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1 Introduction
For i = 0, 1, 2, . . ., let gi(G) be the number of topologically distinct cellular embeddings
of the graph G in the orientable surface Si of genus i. The genus distribution of the graph
G is the sequence of numbers

gi(G) : i = 0, 1, . . .

The smallest and largest numbers i such that gi(G) is positive are called the minimum
genus and the maximum genus, respectively, of the graph G. It is easily proved and well-
known that there are cellular embeddings of a graph G in every surface whose genus lies
between the minimum and the maximum. The set of numbers between (and including) the
minimum and maximum genus is called the genus range of G.

The main objective of this paper is to derive a quadratic-time algorithm to calculate the
entire genus distribution for any family of simple graphs with fixed treewidth and bounded
degree. Since the second barycentric subdivision of a general graph is a simple graph with
the same genus distribution as the general graph to which it is homeomorphic, it follows
that this can be extended to general graphs by subdividing edges.

This paper also introduces a general form of partial genus distribution for arbitrarily
large degree and for arbitrary root-subgraphs, i.e., beyond vertices and edges, a relativized
form of partial genus distribution modulo a fixed rotation system for its root subgraph, and
a general form of production rules for iterative reassembly of a given graph from one or
more small subgraphs.

BASIC RESULTS ON GENUS DISTRIBUTION

Five fundamental papers [10, 7, 18, 15, 20] of the present author and his co-authors
Khan and Poshni have established methods for calculating the genus distribution of a graph
that is constructed by various kinds of amalgamation of two graphs of known genus distri-
bution. These papers also establish ways to calculate the genus distributions of chains and
cycles of copies of graphs of known genus distribution. The methods developed in these
papers include recombinant strands, partitioned genus distributions, and production rules.

More recently, combining these calculation methods with the algorithmic techniques of
post-order traversal and root-popping has facilitated the calculation of genus distributions
for 3-regular outerplanar graphs [8], for 4-regular outerplanar graphs [19], and for 3-regular
Halin graphs [9]. Combining these same calculation methods with edge-addition [16] has
led to the genus distribution of mesh graphs of the form P3 × Pn.

CONNECTIONS OF TREEWIDTH TO EMBEDDING PROBLEM

Since the introduction of the concept of treewidth by Robertson and Seymour, bound-
ing the treewidth has been widely used to obtain polynomial-time algorithms for problems
that are otherwise NP-hard. In particular, deciding whether an arbitrarily selected graph
can be embedded in a given surface is NP-complete [25]; however, for any class of graphs
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of bounded treewidth, Kawarabayashi, Mohar, and Reed [14] have derived a linear-time
algorithm for calculating the minimum genus.

Although outerplanar graphs have treewidth 2, and although Halin graphs and P3 ×
Pn meshes have treewidth 3 (see [3]), treewidth plays no explicit role in the calculation
of genus distributions in any of the papers just mentioned. Indeed, the five fundamental
papers on graph amalgamations cited above include applications to graphs of arbitrarily
high treewidth and arbitrarily high degree. Nonetheless, the pastings in those papers occur
in localities of the amalgamand graphs in which the treewidth and degree are bounded.

In the present paper, various key ideas from the earlier papers are abstracted, general-
ized, and combined with treewidth to yield a quadratic-time algorithm for the genus dis-
tribution of the graphs in any family of graphs of bounded degree and bounded treewidth.
It will be apparent that as treewidth and degree increase, the multiplicative constant of the
quadratic term grows rapidly. Accordingly, one anticipates continued interest in the deriva-
tion of special methods for calculating the genus distributions of graph families of special
interest.

TERMINOLOGY

In what follows, a graph is taken to be connected and simple, unless something else
can be inferred from the immediate context. We use VG and EG to denote the vertex set
and edge set of a graph G.

The embeddings are in oriented surfaces. Terminology used here is predominantly
consistent with [13] and [1]. See also [17] and [28]. We abbreviate “face-boundary walk”
as fb-walk.

DEF. In this paper, a subgraph-rooted graph is a triple (G,H, u), where H is a subgraph
of G and u ∈ VH . The third parameter u is called the pivot. Sometimes, the form (G,H)
with no pivot is used. If H ∼= K1 or H ∼= K2, then the graph is vertex-rooted or edge-
rooted, respectively. When the context clarifies the meaning, the graph may simply be
called rooted.

REMARK. Pivot vertices are used here to change the root subgraph as a sequence of graphs
is formed in the process of reassembly of a given graph. In [8], we achieved a change of
root with what we called “root-splitting”. In [9], a change of root was accomplished by
“pie-merges”.

OUTLINE OF THIS PAPER

Section 2 of this paper describes treewidth from a perspective that is relevant to its
use in the algorithm. Section 3 describes how a decomposition tree is used to analyze
a graph into fragments to be amalgamated. Section 4 introduces a highly general way
of partitioning the genus distribution of a graph; it shows that the number of cells of the
partition depends only on the treewidth and the maximum degree, and not on the number of
vertices of that graph. Section 5 shows that the number of embeddings of an amalgamated
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graph depends on the degrees of the vertices of the subgraph of amalgamation, and not on
the number of vertices of the graph. Section 6 describes production rules, as they occur in
the algorithm. Section 7 describes and analyzes the genus distribution algorithm. Section
8 offers some conclusions about the algorithm and opportunities for future research.

This paper is largely self-contained, except for some details of the well-established
methods of constructing productions (which is quite necessary for the algorithm), as in [10]
and [18]. Prior experience with calculating genus distributions of graph amalgamations,
especially as in [8] and [9], is likely to be quite helpful.

2 Treewidth
The usual definition of treewidth is based on the concept of tree decomposition. These are
both due to Robertson and Seymour [21]. An excellent exposition is given by [3]. For
applications of treewidth to topological graph theory, see [17].

DEF. Let G = (V,E) be a graph, and T a tree with nodes 1, 2, ..., s. Let X = {Xi | 1 ≤
i ≤ s} be a family of subsets of V (associated with the respective nodes 1, 2, ..., s) whose
union is V such that

• the induced graph on the set of images in T of each vertex of V is a subtree of T ;

• for every edge uv in the graph G, there is a node i in the tree T such that both u and
v are members of Xi.

Then the pair (X , T ) is a tree decomposition of G, and the tree T is called a decomposition
tree for G.

TERMINOLOGY. For the sake of clarity, we will refer to “vertices” and “edges” in the
graph G and to “nodes” and “lines” in the tree T .

ABUSE OF NOTATION. Throughout this paper, we refer to the sets Xi of a decomposition
tree as “nodes”.

DEF. The width of a tree decomposition (X , T ) equals

max
{
|Xi|

∣∣∣ 1 ≤ i ≤ |VT |
}
− 1

DEF. The treewidth of a graph G is the smallest k such that G has a tree decomposition of
width k.

Proposition 2.1. A connected graph has treewidth 1 if and only if it is a tree.

Proposition 2.2 ([27]). A connected graph has treewidth 2 if and only if it contains a cycle
and does not contain a K4-minor.
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Proposition 2.3. Every graph of treewidth 2 is planar.
Proof. A non-planar graph has eitherK5 orK3,3 as a minor. Both these Kuratowski graphs
have K4 as a minor. By Proposition 2.2, a graph with a K4-minor cannot have treewidth 2.

TREEWIDTH CHARACTERIZATION WITH k-TREES

An alternative characterization of treewidth, in terms of k-trees (see, for instance, [4]),
is the starting point of our present approach to genus distributions:

DEF. A k-tree is defined recursively:

• The complete graph Kk+1 is a k-tree.

• If G is a k-tree and C is a k-clique in G, then the graph obtained by joining a new
vertex to the vertices of C is a k-tree.

Proposition 2.4. The treewidth of a graph G is the least number k such that G is a sub-
graph of a k-tree.
Proof. The proof is a direct consequence of the definitions.

FULL DECOMPOSITION TREES

DEF. A full decomposition tree of width k for a graph G is a decomposition tree T in
which

• every node has k + 1 vertices, and

• every pair of adjacent nodes intersects in k vertices.

We observe that each line of a full decomposition tree corresponds to the k vertices shared
by the two nodes whose adjacency is represented by that line.

Proposition 2.5. Let T be a full decomposition tree of treewidth k for an n-vertex graph
G. Then |VT | = n− k.
Proof. Each node of the decomposition tree T contains k + 1 vertices of G. Each line of
T corresponds to k vertices of G. Since VG is the union of the nodes of T , it follows that

n = |VG| = |VT |(k + 1) − |ET |k
= |VT |(k + 1) − (|VT | − 1)k

= |VT | + k

∴ |VT | = n− k

Running Example – Part 1. Figure 2.1 shows an 8-vertex graph of treewidth 2 and a full
decomposition tree of width 2. We observe that the number of nodes of the full decompo-
sition tree is 8− 2 = 6.
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Figure 2.1: A graph, and a full decomposition tree of width 2,
represented as a subgraph of a 2-tree.

The figure on the left is the graph itself. Each gray triangle on the right represents a 3-
clique of the 2-tree. Each dashed gray line represents an adjacency of two 3-cliques in
the 2-tree. Each node of the full decomposition tree is the set of vertices lying within one
of the gray triangles. The edges drawn within the gray triangles are a reminder of the
adjacencies in the graph itself. In §3, the subgraphs shown within the gray triangles are
called node-fragments.

Theorem 2.6. Let G be a graph of treewidth k. Then G has a full decomposition tree of
width k.

Proof. Let T be a decomposition tree of width k for a graph G of treewidth k. If the vertex
set from G in one of two adjacent nodes of T is contained in the other, then contract the
line of T that joins those two nodes, and eliminate the smaller node. We observe that this
operation does not change the width of the resulting tree. Iterate this operation until the
resulting decomposition tree for G has the following property:

(P1) For every node Xi ∈ VT and for each of its neighboring nodes Xj ,
there is a vertex in Xi that does not lie in the node Xj .

For simplicity, we assume that the initial tree T already has property P1. Since the maxi-
mum size of a node of T is k + 1, and since no two adjacent nodes are identical, it follows
that the intersection of any pair of adjacent nodes contains at most k vertices.

If some node Xi of tree T contains fewer than k + 1 vertices, then choose a vertex from
any neighboring node and insert a copy of it into node Xi. If the node Xi now contains
every vertex in that neighbor, then contract the line of T that joins those two nodes. Iterate
until every node of the resulting tree has k+ 1 vertices of G. By construction, this tree has
property P1. We may now assume that the initial tree T also has this property:

(P2) Every node Xi ∈ V (T ) has k + 1 vertices of G.
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REMARK. It would be possible to design an algorithm for genus distribution that does not
require the given decomposition tree to be converted into a full decomposition tree T . The
reason we perform this conversion here is to simplify subsequent discussion, for instance,
of the use of partial genus distributions in §4.

Now suppose that Xi and Xj are adjacent nodes of T such that

Xi = {v1, . . . , vm, um+1, . . . , uk+1}
Xj = {v1, . . . , vm, wm+1, . . . , wk+1} and

Xi ∩Xj = {v1, . . . , vm} where m < k.

Then replace the line (Xi, Xj) in T by the node path

Xi = {v1, . . . , vm, um+1, . . . , uk+1}
X

(1)
i = {v1, . . . , vm, wm+1, um+2, . . . , uk+1}

X
(2)
i = {v1, . . . , vm, wm+1, wm+2, um+3, . . . , uk+1}

· · ·
X

(k−m)
i = {v1, . . . , vm, wm+1, . . . , wk, uk+1}
Xj = {v1, . . . , vm, wm+1, . . . , wk+1}

The resulting tree is a full decomposition tree for G of width k.

Corollary 2.7. For any fixed treewidth k, there is an algorithm to construct a full decom-
position tree for a given graph G of treewidth k in linear time in |VG|.

Proof. A linear-time algorithm to construct a decomposition tree T of width k for the graph
G is given by [2]. Since the number of edges of such a tree is linear in |VG|, it follows that a
full decomposition tree for G of width k can be constructed from T within linear time.

Corollary 2.8. Let G be a graph of treewidth k, and let T be a full decomposition tree for
G. Then there is a k-tree T k with the following property:

Each node of T is a (k + 1)-clique of the k-tree T k.

Proof. This is implied by the definition of a full decomposition tree.

The genus distribution of a graphG is to be derived from the partial genus distributions
of the induced graphs (in G) on the vertices in the respective nodes of the tree T , by
iterative amalgamation. Various key ideas for deriving the genus distribution of a graph G
by iterative amalgamation of a set of subgraphs ofG are developed in [6], [7], [8], [9], [10],
[15], [18], [19], and [20].
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3 Fragments and Amalgamations
The algorithm to calculate the genus distribution of a graph G with bounded treewidth and
bounded degree reassembles the graph G by iteratively amalgamating induced subgraphs
on the nodes of a full decomposition tree for G.

DEF. A node-fragment of a graph G with respect to a decomposition tree T is the induced
subgraph in G on the set of vertices of G that lie within a single node of T . For a leaf-node
of T , the corresponding node-fragment may be called a leaf-fragment.

DEF. Let (G,H, u) and (G′, H ′, u′) be an ordered pair of disjoint subgraph-rooted graphs,
and let η : H − u → H ′ − u′ be a graph isomorphism. Graph amalgamation is the
operation that forms a new graph G ∗η G′ from G ∪ G′ by merging the subgraphs H − u
and H ′ − u′ as prescribed by η. In this paper, the subgraph H ′ becomes the new root
subgraph, and a new pivot is chosen according to the post-order of the decomposition tree.
This is illustrated in Part (2) of the Running Example.

NOTATIONAL CONVENTION. We denote the vertices and edges of the subgraph H ∗η H ′
of the amalgamated graph G ∗η G′ by the same names as in the subgraph H of graph G,
the first amalgamand. The vertices and edges that are contributed by only one amalgamand
retain the names used in that amalgamand.

DEF. A fragment of a graph G with respect to a decomposition tree T for G is either a
node-fragment or a compound fragment, by which we mean the result of amalgamating
any two fragments across the induced subgraphs of the vertices that lie in both of two ad-
jacent nodes of the tree T . Every amalgamation in the reassembly of G from its fragments
corresponds to a line of the decomposition tree T .

Given a graph G and a full decomposition tree T of width k, with T envisioned as
drawn in the plane, it is clear that G can be reassembled by iteratively amalgamating frag-
ments on pairs of vertices.

• We fix an arbitrary leaf-node of the tree T as a root of T , and we determine a post-
order traversal of T based at that root-node.

• We observe that during a post-order traversal, every line of T is traversed twice. We
amalgamate across a line whenever the second traversal of that line occurs.

• Each fragment of the graph G is a rooted subgraph of G. In any fragment F , the
root subgraph is the induced graph in G on the node of T in which the fragment F
meets the fragment to which it will be amalgamated. In a non-leaf-fragment, the
root-subgraph is to be chosen according to the post-order of T .

LABELING FRAGMENTS AND SELECTING ROOTS OF FRAGMENTS

In order to discuss the process of iterative amalgamation, it is helpful to have some
rules for assigning labels to fragments.
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DEF. The label of a fragment F for a graph G with a full decomposition tree T of width k
is of the form G[x1, . . . , xq; r1, . . . , rk; rk+1], where the vertex set of the fragment F is

{x1, . . . , xq, r1, . . . , rk, rk+1}

• The vertices r1, . . . , rk, rk+1 are from whatever node of the fragment F will be
pasted to another fragment in the next amalgamation involving F that occurs in the
post-order.

• The root-subgraph of fragmentF is the induced subgraph on vertices r1, . . . , rk, rk+1.

• Vertex rk+1 is the pivot.

• The vertices x1, . . . , xq are the remaining vertices of fragment F .

DEF. In the course of reassembly of a graph from its node-fragments by iterative amal-
gamation, for each fragment F , whether a node-fragment or a compound fragment, its
partner fragment F ′ is the fragment to which F is amalgamated during the reassembly.
Similarly, each node-fragment M has a partner node-fragment M ′.

Running Example – Part 2. The root subgraph of a node-fragment is the node-fragment
itself. In each node-fragment of Figure 3.1, the two vertices with bold labels are the first
two to be pasted to another node. The third vertex in the node is the initial pivot. These
are determined by the post-order traversal. We have taken the node G[; c, e; d] at the lower
left of the tree as the root-node of the decomposition tree and used a counter-clockwise
traversal.
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Figure 3.1: Roots of a decomposition 2-tree for a graph G.

Here is the reassembly sequence for the graph of Figure 3.1.

1. The first node-fragment is F0 = G[; e, g;h].

2. The node-fragment (at the center-right) adjacent to F0 is labeled G[; e, g; b]. When
node-fragments F0 = G[; e, g;h] and its partner F ′0 = G[; e, g; b] are amalgamated,
the resulting fragment is

F1 = G[h; b, g; e]
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3. When fragmentF1 = G[h; b, g; e] is amalgamated with node-fragmentF ′1 = G[; b, g; f ],
the resulting fragment is

F2 = G[f, h; b, e; g]

4. When fragment F2 = G[f, h; b, e; g] is amalgamated with node-fragment F ′2 =
G[; b, e; c], the resulting fragment is

F3 = G[f, g, h; b, c; e]

5. When fragment F3 = G[f, g, h; b, c; e] is amalgamated with node-fragment F ′3 =
G[; b, c; a], the resulting fragment is

F4 = G[a, f, g, h; c, e; b]

6. When fragment F4 = G[a, f, g, h; e, c; b] is amalgamated with node-fragment F ′4 =
G[; e, c; d], the resulting fragment is

F5 = G[a, b, f, g, h; c, e; d] = G

We observe the following properties of each of the amalgamation in the sequence:

• The pivot of each of the amalgamand fragments Fi and F ′i is not a vertex of the
other amalgamand fragment.

• The root-subgraph of the amalgamated fragment Fi+1 is the root-subgraph of one
of the amalgamand fragments Fi and F ′i . More precisely, it is whichever of the two
root-subgraphs will be used whenever Fi+1 is amalgamated to F ′i+1.

• The pivot of the amalgamated fragment Fi+1 is the unique vertex in the root-
subgraph that will not be merged with another vertex in the next amalgamation
step involving fragment Fi+1.

REMARK. Although the partner fragments F ′i were all node-fragments in this example, this
would not be the case with a more complicated decomposition tree.

4 Partitioning the Genus Distribution
Partitioning the embeddings of a rooted graph has proven to be a highly useful technique
in calculating genus distributions. A surface-by-surface inventory of the cells of the par-
tition is called a partitioned genus distribution. The criteria for partitioning has been the
incidence of fb-walks on the roots.

In the simplest case, we have a graph (G, v) rooted at a single 2-valent vertex v. We
can then partition the genus distribution sequence {gi(G) : i = 0, 1, . . .} into two partial
genus distribution sequences

di(G, v) : i = 0, 1, . . . and si(G, v) : i = 0, 1, . . .

where
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• di(G, v) is the number of embeddings of G in which two distinct fb-walks are inci-
dent on the root-vertex v; and

• si(G, v) is the number of embeddings of G in which a single fb-walk is twice inci-
dent on the root-vertex v.

The prototypical approach to calculating these distributions is to construct simultaneous
recursions for di and si and to obtain gi by adding their solutions.

In the next smallest case, that of two 2-valent roots u and v, there are ten different
partial genus distributions. For instance, in [10] and [7], we have defined

• dd′i(G, u, v) as the number of embeddings of G in Si in which there are two differ-
ent fb-walks incident on u, one of which is also incident on v, and another fb-walk
incident on v that is not incident on u.

• sd′i(G, u, v) as the number of embeddings of G in Si in which one fb-walk is twice
incident on u and also incident on v, and another fb-walk is incident on v and not
on u.

When there are multiple roots and/or a root-subgraph, the number of partial genus
distributions sequences grows rapidly with the total number of root-vertices or of vertices
in the root-subgraph. We can partition the genus distribution of a graph G into as many
partial genus distributions as needed, the sum of which is the genus distribution sequence
{gi(G) : i = 0, 1, . . .}.

In the general case now under consideration, the genus distribution of a subgraph-
rooted graph (G,H, u) is partitioned here according to the cyclic sequence of incidences
of fb-walks on the vertices of the root-subgraphH and on the pivot u. This section provides
the details, an example, and an upper bound on the number of restricted sequences in the
partition corresponding to a graph of treewidth k and maximum degree ∆. This upper
bound depends only on the treewidth and maximum degree of a graph, and not on its
number of vertices.

DEF. A gapped word on the root-vertices r1, . . . , rk, rk+1 of a rooted graph (G,H, rk+1) is
a word on the alphabet {r1, . . . , rk, rk+1, •} that contains no two consecutive occurrences
of the bullet •, which is called a gap. Each gapped word represents the cyclic order in which
the various root-vertices occur in an fb-walk of an embedding. When two root-vertices ri
and rj are separated by a gap symbol, it means that the subwalk of the corresponding fb-
walk between ri and rj contains one or more non-root-vertices. When two root-vertices ri
and rj are adjacent, it means that there is an edge rirj traversed by the fb-walk.

Two gapped words are equivalent if one is a cyclic permutation of the other. The princi-
pal representative of each equivalence class of gapped words is the one that is lexicograph-
ically first. We regard the bullet as lexicographically last, i.e., after all the root-vertices.

DEF. A multi-set of principal gapped words (written as a tuple) is called a root-phrase if

• each root-vertex occurs in the union of the gapped words as many times as its va-
lence in G;



12 Ars Math. Contemp. x (xxxx) 1–x

• the principal gapped words are in the order of non-increasing size, with lexico-
graphic order used for tie-breaking.

Each root-phrase represents a cell of the partition of the embeddings of (G,H, u). More-
over, each root-phrase may be subscripted by an integer that represents the genus of a
surface.

These two examples illustrate how a root-phrase is used in our generalization of partial
genus distributions. (With larger root-subgraphs, some components of a root-phrase may
have integer coefficients.)

Example 4.1. For non-adjacent roots u and v, dd′i(G, u, v) is represented by the root-
phrase (u•v•, u•, v•)i.

Example 4.2. For non-adjacent roots u and v, sd′i(G, u, v) is represented by the root-
phrase (u•u•v•, v•)i.

DEF. The partitioned genus distribution of (G,H, u) is a linear combination of the sub-
scripted root-phrases, in which the coefficient of each subscripted root-phrase is the number
of oriented embeddings of G corresponding to that root-phrase, in the surface whose genus
equals the particular subscript.

DEF. We use the abbreviation pgd for partitioned genus distribution.

DEF. We observe that the restriction of the pgd of (G,H, u) to a single root-phrase, taken
over all subscripts in the genus range, is the inventory of embeddings within a single par-
tition cell, i.e., the cell corresponding to the given root-phrase. This inventory is called a
partial genus distribution of (G,H, u). The word partial, when used here as a noun, is a
synonym for root-phrase. In this sense, we may say that the pgd is a linear combination of
the subscripted partials.

Running Example – Part 3. The node-fragment G[; e, g;h] has the following pgd:

(egh, ehg)0 (4.1)

The only embedding of that fragment has two (oriented) fb-walks, egh and ehg. Since
all the vertices in the only two fb-walks are root-vertices, and since the root-vertices are
mutually adjacent, there are no gaps in the gapped words of the only root-phrase. Similarly
the node-fragment G[; e, g; b] has the following pgd:

(beg, bge)0 (4.2)

The compound fragment G[h; b, g; e] has the pgd

(be•g, bge, eg•)0 + (bg • e, beg, e•g)0 + (beg•ebge•g)1 + (be•gebg•eg)1 (4.3)

To see this most easily, one draws the four embeddings and traces the fb-walks in each
embedding.
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NOTATION. We use p(n) to denote the number of partitions of a positive integer n. We
recall the asymptotic formula of Hardy and Ramanujan:

p(n) ∼ 1

4n
√

3
eπ
√

2n
3 as n −→∞

We use the number of partitions toward an upper bound on the number of partials of a
rooted graph.

NOTATION. We denote the degree of a vertex v of a graph Y by δY (v). If Y is a subgraph
of a graph X , this convention distinguishes the degree of vertex v in the subgraph Y from
its degree in X .

Theorem 4.1. Let F be a family of graphs of treewidth k and maximum degree ∆, each of
which is rooted on an isomorphic copy of a fixed graph H , in which VH = {r1, . . . , rk}.
Then the number of partials associated with amalgamating two arbitrary members of F
across root-subgraph H is at most

[k∆]!

(∆!)k
· p(k∆) · 2k∆

That is, it has an upper bound that is independent of the number of vertices of the graphs
being amalgamated.

Proof. Here we regard a root-phrase as a “raw” character string in the alphabet VH =
{r1, . . . , rk}, into which gaps and commas are eventually inserted. The length of a raw
character string for a graph G is

∑k
i=1 δG(ri). (We need to use δG rather than δH because

we are concerned with the degree of each vertex of H within the graph G, not just within
H .) Thus, the cardinality of the set of raw character strings is

[
∑k
i=1 δG(ri)]!∏k
i=1 δG(ri)!

≤ [k∆]!

(∆!)k

We may insert the commas into each raw character string so that the number of characters
between two successive commas is non-increasing, as one reads the string from beginning
to end. The cardinality of the set of comma-enriched raw character strings so obtained is at
most p(k∆). The number of ways to insert from 0 to k∆ gaps into such a comma-enriched
character string so that

• no two gaps are adjacent,

• no gap occurs immediately after a comma, and

• no gap occurs at the beginning of the first word

is at most 2k∆. We have pre-normalized the root-phrases so that no gap occurs at the
beginning of a word and so that the gapped words are in the order of non-increasing length.
Thus, every normalized gapped word is a member of the set of such gap-enriched, comma-
enriched character strings. This establishes the upper bound of the theorem.
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When we are reassembling a graph G of treewidth k and maximum degree ∆ from the
node-fragments of a full decomposition tree, the k-vertex root-subgraph across which two
fragments are amalgamated varies by one vertex at a time, as we traverse the decomposition
tree. The isomorphism type of the root-subgraph across which we merge fragments may
vary from one amalgamation to the next. Thus, rather than only with the partials associated
with a fixed root-subgraph H , we need to be concerned with the set of all partials for
root-subgraphs with a given number of vertices.

Theorem 4.2. Let G be a graph of treewidth k and maximum degree ∆. Then the number
of partials required when reassembling G from the node-fragments of a full decomposition
tree of width k is at most

[(k + 1)∆]!

(∆!)k+1
· p((k + 1)∆) · 2(k+1)∆

That is, the number of partials has an upper bound that is independent of the number of
vertices of the graph G.

Proof. As illustrated in Part 3 of the Running Example, we need to consider partials on
k + 1 symbols. The isomorphism type of the k-vertex subgraph of amalgamation may
change from amalgamation to amalgamation, and we provide for this by permitting the
locations of the gaps to vary in the root-phrases. Since at most one gap occurs between two
letters of the alphabet, the number of ways to insert the gaps is at most 2(k+1)∆.

NOTATION. For a subgraph-rooted graph (G,H), we denote the corresponding set of par-
tials by PH .

5 Embeddings of the Amalgamated Graph
DEF. Let ρ and σ be rotation systems for graphs X and Y , respectively, such that Y is a
subgraph of X . We say that they are consistent at a vertex v of Y if the rotation σ at v is
the restriction of the rotation ρ at v. If at every vertex of VY , the rotation σ is the restriction
of the rotation ρ, then ρ and σ are consistent rotation systems. Moreover, the embeddings
corresponding to rotations systems ρ and σ are then called consistent embeddings.

Given rotation systems ρ and σ for the rooted graphs (G,H) and (G′, H ′) and an
isomorphism η : H → H ′, such that the restriction of σ to η(H) agrees with the restriction
of σ to H ′, we seek to count or give an upper bound for the number of embeddings of the
amalgamated graph (G ∗η G′, H ∗η H ′) that are consistent with ρ and σ. The balance of
this section is directed toward that objective. We consider the configuration at each vertex
of the subgraph H .

A list of citations of early studies of restricted rotation systems is given by [24].

ISOLATED VERTICES IN THE SUBGRAPH H

The following proposition is to be used when there is a vertex of the root-subgraph H
that has no neighbors in H .
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Proposition 5.1. Let (G,H) and (G′, H ′) be subgraph-rooted graphs and η : H → H ′ an
isomorphism. Let ρ and σ be rotation systems for G and G′ such that σ = η ◦ ρ ◦ η−1. Let
v be an isolated vertex of the root-subgraph H , that is, with δH(v) = 0. Then the number
of rotations at v of (G ∗η G′, H ∗η H ′) that are consistent with ρ and σ is

δG(v)

(
δG(v) + δG′(v)− 1

δG(v)

)
(5.1)

Proof. A rotation at vertex v in (G ∗η G′, H ∗η H ′) is a cyclic ordering of the edges of
(G ∗η G′, H ∗η H ′) that are incident at v. We regard the edges of EG incident on vertex v
as partitioning a cycle into δG(v) compartments into which edges of EG′ incident at v are
to be inserted. Once one of these δG(v) compartments is selected as the location of some
arbitrarily selected “first” edge of EG′ , there are δG(v) + 1 compartments into which the
remaining δG′(v) − 1 edges can be inserted. Since the order of these remaining edges is
fixed, we may regard each of them as a zero, and partition them with δG(v) ones. Therefore,
the number of ways to insert these δG′(v)− 1 edges equals the number of binary strings of
length δG(v) + δG′(v)− 1 with δG(v) ones.

Example 5.1. In [10], we amalgamate two vertex-rooted graphs (G, v) and (G′, v′) at 2-
valent roots. Thus, δG(v) = δG′(v) = 2, and δH(v) = 0. The number of rotations in the
amalgamated graph that are consistent with a pair of rotations, one from G and one from
G′, is

δG(v)

(
δG(v) + δG′(v)− 1

δG(v)

)
= 2

(
2 + 2− 1

2

)
= 2

(
3

2

)
= 6

VERTICES OF POSITIVE DEGREE IN THE SUBGRAPH H

The case in which a vertex v of the root-subgraph H has positive degree requires suffi-
ciently complicated notation, that it is useful to precede the general analysis by a definition,
a lemma, and an example.

DEF. Let α and β be linear orderings of disjoint sets S = {x1, . . . , xp} and T =
{y1, . . . , yq}, respectively. We say that a linear ordering γ of the set S ∪ T is an inter-
leaving of the orderings α and β if the restrictions of γ to S and T are identical to α and
β, respectively.

Lemma 5.2. The number of ways to interleave two sequences of respective lengths p and
q is (

p+ q

q

)
Proof. There is an obvious bijection from the set of interleavings to the set of binary strings
of length p+ q with q ones.
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Example 5.2. We depict in Figure 5.1 an amalgamation G ∗G in which the vertex v of the
root-subgraph H has degree 2 in H , degree 7 in G, and degree 5 in G′. The rotations at
vertex v are

ρ ∩ σ in H : e1, e2

ρ in G : c11, c
1
2, c

1
3, e1, c

2
1, c

2
2, e2

σ in G′ : d1
1, d

1
2, e1, d

2
1, e2

v

e2

e1

c1
1

c1
2

c2
2

c2
1

c3
1

G

v

e2

e1

d1
1

d1
2

d2
1

G'

Figure 5.1: A vertex v of degree 2 in the (darkened) subgraph H , degree 7 in G, and
degree 5 in G′.

The vertex v has degree 10 in the amalgamated graph G ∗G′. A rotation at v in G ∗G′ is
consistent with the rotations ρ and σ if and only if the edge-sets {c11, c12, c13} and {d1

1, d
1
2} are

interleaved between e2 and e1 and the edge-sets {c21, c22} and {d2
1} are interleaved between

e1 and e2. By Lemma 5.2, the number of rotations at v in G ∗ G′ that are consistent with
the rotations ρ and σ is (

5

2

)(
3

1

)

Proposition 5.3. Let (G,H) and (G′, H ′) be subgraph-rooted graphs and η : H → H ′

an isomorphism. Let ρ and σ be rotation systems for G and G′ such that σ = η ◦ ρ ◦ η−1.
Let v be a vertex of H with degree δH(v) > 0 and the following rotations:

(ρ ∩ σ)|v in H : e1, e2, . . . , eδH(v)

ρ|v in G : c11, c
1
2, . . . , c

1
δ1 , e1, c

2
1, c

2
2, . . . , c

2
δ2 , e2, . . . , eδH(v)

σ|v in G′ : d1
1, d

1
2, . . . , d

1
δ′1
, e1, d

2
1, d

2
2, . . . , d

2
δ′2
, e2, . . . , eδH(v)

Then the number of rotations at v in (G ∗η G′, H ∗η H ′) that are consistent with ρ and σ
is

δH(v)∏
i=1

(
δi + δ′i
δi

)
(5.2)
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Proof. A rotation τ |v at v in (G ∗η G′, H ∗η H ′) is consistent with the rotations ρ|v and
σ|v if and only if it has the following property:

In the rotation τ |v , between two consecutive edges ei−1 and ei ∈ EH
(and between eδH(v) and e1) in the rotation ρ ∩ σ, the edge sequences
ci1, c

i
2, . . . , c

i
δi

and di1, d
i
2, . . . , d

i
δ′i

are interleaved.

By Lemma 5.2, the conclusion follows.

COUNTING CONSISTENT ROTATION SYSTEMS

We have now arrived at the goal of this section.

Theorem 5.4. Let (G,H) and (G′, H ′) be subgraph-rooted graphs and η : H → H ′ an
isomorphism. Let ρ and σ be rotation systems for G and G′ such that σ = η ◦ ρ ◦ η−1. For
each vertex v ∈ VH , we have the rotation

(ρ ∩ σ)|v in H : ev1, e
v
2, . . . , e

v
δH(v)

according to the following parameter values:

• δH(v) is the degree of v in H .

• If δH(v) 6= 0, then for j = 1, . . . , δH(v), let δj and δ′j be the numbers of edges of
EG and EG′ , respectively, that lie between the edges ej−1 and ej in the rotation ρ|v
and in the rotation σ|v , respectively (where j– 1 is taken to be n if j = 1).

Then the number of rotation systems for (G ∗η G′, H ∗η H ′) that are consistent with ρ and
σ is ∏

v∈VH
δ
H

(v)=0

δG(v)

(
δG(v) + δG′(v)− 1

δG(v)

)
·
∏
v∈VH
δ
H

(v)>0

δH(v)∏
i=1

(
δi(v) + δ′i(v)

δi(v)

)
(5.3)

Proof. This follows from Proposition 5.1 and Proposition 5.3.

Theorem 5.5. Let F be a family of graphs of treewidth k and maximum degree ∆, each of
which is rooted on an isomorphic copy of a spanning subgraph ofKk+1. Let (G,H), (G′, H ′) ∈
F , and let η : H → H ′ be an isomorphism. Let ρ and σ be rotation systems for G and G′

such that σ = η ◦ ρ ◦ η−1. Then the number of rotation systems for (G ∗η G′, H ∗η H ′)
that are consistent with both ρ and σ is at most[

∆

(
2∆− 1

∆

)]k+1

(5.4)

That is, it has an upper bound that is independent of the number of vertices of the graph G.

Proof. This theorem is a corollary of Theorem 5.4.
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SPECIAL CASE: AMALGAMATING ACROSS AN EDGE

The simplest case of amalgamating graphs (G,H) and (G′, H ′) across isomorphic
root-subgraphs with edges is the case in which the root-subgraphs are isomorphic to K2.
The subcase in which both endpoints of both root-edges are 2-valent was developed in [18].

Corollary 5.6. Let ρ and σ be rotation systems for the rooted graphs (G, vw) and (G′, v′w′),
where the pasting matches vertices v and w with vertices v′ and w′, respectively. Then the
number of embeddings of (G ∗η G′, vw) that are consistent with ρ and σ is(

deg
G
v + deg

G′ v
′ − 2

deg
G
v − 1

)(
deg

G
w + deg

G′w
′ − 2

deg
G
w − 1

)
(5.5)

Proof. Every embedding of (G ∗η G′, vw) that is consistent with ρ and σ has its rotations
completely determined by ρ and σ, except at the image of the vertices v and v′ and at the
image of the vertices w and w′. Figure 5.2 illustrates the situation. The names v and w for
vertices in G ∗η G′ adhere to the notational convention introduced in §3.

v

w

d1 d2

e2

e3e1

v'

w'

d1'
d1'

d2'
d2'

e2'

e2'

e1'

e1'

G v

w

d1 d2

e2

e3e1

G   G'G'

Figure 5.2: Amalgating two graphs on an edge.

Formula (5.5) follows from application of Theorem 5.4.

REMARK. In Corollary 5.6, the notation vw for the root-edge of the graph G ∗η G′ is
consistent with the notational convention given in §3 for naming the root-vertices and root-
edges of G ∗η G′.

6 Production Rules for Graph Amalgamations
DEF. A production for a graph operation is a rule that prescribes the effect on the genus
distribution of applying that operation to its operands. That is, based on the partials of
the operands and the genera of their respective embedding surfaces, it says how many
embeddings the resulting graph has of each genus and of each type of partial. The operands
and the operation appear at the tail of a right-arrow and are called the antecedent of the
production. The consequential information appears at the head of the right-arrow and is
called the consequent of the production.
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Running Example – Part 4. A single production suffices to calculate the partial genus
distribution (4.3) of the compound fragment G[h; b, g; e] from partial genus distributions
(4.1) and (4.2), for the node-fragments G[; e, g;h] and G[; e, g; b], respectively:

(egh, ehg)i ∗ (egb, ebg)j −→ [eg; eh,gh; eb,gb]

(be•g, bge, eg•)i+j + (bg•e, beg, e•g)i+j
+(beg•ebge•g)i+j+1 + (be•gebg•eg)i+j+1

REMARK. We observe that this production is asymmetric. That is, it converts the pivot
vertex h of the earlier node-fragment in the post-order into a bullet.

This particular form of production is designed for reassembling a graph from a full
decomposition tree by iterative amalgamation of fragments. In each case, all of the vertices
of each of the two amalgamand-fragments lie in a single node within that fragment. For
treewidth k, the two nodes intersect in k vertices. We observe that the subscript

[eg; eh, gh; eb, gb]

of the arrow operator contains three lists of edges.

1. The first list is the set of edges that lie in the root-subgraphs of both amalgamand
fragments.

2. The second list contains the other edges that join vertices within the presenting node
of the first amalgamand fragment.

3. The third list contains the other edges that join vertices within the presenting node
of the second amalgamand fragment.

The antecedent of each production is a root-phrase with an integer variable as sub-
script, followed by an asterisk denoting amalgamation, and then another root-phrase with
another integer variable as subscript. The consequent of each production is a sum of root-
phrases, each of which has as its subscript a formula giving the genus of the surface of the
amalgamated graph that corresponds to the two operand embeddings.

The coefficient of each such subscripted partial indicates in how many ways an fb-walk
corresponding to that partial can be created by amalgamating two operand embeddings that
correspond to the two partials in the antecedent. The sum of the coefficients is subject to
the upper bound of Formula 5.3.

If the two root-phrases in the antecedent are inconsistent on the root-subgraph (which
can occur for treewidth four or more), then the consequent is empty. We use the two
partials in the antecedent and the first list of edges in the subscript of the arrow operator
to construct rotation systems for the set of embeddings of the amalgamated graph that are
consistent with those two partials. Figure 6.1 illustrates the situation for Running Example
– Part 4. For each of these rotation systems, we use the Heffter-Edmonds face-tracing
algorithm to calculate the number of faces in the consequent embeddings relative to the
sum of the numbers in the antecedent embeddings, after which we use the Euler polyhedral
equate to calculate the corresponding increment or decrement in genus. The time required
depends only on the root-subgraphs, not on the numbers of vertices in the amalgamands.
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e

eg

g

b b

h h

eg

h

e
e

eg g

g

b b

b

h h

Figure 6.1: Deriving a production.

Theorem 6.1. Let G be a family of subgraph-rooted graphs of treewidth at most k and max-
imum degree at most ∆, where k and ∆ are fixed positive integers. Let (G,H), (G′, H ′) ∈
G, and let η : H → H ′ be an isomorphism. Then the number of productions required to
calculate the pgd of (G ∗η G′, H) from the pgd’s of (G,H) and (G′, H ′) is at most(

[(k + 1)∆]!

(∆!)k+1
· p((k + 1)∆) · 2(k+1)∆

)2

That is, the number of productions has an upper bound that is independent of the numbers
of vertices of the graphs G and G′.

Proof. One needs a production for each ordered pair of partials used, and no more. Thus,
the number of productions needed is at most the square of the number of partials determined
by Theorem 4.2.

RECURRENCES AND CLOSED FORMS

Productions were used in [10], and then in [7], [18], and [15] to derive systems of
simultaneous recurrence relations for pgds. Using generating functions on the simultaneous
recurrences, one can sometimes derive closed forms, as in [5].

7 Genus Distribution Algorithm
A skeletal version of the algorithm for calculating the genus distribution of the graphs in a
family G of graphs of treewidth k and maximum degree at most ∆G is straightforward and
intuitive.

Algorithm 7.1 (Genus Distribution Algorithm).
Input: an n-vertex graph G of treewidth k and maximum degree ∆
Output: a pgd and the genus distribution for G.

Comment: INITIALIZE

1. Calculate a full decomposition tree T of width k for G.
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2. Determine a post-order for decomposition-tree T , with the lines `1, `2, . . . , `n−k−1

in the post-order, so that the jth amalgamation is across line `j .

3. For j = 1, . . . , n− k − 1,

(a) Construct the subgraph-rooted node-fragment (Mj ,Mj , uj) as the induced
graph on the jth node of T in the post-order.

(b) Identify the partner (M ′j ,M
′
j , u
′
j), and construct the isomorphism ηj : Mj −

{ui} →M ′j − {u′i}
Comment: “Partner” is defined in §3.

(c) Calculate the pgd of the node-fragment (Mj ,Mj , uj).

4. Let (F1, H1, u1) = (M1,M1, u1), and let (F ′1, H
′
1, u
′
1) be its partner, i.e., let

(F ′1, H
′
1, u
′
1) = (M ′1,M

′
1, u
′
1)

Comment: MAIN LOOP REASSEMBLES G

5. For each line `j of the decomposition tree

(a) Amalgamate the two fragments (Fj , Hj , uj) and (F ′j , H
′
j , u
′
j) via the isomor-

phism ηj to produce the fragment Fj+1.
(b) Let Hj+1 be whichever of Mj or M ′j is the latter node-fragment in the post-

order. Let the pivot uj+1 be whichever vertex of the root-subgraphHj+1 will
not be pasted in the next amalgamation that involves the fragment Fj+1.

(c) Use productions to calculate the pgd of (Fj+1, Hj+1, uj+1) from the pgd’s
of (Fj , Hj , uj) and (F ′j , H

′
j , u
′
j).

Comment: CALCULATE gi’s BY SUMMING.
N.B. We recall from §4 that for a subgraph-rooted graph (G,H), we denote the
corresponding set of partials by PH .

6. For i = 0, . . . , bβ(G)/2c, calculate gi(G) by the formula

gi(G) =
∑

π∈PHn−k

πi(G)

BREADTH OF THE GENUS RANGE

Analysis of Algorithm 7.1 uses the concept of breadth of the genus range.

DEF. The breadth of the genus range of a graph G is given by the equation

γB(G) = γmax(G) − γmin(G) + 1

Thus, γB(G) is equal to the number of values of the index i such that gi(G) ≥ 1.
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Proposition 7.1. The breadth of the genus range of any graph G is at most (2|EG|+ 3)/6.

Proof. γB(G) = γmax(G) − γmin(G) + 1

≤ β(G)

2
− γmin(G) + 1

≤ |EG| − |VG|+ 1

2
− |EG| − 3|VG|+ 6

6
+ 1

=
2|EG|+ 3

6

Corollary 7.2. Let G be a family of simple graphs of maximum degree at most ∆G . Then
the breadth of the genus range of any n-vertex graph G in G is at most (n∆G + 3)/6.

Proof. Since 2|EG| ≤ n∆G , by Euler’s theorem on degree sum, this follows immediately
from Proposition 7.1.

ANALYSIS OF THE ALGORITHM

As established by [26], assigning an upper bound to the degree of a graph does not
reduce the computational complexity of the minimum genus problem. Thus, bounding the
treewidth is essential to the computational complexity of our algorithm.

Proposition 7.3. Let G be a family of subgraph-rooted graphs, each of treewidth at most
k and of maximum degree at most ∆, where k and ∆ are fixed positive integers. Let
(G,H, u), (G′, H ′, u′) ∈ G and let η : H − {u} → H ′ − {u′} be an isomorphism. Then
the time required to calculate the pgd of (G ∗η G′, H, u) from the pgd’s of (G,H, u) and
(G′, H ′, u′) is in O(|VG| · |VG′ |).

Proof. The time depends predominantly on the number of applications of productions,
which depends, in turn, only on the product of the numbers of partials in the respective
pgd’s of G and G′ with non-zero subscripted coefficients. The number of non-zero sub-
scripted coefficients of the partials depends on the breadths of their genus ranges. This
theorem now follows from Corollary 7.2 and Theorem 4.2.

Theorem 7.4. Let G be a family of graphs of treewidth at most k and maximum degree at
most ∆, where k and ∆ are fixed positive integers. Then the time needed to calculate the
genus distribution of an n-vertex graph G ∈ F , starting from a full decomposition tree T
for G, is in O(n2).

Proof. We proceed step by step.
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Step 1. A full decomposition tree T for the graph G can be calculated in time proportional
to |VT |, which is in O(n), by Corollary 2.7.

Step 2. The post-order of the decomposition tree T can be calculated in time proportional
to |VT |, which is in O(n).

Substep 3a. The time needed to construct each of the node-fragments M1, . . . ,Mn−k
from the given graph G is in O(k2), since each node of the decomposition tree T has k+ 1
vertices. The time for this substep is in O(1).

Substep 3b. Each partner can be located by a post-order traversal. Each isomorphism ηj
is an artifact of the tree decomposition. The time for this substep is in O(1).

Substep 3c. There is a fixed upper bound of (k!)k+1 for the number of embeddings of
Mj , since Mj is a subgraph of the complete graph Kk+1. The time needed to determine
the appropriate subscripted partial for each embedding of a node-fragment, by using the
Heffter-Edmonds algorithm, is in O(k∆Mj ), that is, linear in the number of edges of the
node-fragment, and constant, accordingly, with respect to |VG|.

Step 3 total. Since there are n – k node-fragments, by Proposition 2.5, it follows that the
total time needed for Step 3 is in O(n).

Step 4. This initializing step takes O(1)-time.

Substep 5a. The time needed to calculate a representation of the amalgamated graph Fj+1

from representations of the amalgamands is proportional to |EFj |+|EF ′j |, which is linear in
|VFj |+ |VF ′j |, because the degree of the graph G is bounded. This substep takes O(|VFj |+
|VF ′j |)-time.

Substep 5b. This substep is achieved by referring to the post-order traversal of tree T .

Substep 5c. The number of productions is constant, by Theorem 6.1. The numbers of
subscripted partials with non-zero coefficient in the pgd’s of the amalgamand fragments are
proportional to γB(Fj) and γB(F ′j), respectively. By Corollary 7.2, γB(Fj) and γB(F ′j)
are proportional to |VFj | and |VF ′j |, respectively. By Proposition 7.3, the time for this
substep is O(|VFj | · |VF ′j |), subject to the assumption that multiplication of integers takes
constant time.

Step 5 total. Let S denote the sequence of pairs of fragments that occurs in the reassembly
of G from the node-fragments corresponding to the decomposition tree T . The time for
each iteration of the body of the loop in Step 4 is dominated by the time needed for Substep
5c. Thus, the total time needed to calculate the pgd of G is at most

∑
(F,F ′)∈S

c |VF | · |VF ′ | = c
∑

(F,F ′)∈S

|VF | · |VF ′ |

We further suppose that the number of vertices in the node-fragment Fi is ni, for i =
1, . . . , n − k, and we observe that in the total reassembly no two node-fragments occur
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twice as subgraphs of fragments that are amalgamated. It follows that

∑
(F,F ′)∈S

|VF | · |VF ′ | =

n−k∑
i=1

n−k∑
j=1

ninj −
n−k∑
i=1

n2
i

< (n1 + n2 + · · ·+ nn−k)2

= n2

Step 6. Of course, each term gi(G) in the genus distribution forG is obtained from the pgd
by summing all the coefficients of subscripted partials with subscript i. The time needed for
such a calculation of each gi(G) is proportional to the number of different partials, which
is bounded by a constant. Thus, the time needed to calculate the genus distribution from
the pgd is proportional to the size of the genus range, and thus, in O(n).

8 Conclusions
Stahl [22, 23] has called a family of graphs H-linear if its members can be derived by
iterative amalgamation of copies of a graph H , and he has introduced a form of production
matrices whose elements are univariate polynomials, in which the degree of a term corre-
sponds to an increment of genus as an additional copy of the graph H is amalgamated to a
growing linear chain. The treewidth of the graphs in an H-linear family is the tree width
of the graph H . Although the size of such matrices can be very large, corresponding to
the number of partial genus distributions associated with a given maximum degree, it is of
fixed size. Accordingly, the time-complexity needed to take a power of such a production
matrix depends only on the time needed to multiply two polynomials of linearly increasing
degree.

Practical algorithms for the genus distributions and partitioned genus distributions of
the graphs in various interesting linear families of graphs, implicit in [23, 10, 15, 18, 11,
12], fall within the quadratic time-complexity upper limit given by Theorem 7.4. Moreover,
quadratic-time calculation of genus distributions is implicit in [7, 19] for graph families,
including circular ladders and Möbius ladders, that are not H-linear, but which could be
characterized as ring-like. Beyond that, there is a practical quadratic-time algorithm for the
cubic Halin graphs [9], which are a non-linear family.

We observe that in a genus distribution calculation by our algorithm, the partials and
productions can be generated dynamically as needed, rather than in advance. This suggests
the feasibility of implementing such an algorithm for graphs of reasonably small treewidth
and maximum degree, since the number of productions needed might be far smaller than
the total number possible for that treewidth and degree.

The exposition here illustrates once again how bounding the treewidth can be used to
reduce otherwise NP-hard calculations regarding embeddings to polynomial time. Here we
have also bounded the degree. This immediately suggests this general problem:

Research Problem 1. Determine whether the genus distribution of the graphs of bounded
treewidth can be calculated in polynomial-time, if the degree is not bounded.
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Of course, rather than being content with an algorithm with such a vast proliferation of
partials and productions, one hopes for closed formulas or tractable recursions for interest-
ing classes of graphs. A related line of investigation would involve bounding the treewidth
and prescribing the minimum genus (which effectively bounds the average degree). The
following two problems may be approachable.

Research Problem 2. Algorithms for calculating the genus distributions of 3-regular and
4-regular outerplanar graphs are given by [8] and [19], respectively. Calculate the genus
distributions of arbitrary outerplanar graphs.

Research Problem 3. A Halin graph is obtained from a plane tree with at least four
vertices and no vertices of degree two, by drawing a cycle through the leaves. An algorithm
for the genus distribution of any 3-regular Halin graph is given by [9]. Calculate the genus
distributions of arbitrary Halin graphs.

Research Problem 4. A remaining problem of self-evident theoretical interest is determi-
nation of a lower bound on the time needed to calculate the genus distribution of a graph
of fixed treewidth and bounded maximum degree.
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