the datastore to generate its pages.

Call Taker 1

Call Taker 2

Call Taker n

Hospital Police Fire Envinsa Server

HTTP SOAP
Telephone #

Location 
Info

psap@domain
w/location

Controller

Datastore

Conference Mixer

log
details

create
conference

INVITE to
conference

join
conference

REFER to
conference

join
conference

log
details

(1)

(3)(2)

(4)

(5)

(6c)

(6a)

(7a)

(6b)

(7b)

Web
Management

Browser

Fig. 5. PSAP architecture and logical information flow

As shown in Fig. 6, the controller uses the SIP third party



call control architecture [26] to bring call takers and additional
third parties in to a conference call. The process is completely
transparent to participating parties. To begin, the caller initiates
a SIP call, which includes location, if available. When the
controller at the PSAP receives the call, it sends an INVITE
to the conference server along with the caller’s SDP, SDP1 (2),
but without location information because the conference server
is only responsible for media mixing. The conference accepts
the INVITE, and sends a 200 OK with SDP1’ as its message
content. The controller forwards SDP1’ on to the caller (4),
then the controller and the caller both ACK the 200 OKs each
received, respectively (5)(6). At this point, the caller is able
to talk to the conference server (7).

Caller
Call 
Taker

3PCC
Controller

(2) INVITE (w/o loc, SDP1)

(3) 200 OK (SDP1')

(4) 200 OK (SDP1')

(5) ACK

(6) ACK

(7) Media

Police
Fire, EMS

Conference
Instance

(8) INVITE (w/loc, no SDP)

(15) REFER Police/Fire/EMS

(10) INVITE (w/o loc, SDP2)

(11) 200 OK (SDP2')

(12) ACK

(13) ACK (SDP2')

(14) Media

(9) 200 OK (SDP2)

(16) 200 OK

(17) INVITE (w/loc, no SDP)

(18) 200 OK (SDP3)

(19) INVITE (w/o loc, SDP3)

(20) 200 OK (SDP3')

(21) ACK

(22) ACK (SDP3')

(24) NOTIFY

(25) 200 OK

(23) Media

(1) INVITE 
(w/loc, SDP1)

Fig. 6. Third party call control message flow

The next step is to bring a call taker into the conference to
handle the emergency call. In this case, the controller sends an
INVITE without an SDP body (8) so that the call taker’s UA
can negotiate its own media with the conference. Note that the
emergency caller’s location is included in the INVITE so that
the call taker can immediately display the caller’s location.
The call taker’s UA replies with a 200 OK to the INVITE
and offers SDP2 (9). This offer is forwarded to the conference
server in an INVITE to bring the call taker into the conference
(10). The conference server accepts the INVITE and sends a
200 OK with SDP2’ (11). The controller sends an ACK to the
conference server (12), then puts SDP2’ in its ACK to the call
taker (13). Now the call taker can also talk to the conference
server (14). With both the caller and call taker in the same
conference, they can communicate with each other.

As is commonly the case, the call taker may want to bring

in additional third parties’ assistance, such as police or fire
departments. We use the SIP REFER method [27] to handle
this on our PSAP UA, SIPC. SIPC has speed dial buttons to
bring additional parties in. Instead of sending REFER requests
directly to a third party, SIPC sends the REFER requests to
the controller, and has the controller to bring the third party
into the conference. This way, the third party user agent does
not have to support the SIP REFER method. As shown in
the diagram, the call taker initiates the request to bring in a
third party by sending a REFER message to the controller
(15), who responds with a 200 OK (16), indicating that it is
ready and able to process the request. From here, steps (17)-
(23) are identical to steps (8)-(14) to bring the third party into
the conference. The controller then sends a NOTIFY to the
call taker (24) to update the status of the REFER request, to
which the call taker responds 200 OK (25). All three parties
can now communicate with each other.

IV. PERFORMANCE AND SECURITY

Our prototype system has not yet undergone a comprehen-
sive performance evaluation. The main concerns are system
throughput and the latency. We define throughput as the
number of emergency calls that can be handled per second, and
latency as the time elapsed between emergency call initiation
and the time the emergency call taker joins the call.

The throughput can be considered at the proxy level and the
PSAP level. At the PSAP level, the number of simultaneous
calls is most likely bounded by the number of call takers.
At the proxy level, the throughput is determined by the
number of requests a SIP proxy can handle. Our empirical
tests have shown the CINEMA SIPD proxy running on very
moderate hardware (500 MHz CPU, 128 MB RAM) capable
of supporting 86 proxy requests per second [28]. More recent
work shows a stateful CINEMA load-sharing architecture with
failover support running on contemporary hardware (3 GHz
CPU, 1 GB RAM) capable of supporting 800 calls per second.
NENA estimates about 200 million 911 calls in the United
States per year, or roughly 6.3 calls per second nationwide
on average [7], though some emergencies may elicit a burst
of calls. While the CINEMA performance evaluations did not
consider SIP-CGI execution and traffic may be bursty, it is
unlikely that the SIP proxy will be a bottleneck.

Latency will be a bigger concern. Many factors contribute to
call setup latency, such as UA processing, network conditions,
SIP proxy processing, and call distribution at the PSAP. In
our prototype, much of the delay is incurred by SIP-CGI
scripts waiting for queries executed on remote machines. For
instance, tests on our local network show that emergency calls
sent without location and routed to the default PSAP take an
average of 0.57 seconds. This can be seen as a lower limit for
emergency call latency in our prototype. However, calls sent
with geographic location that is queried in MapInfo’s Envinsa
service take 1.70 seconds on average. The exact modules
invoked at script run dictate the latency characteristics incurred
at the SIP proxy during call setup. We will study both latency
and throughput in our system as a future work.



Security considerations for our prototype implementation
are less imperative than in a live, public system. Accordingly,
we did not build explicit security features into our prototype.
In a public system, there are some enhancements that could
be added. To prevent PSAP impersonation by manipulating
DNS entries, secure DNS could be used. To protect signaling
integrity and media integrity and confidentiality, calls could be
routed using TLS and exchange media using SRTP. Other con-
siderations include the security involved in querying external
services, such as MapInfo’s Envinsa platform.

V. CONCLUSION

We have presented an architecture for providing emergency
services in VoIP networks. Our design is based on end-to-end
IP connectivity and facilitates PSTN calls bridged into the
network over IP gateways. The system addresses the issues of
identifying emergency calls, determining location, routing to
the appropriate PSAP, and presenting the emergency call to
the call taker.

The architecture was implemented into a prototype system
based on Columbia University’s SIP infrastructure consisting
of the CINEMA platform and SIPC, as well as with com-
ponents provided by MapInfo and GeoComm. We developed
several software solutions to provide enhanced functionality to
call takers at PSAPs, as well as provided a web-based system
to manage aspects of the system.

There are many areas we are looking to explore in our
prototype system. These can be grouped into the addition of
new features at the PSAP, enhancements to the call delivery
architecture, and performance evaluation.

At the PSAP level, we are interested in adding advanced
multimedia functionality, such as playing back instructional
video to callers, e.g., a CPR how-to. Another item is to
implement media archiving and incorporate retrieval via the
web management system. The call conference mixers we use
have the ability to record audio, but no additional media types.
One solution is to have an automated robot that retrieves
and archives media streams join each conference call. One
more useful feature we will implement is the ability to call
back abandoned or disconnected emergency calls. While SIPC
is capable of calling a disconnected call back directly, we
currently do not support conferencing and logging of these
actions.

In the call delivery architecture, we intend to add redun-
dancy and failover features to enhance the system’s robustness
as described by Singh [10]. Another item is to add backup
PSAP support so that if a particular PSAP’s resources are
occupied, incoming calls are redirected to a backup call center.

Also, we intend to conduct a comprehensive performance
evaluation of the prototype system. This would empirically
study both throughput and latency metrics at the system and
component level.

ACKNOWLEDGMENTS

The work described in this paper was supported in part
under a grant by SIPquest and a Technology Opportunities

Program (TOP) grant by the National Telecommunications and
Information Administration (NTIA). The authors would also
like to acknowledge Amrita Rajagopal for her contribution
implementing the DNS-based XML boundary graph lookup.

REFERENCES

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. R. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “SIP: Session initiation
protocol,” RFC 3261, June 2002.

[2] J. Rosenberg and H. Schulzrinne, “An offer/answer model with the
session description protocol (SDP),” RFC 3264, June 2002.

[3] N. Freed and N. Borenstein, “Multipurpose Internet mail extensions
(MIME) part one: Format of Internet message bodies,” RFC 2045, Nov.
1996.

[4] H. Schulzrinne and B. Rosen, “Emergency services for Internet tele-
phony systems,” draft-schulzrinne-sipping-emergency-arch-01, Internet
Draft, July 2004, work in progress.

[5] H. Schulzrinne, “Emergency services URI for the session initiation
protocol,” draft-ietf-sipping-sos-01, Internet Draft, Feb. 2004, work in
progress.

[6] B. Rosen, “Emergency call information in the domain name system,”
draft-rosen-dns-sos-01, Internet Draft, July 2004, work in progress.

[7] NENA, National Emergency Numbers Association. [Online]. Available:
http://www.nena.org

[8] NENA IP Capable PSAP Features And Capabilities Standard, NENA
Std. 58-001, Feb. 2005.

[9] H. Arai and M. Kawanishi, “Emergency call requirements for IP
telephony services in japan,” draft-arai-ecrit-japan-req-00, Internet Draft,
Feb. 2005, work in progress.

[10] CINEMA, Columbia InterNet Extensible Multimedia Architecture.
[Online]. Available: http://www.cs.columbia.edu/IRT/cinema/

[11] J. Lee, K. Singh, and H. Schulzrinne. SIP 911 implementation. [Online].
Available: http://www.cs.columbia.edu/∼kns10/projects/spring2002/911/

[12] H. Schulzrinne and K. Arabshian, “Providing emergency services in
Internet telephony,” IEEE Internet Computing, vol. 6, no. 3, pp. 39–47,
May/June 2002.

[13] X. Wu and H. Schulzrinne, “SIPc, a multi-function SIP user agent,”
in IFIP/IEEE International Conference, Management of Multimedia
Networks and Services (MMNS’04), San Diego, CA, Oct. 2004, pp. 269–
281.

[14] ——, “Location-based services in Internet telephony,” in IEEE Con-
sumer Communications & Networking Conference (CCNC’05), Las
Vegas, NV, Jan. 2005.

[15] H. Schulzrinne, “The tel URI for telephone numbers,” RFC 3966, Dec.
2004.

[16] A. B. Roach, “Session initiation protocol (SIP)-specific event notifica-
tion,” RFC 3265, June 2002.

[17] M. Mealling and R. W. Daniel, “The naming authority pointer (NAPTR)
DNS resource record,” RFC 2915, Sept. 2000.

[18] NENA Generic E9-1-1 Requirements Technical Information Document,
NENA TID 08-502, July 2004.

[19] sipc, Columbia SIP User Agent. [Online]. Available: http://www1.cs.
columbia.edu/∼xiaotaow/sipc/

[20] Cisco Systems. VoIP phones. [Online]. Available: http://www.cisco.com
[21] MapInfo Corporation. Envinsa Location Platform. [Online]. Available:

http://www.mapinfo.com
[22] J. Lennox, H. Schulzrinne, and J. Rosenberg, “Common gateway inter-

face for SIP,” RFC 3050, Jan. 2001.
[23] GeoComm Corporation. GeoLynx Dispatch Mapping System. [Online].

Available: http://www.geo-comm.com
[24] Brooktrout Technology. Snowshore Media Server. [Online]. Available:

http://www.brooktrout.com
[25] J. Peterson, “A presence-based GEOPRIV location object format,” draft-

ietf-geopriv-pidf-lo-03, Internet Draft, Sept. 2004, work in progress.
[26] J. Rosenberg, J. Peterson, H. Schulzrinne, and G. Camarillo, “Best

current practices for third party call control (3pcc) in the session
initiation protocol (SIP),” RFC 3725, Apr. 2004.

[27] R. Sparks, “The session initiation protocol (SIP) refer method,” RFC
3515, Apr. 2003.

[28] J. Lennox, “Services for Internet telephony,” Ph.D. dissertation, Depart-
ment of Computer Science, Columbia University, New York, New York,
2004, pp.113-117.


