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Genus distribution of graphs under
surgery: adding edges and splitting

vertices

Jonathan L. Gross

Abstract. Our concern is deriving genus distributions of graphs ob-
tained by surgical operations on graphs whose genus distribution is
known. One operation in focus here is adding an edge. The other is
splitting a vertex, for which the inverse operation is edge-contraction.
Our main result is this Splitting Theorem: Let G be a graph and w
a 4-valent vertex of G. Let H1, H2, and H3 be the three graphs into
which G can be split at w, so that the two new vertices of each split are
3-valent. Then 2gd(G) = gd(H1) + gd(H2) + gd(H3).
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1. Introduction

Counting the imbeddings of a graph in various surfaces is an enumerative
branch of topological graph theory. Our main result here relates the sum of
the genus distributions of all the splits of a graph at a designated vertex to
the genus distribution of the graph itself.

Graphs may have self-loops and multiple adjacencies. An edge of a graph
is conceptualized intuitively via its topological model, as the continuous
image of the unit interval [0, 1], which is 1-1 everywhere for a proper edge,
and 1-1 everywhere except at 0 and 1 for a self-loop. The images of small
neighborhoods of 0 and 1 are called edge-ends. Every edge has two edge-
ends, but a self-loop has only one endpoint.

All imbeddings of concern here are in orientable surfaces. Two imbeddings
of a graph are equivalent if they induce the same rotation system on the
graph. Given a rotation ρw at any vertex w of a graph G and a subgraph
H ⊆ G such that w ∈ VH , the induced rotation at w in H is the unique
rotation that can be obtained by deleting from ρw the edge-ends of every
edge in EG − EH . Moreover, given an imbedding ι : G → S, the induced
imbedding of H is the imbedding all of whose rotations are induced by the
rotation system corresponding to ι.

We use the abbreviation fb-walk to refer to a face-boundary walk. In
much of the discussion here, we visualize an fb-walk as a topological entity,
lying a little off the graph itself, slightly into the interior of its face, and not
simply as a sequence of edges in the graph.

Throughout this paper, graphs are connected and imbeddings are cellular
and oriented, unless the alternative is inferrable from context. Discussion
presumes familiarity with topological graph theory. The usage here follows
[GT87] and [BWGT09]. ([BL95], [MT01], and [Whi01] provide additional
background, each in somewhat different terminology from here.)

Recent work on counting imbeddings of a graph in a minimum-genus sur-
face includes [BGGS00], [GRS07], [GG08], and [KV02]. Results on counting
imbeddings in all orientable surfaces or in all surfaces have been achieved
by [CGR94], [CLW06], [FGS89], [GF87], [GRT89], [KL93], [KL94], [KS02],
[McG87], [Mul99], [Sta90], [Sta91a], [Sta91b], [Tes00], [VW07], [WL06], and
[WL08], and others. Complementary work on counting maps on a given
surface is given by [CD01], [Jac87], [JV90], [JV01], and by many others.

1.1. Genus distribution. The genus distribution of a graph G is the se-
quence

gd(G) = 〈g0(G), g1(G), g2(G), · · · 〉

in which gi(G) is the number of imbeddings of G in the orientable surface Si.
The smallest and largest indices i such that gi(G) > 0 are the minimum
genus γmin(G) and the maximum genus γmax(G) of the graph G. We re-
call that determination of γmin(G) and γmax(G) are NP-hard and P-hard,
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respectively. This implies that it is at least NP-hard to calculate genus dis-
tributions, which motivates the concentration of effort in calculating genus
distibutions on interesting families of graphs, exactly as we do for mini-
mum genus. We recall also that the total number of imbeddings equals the
product of the numbers (deg(v)− 1)!, taken over all vertices v ∈ VG.

The effect of a surgical operation on the genus distribution of a graph
depends on the incidence of the face-boundary walks incident on the ver-
tices or edges where the surgery takes place. Accordingly, as in [PKG10],
[GKP10], and [Gro10a], we specify roots and we refine the genus distribution
according to the incidence of fb-walks on the roots. The results here can
be used, as indicated in §5, with those three other papers on this topic to
calculate previously unknown genus distributions of graphs in various kinds
of recursively-constructed infinite sequences and to expedite calculations of
some known genus distributions.

Although there is no hope (unless P = NP ) of a polynomial-time general
algorithm for genus distribution, the families of graphs of greatest interest
are often amenable to recursively specification. This suggests a two-fold
approach:

(1) Find recursions that correspond to various kinds of operations used
to synthesize larger graphs from smaller graphs.

(2) Find useful ways to specify interesting families of graphs recursively.

The present paper is mostly concerned with the first aspect. The second
aspect is illustrated, for instance, by [Gro10b], which develops a recursive
specification of the 3-regular outerplanar graphs and uses it to construct a
recursion for their genus distributions.

2. Joining two vertices

Let (G, u, v) be a double-rooted (connected) graph with both roots u and
v of degree 2. The result of joining the roots u and v by an edge e is denoted
G + e. We seek to derive the genus distribution gd(G + e) from some form
of partitioned genus distribution of (G, u, v).

2.1. Recombinant strands. For any graph imbedding ι : (G, u, v) → Si,
there is a set of four imbeddings of G + e that induce ι. Each of these four
is said to be an imbedding resulting from inserting edge e.

Since u is 2-valent, the fb-walk incident on one side of u in the imbedding
ι : G → S may be a different fb-walk from the fb-walk on the other side of
u; or the same fb-walk might be incident on both sides of u. Likewise, there
may be two fb-walks incident on v in the imbedding ι : G → S, or just one
such fb-walk. The genera of the surfaces for the four imbeddings resulting
from adding edge e depend on the number of fb-walks incident at both roots
and on whether one or two fb-walks incident at one root are also incident
at the other root.
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On whichever side of root u or of root v an edge-end of e is inserted, it
breaks the fb-walk on that side into a strand. If both ends of edge e are
inserted along the same fb-walk of ι : G → S, then that walk is broken into
two strands. No matter how many fb-walks of ι : G → S remain intact,
there will be two strands to be combined into fb-walks of an imbedding of
the resultant graph G + e, using new segments of walk along edge e. This
construction of fb-walks in an imbedding of G+e, resulting from insertion of
edge e into an imbedding of G, is a simplest instance of the general method
of recombinant strands.

Figure 2.1 illustrates the recombination of strands using the inserted
edge e and of the sides of u and v on which the fb-walk is not broken.
There may be altogether a maximum of four different fb-walks incident on
u and v, and a minimum of one fb-walk that is twice incident on both roots.
The drawings should be understood as rotation projections in the sense of
[GT87] — that is, they represent imbeddings of G + e.

red

purple

blue

brown
v v

u

e e

u

v

u

e

v

u

e

Figure 2.1: Four ways to insert edge e into imbedding ι : G → S.

Four different graphic representations are used in the figure, in order not
to inappropriately conflate two different fb-walks in any of the possible cases.
Thus two or more different graphics occur along the same fb-walk in the
cases with fewer than four distinct fb-walks. Since there is no universally
understood terminology for the different graphics used in Figure 2.1, we
assign the names red and purple to the fb-walks we observe locally at u, and
the names blue and brown to what we observe locally at v; to compensate
for the absence of color print, we provide a legend at the left. The thin black
arcs on either side of inserted edge e represent the edge-steps along edge e
that occur in the indicated imbedding of G + e.

2.2. Partitioning the genus distribution. When calculating the genus
distribution of G + e, the genus distribution of G is partitioned into nine
partial distributions, also called partials. When some of these partials are
null-valued, it simplifies the calculations.

Cases dd, dd ′ and dd ′′. We first consider the circumstance where the
fb-walk on one side of root u differs from the fb-walk on the other side, and
the same is true at root v. (Mnemonic: dd for “different-different”.)
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• ddi(G, u, v) is the number of imbeddings of G into the surface Si in
which no two of the red, purple, blue, and brown fb-walks coincide.

• dd′i(G, u, v) is the number of imbeddings G → Si in which the red
and purple walks are distinct, and the blue and brown walks are
distinct, but exactly one of the fb-walks at u (i.e., red or purple)
coincides with one of the fb-walks at v (i.e., blue or brown).

• dd′′i (G, u, v) is the number of imbeddings G → Si in which the red
and purple walks are distinct, and the blue and brown walks are
distinct, and one of the fb-walks at u coincides with one of the fb-
walks at v, and the other fb-walk at u coincides with the other
fb-walk at v.

Cases ds, sd, ds ′, and sd ′. We next consider the circumstance where
a single fb-walk is twice incident at one root and two different fb-walks are
incident at the other root. (Mnemonic: ds for “different-same”, etc.) Cases
sd is like case ds, except for a swap of the roles of the roots u and v.

• dsi(G, u, v) is the number of imbeddings G → Si in which the red and
purple walks are distinct, and the blue and brown walks coincide, but
neither the red walk nor the purple walk coincides with the fb-walk
at v.

• ds′i(G, u, v) is the number of imbeddings G → Si in which the red and
purple walks are distinct, and the blue and brown walks coincide,
and either the red walk or the purple walk coincides with the fb-walk
at v.

• sdi(G, u, v) is the number of imbeddings G → Si in which the blue
and brown walks are distinct, and the red and purple walks coincide,
but neither the blue walk nor the brown walk coincides with the fb-
walk at vertex u.

• sd′i(G, u, v) is the number of imbeddings G → Si in which the blue
and brown walks are distinct, and the red and purple walks coincide,
and either the blue walk or the brown walk coincides with the fb-walk
at u.

Cases ss and ss. The remaining circumstance is where the fb-walk on one
side of root u coincides with the fb-walk on the other side, and the same is
true at root v. (Mnemonic: ss for “same-same”.)

• ssi(G, u, v) is the number of imbeddings of G into the surface Si in
which the fb-walk at u is different from the fb-walk at v.

• ssi(G, u, v) is the number of imbeddings of G into the surface Si in
which the fb-walk at u coincides with the fb-walk at v.

A complete set of partials for a graph G is called a partitioned genus
distribution. The sum of the partial distributions within a partitioned genus
distribution of G equals the genus distribution gd(G).

Remark. Different sets of partials can be used for different genus distri-
bution problems. For instance, it is sufficient in certain problems to use
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single-root partials. Also, in a set of double-root partials, it is sometimes
necessary to distinguish partials according to behavioral characteristics of
the strands.

2.3. Production rules for edge addition. A production (rule) of the
form

pqx
i (G, u, v) −→ mgi(G + e) + (4−m)gi+1(G + e)

has the following interpretation: suppose that the imbedding ι : G → Si is
included in the count by the partial pqx

i (G, u, v), where x is either blank or
a modifier, such as a prime or a double prime; then, of the four imbeddings
that result from inserting edge e, exactly m imbeddings are in the surface
Si, and the other 4 − m imbeddings are in the surface Si+1. We shall see
how such productions enable us to calculate the genus distribution of G + e
from the partitioned genus distribution of G.

Theorem 2.1. Let (G, u, v) be a double-rooted graph with 2-valent co-roots.
Then the following productions describe the relationship between its par-
titioned genus distribution and the genus distribution of the graph G + e
obtained by joining roots u and v with edge e.

ddi −→ 4gi+1(2.1)
dd′i −→ gi + 3gi+1(2.2)
dd′′i −→ 2gi + 2gi+1(2.3)
dsi −→ 4gi+1(2.4)
ds′i −→ 2gi + 2gi+1(2.5)
sdi −→ 4gi+1(2.6)
sd′i −→ 2gi + 2gi+1(2.7)
ssi −→ 4gi+1(2.8)
ssi −→ 4gi.(2.9)

Proof. The productions for dd, ds, sd and ss all correspond to imbeddings
in which a handle must be added for all four ways of inserting edge e, because
the two roots do not lie on the same fb-walk.

Production dd′ corresponds to the case in which one of the two fb-walks
(say, red) at u coincides with one of the two fb-walks (say, blue) at v. Thus,
edge e could be drawn across the face without adding a handle. However,
each of the other three ways of inserting edge e places the two edge-ends of
e in different faces, so a new handle is needed. In production dd′′, there are
two ways to place both ends of edge e in the same face and two to place
them in different faces; in the former case, the edge can be drawn on Si, and
in the latter case, a handle must be added.

For productions ds′ and sd′, the edge e can be drawn on Si when its
end at the root with two incident fb-walks is in the face whose fb-walk
occurs twice at the other root, with the other end at either of the two
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occurrences of the other root on that fb-walk. For production ss, all four
ways of inserting edge e place both edge-ends in the same face, so edge e
can be drawn in Si. �

In the corollary, we write G as the argument of the partials on the right
side of the equation, rather than (G, u, v), for the sake of brevity.

Corollary 2.2. Let (G, u, v) be a double-rooted graph with 2-valent co-roots.
Then the genus distribution gd(G + e) is derivable by using the following
equation:

gi(G + e) = 4ddi−1(G) + 3dd′i−1(G) + 2dd′′i−1(G) + 4dsi−1(G)(2.10)

+ 2ds′i−1(G) + 4sdi−1(G) + 2sd′i−1(G) + 4ssi−1(G)

+ dd′i(G) + 2dd′′i (G) + 2ds′i(G) + 2sd′i(G) + 4ssi(G)

Proof. This is an immediate consequence of Theorem 2.1. �

Remark. The statement of Theorem 2.1 is sharpened within the proof of
Theorem 3.1.

2.4. Constructing K3,3 from K4. As a preliminary to discussing how
Equation (2.10) might be used in conjunction with methods of [Gro10a] to
produce genus distributions for a recursively constructed family of graphs,
we consider a simple application.

Example 2.1. Let K̈4 be the graph obtained by inserting vertices u and v
at the midpoints of two independent edges of the complete graph K4, as in
Figure 2.2, and by regarding them as roots. We observe in Figure 2.2 that
the graph K̈4 + e is isomorphic to the complete bipartite graph K3,3.

vu vu

eK4
..

K4+e
..

Figure 2.2: Adding an edge to K̈4.

We use face-tracing (see [GT87]) to calculate the double-root partitioned
genus distribution in Table 2.1 of the double-rooted graph (K̈4, u, v).
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Table 2.1: Double-root partials of K̈4.

i ddi dd′i dd′′i dsi ds′i sdi sd′i ssi ssi gi

0 2 0 0 0 0 0 0 0 0 2
1 0 0 4 0 4 0 4 0 2 14

By Equation (2.10) we have, in agreement with [GF87] (and confirmable
by face-tracing)

g0(K3,3) = dd′0(K̈4) + 2dd′′0(K̈4) + 2ds′0(K̈4) + 2sd′0(K̈4) + 4ss0(K̈4)
= 0 + 0 + 0 + 0 + 0 = 0.

g1(K3,3) = 4dd0(K̈4) + 3dd′0(K̈4) + 2dd′′0(K̈4) + 4ds0(K̈4)

+ 2ds′0(K̈4) + 4sd0(K̈4) + 2sd′0(K̈4) + 4ss0(K̈4)

+ dd′1(K̈4) + 2dd′′1(K̈4) + 2ds′1(K̈4) + 2sd′1(K̈4) + 4ss1(K̈4)
= 4 · 2 + 0 + 0 + 0 + 0 + 0 + 0 + 0

+ 0 + 2 · 4 + 2 · 4 + 2 · 4 + 4 · 2 = 40.

g2(K3,3) = 4dd1(K̈4) + 3dd′1(K̈4) + 2dd′′1(K̈4) + 4ds1(K̈4)

+ 2ds′1(K̈4) + 4sd1(K̈4) + 2sd′1(K̈4) + 4ss1(K̈4)
= 0 + 0 + 2 · 4 + 0 + 2 · 4 + 0 + 2 · 4 + 0 = 24.

Example 2.2. Using the derivation of double-root partitioned genus distri-
butions for the sequence of closed-end ladders in [PKG10] (a refinement of
the original derivation in [FGS89]), Equation (2.10) yields the genus distri-
butions of Ringel ladders, which were first calculated by [Tes00].

3. Deleting an edge

Deleting an edge e of a graph G that joins two vertices u and v inverts the
operation of joining u and v. The effect on the genus distribution of deleting
an edge is easy to state. In an imbedding in which two distinct fb-walks are
incident on the edge, the two faces are merged into one and the genus stays
the same; if a single fb-walk is twice incident on the edge, then that face is
split into two faces, and the genus drops by one. The catch is that several
different imbeddings of G may correspond to the same imbedding of G− e.

3.1. Single-edge-root partitioned distributions. While we used nine
double-root partials of G to construct a formula for the genus distribution
of the result of adding an edge to a graph G, we can easily construct a
formula for the genus distribution of the result G − e of deleting an edge
from G with the aid of only two partials. Once again, the symbols d and
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s are mnemonics for “different” and “same”. This time we need only two
single-edge-root partitioned distributions:

• di(G, e) is the number of imbeddings of G into the surface Si in
which two different fb-walks are incident on edge e.

• si(G, e) is the number of imbeddings of G into the surface Si in which
the same fb-walk is incident on both sides of e.

Theorem 3.1. Let (G, e) be a single-edge-rooted graph with two 3-valent
endpoints. The following production rules describe the relationship between
its partitioned genus distribution and the genus distribution of the graph
G− e:

di −→ 1
4 gi(3.1)

si −→ 1
4 gi−1.(3.2)

Proof. We observe that we could sharpen Theorem 2.1 by replacing each
instance of gi on the right of the productions by di and each instance of
gi+1 by si+1. Each imbedding of G− e in Si corresponds to four imbeddings
of G, and this theorem follows by reversing each of the productions of the
shapened version of Theorem 2.1. �

Corollary 3.2. Let (G, e) be a single-edge-rooted graph with two 3-valent
endpoints. Then the genus distribution gd(G − e) is derivable by using the
following equation:

gi(G− e) = 1
4 di(G, e) + 1

4 si+1(G, e).(3.3)

Proof. This is an immediate consequence of Theorem 3.1. �

4. Contracting an edge

In a graph G, let e be an edge with endpoints u and v. The contraction
of graph G on ( or along) edge e, denoted G/e, is the graph obtained topo-
logically by shrinking edge e to a single vertex, so that vertices u and v are
merged. The operation is called contracting graph G on edge e.

Contraction of G along e is achieved combinatorially by deleting edge e
and then amalgamating the vertices u and v that were the endpoints of e.
Accordingly, if e is a cycle-edge, then we could apply the methods of [Gro10a]
to the double-root partitioned genus distribution of (G− e, u, v). Alterna-
tively, if e is a cut-edge, and if Gu and Gv are the components of G− e
that contain u and v, respectively, then we could apply the methods of
[GKP10] to the single-root partitioned genus distributions of (Gu, u) and
(Gv, v). These partitioned genus distributions for G − e are not inferrable
from the single-edge-root partitioned genus distribution for (G, e). Also, the
Splitting Theorem of the next section can sometimes be used to determine
the genus distributions of a contracted graph.
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5. Splitting a vertex

Let w be a vertex of a graph G, and let U and V be the cells of a bipartition
of the neighbors of w into nonempty parts. In the graph G − w, let every
vertex of U be joined to a new vertex u and let every vertex of V be joined
to a new vertex v, and join the vertices u and v. This operation is called
splitting graph G at vertex w, and the resulting graph is called a split of the
graph G at the vertex w. We may refer to w as the split vertex.

Proposition 5.1. Let w be an n-valent vertex of a graph G, and let r and
s be integers, each at least 2, with sum r + s = n + 2. Then the number of
ways to split graph G at vertex w so that the endpoints of the new edge have
degrees r and s is 

(
n

r − 1

)
if r 6= s

1
2

(
n

r − 1

)
if r = s.

Proof. This is elementary counting. �

Example 5.1. The 4-wheel W4 has three splits at its hub-vertex, as shown
in Figure 5.1. Two of the splits are isomorphic to K2 ×C3, and the other is
isomorphic to K3,3.

W4 K2xC3
K2xC3 K3,3

Figure 5.1: Splitting the 4-wheel W4.

We observe that contracting any split of a graph along its new edge inverts
the splitting. Conversely, if the sets of neighbors of the respective endpoints
of an edge are used as the bipartition of the merged vertex, then splitting
at the merged vertex inverts the contraction.

5.1. A genus-distribution phenomenon. In comparing the genus dis-
tribution of a graph to the genus distributions of its splits at a vertex of
degree 4, we discover a rather interesting phenomenon: the genus distribu-
tion gd(G) of the unsplit graph is equal to exactly half the sum of the genus
distributions of its three splits.
Example 5.1, continued. The genus distributions of K3,3 and of K2×C3

are given by Examples 2 and 3 of [GF87]. The sum 〈4, 116, 72〉 of the genus
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distributions of these three splits is exactly double the genus distribution
of W4, which is 〈2, 58, 36〉.

gd(K2 × C3) = 〈 2, 38, 24 〉
gd(K2 × C3) = 〈 2, 38, 24 〉

gd(K3,3) = 〈 0, 40, 24 〉
sum = 〈 4, 116, 72 〉

In what follows, we prove that this phenomenon holds, in general.

5.2. Relative genus distributions. Let G be a graph, let U be a subset
of its vertex set, and let ρU be an assignment of rotations to every vertex
of U . Let g

ρ
U

i (G) denote the number of imbeddings of the graph G in
the surface Si such that the rotation at every vertex u ∈ U is ρU (u). The
sequence

gd ρ
U (G) = g

ρ
U

0 (G), g
ρ

U
1 (G), g

ρ
U

2 (G), . . .

is called the relative genus distribution of G with respect to ρU .

Notation. We denote the set of all rotation assignments for U by RU .

Proposition 5.2. Let G be a graph and let U be a subset of its vertex set.
Then for all i ≥ 0,

gi(G) =
∑

ρ∈RU

g ρ
i (G).

Proof. The full set of imbeddings of graph G can be partitioned according
to assignments of rotations on the set U . For any given assignment ρ of
rotations on the set U , the relative genus distribution gdρ(G) is a genus
distribution for the imbeddings in the cell of that partition, corresponding
to the assignment ρ. �

Corollary 5.3. Let G be a graph, let U be a subset of its vertex set. Then

gd(G) =
∑

ρ∈RU

gdρ(G).

Proof. This follows immediately from Proposition 5.2. �

Although relative genus distributions are introduced here primarily for
their conceptual use in deriving a genus distribution for a whole graph, it
is helpful to consider a small illustration of Proposition 5.2 with concrete
numbers.

Example 5.2. In the graph K2 ×C3, let the set U comprise two adjacent
vertices u and v on different 3-cycles. Since u and v are both 3-valent, there
are four possible assignments of rotations to U . Figure 5.2 illustrates these
four assignments.
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u

v

u

v

u

v

u

v

00 10 1101

Figure 5.2: Rotations on a subset of vertices of K2 × C3.

Of course, there are 16 possible combinations of rotations on the other
four vertices, for each of the assignments to the vertices of U . The figure uses
the same assignment of rotations to the other four vertices with all four of
the assignments to u and v. Table 5.1 gives the relative genus distributions
for the four assignments of rotations to U and their sum, which is the genus
distribution of K2 × C3.

Table 5.1: Relative genus with respect to four rotations.

ρ g0 g1 g2

00 1 9 6
01 0 10 6
10 0 10 6
11 1 9 6

gd(K2 × C3) 2 38 24

5.3. The splitting theorem. We now prove our main result about split-
ting and contracting.

Theorem 5.4 (Splitting Theorem). Let G be a graph and w a 4-valent
vertex of G. Let H1, H2, and H3 be the three graphs into which G can be
split at w, so that the two new vertices of each split are 3-valent. Then

(5.1) 2gd(G) = gd(H1) + gd(H2) + gd(H3).

Proof. In the graph Hi, for i = 1, 2, 3, we let ui and vi be the vertices into
which vertex w of graph G splits, and we let Ui = {ui, vi}. In the graph G,
we let U = {w}. According to Corollary 5.3,

(5.2) gd(Hi) =
∑

ρ∈RUi

gdρ(Hi) for i = 1, 2, 3
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and

(5.3) gd(G) =
∑

ρ∈RU

gdρ(G).

We consider the imbeddings of H1, H2, and H3 to be mutually disjoint.
We make two assertions about the operation of contracting the edge uivi.

(1) It induces a 2-to-1 correspondence from the union of the sets of
imbeddings of these three graphs onto the set of imbeddings of the
graph G.

(2) It preserves the genus of the surface.
In regard to assertion (1), we consider an arbitrary imbedding ι : G → S,

in which we suppose that the rotation at vertex w is abcd. We observe that
each of the three graphs H1, H2, and H3 has exactly four imbeddings that
coincide with the imbedding ι on all the vertices of VG−{w}, so there are 12
imbeddings altogether in the union of the imbeddings of these three graphs.
Of course, there are exactly six imbeddings of G (including ι) that have the
same rotations as ι on the vertices of VG − {w}.

Figure 5.3 shows the 2-to-1 correspondence. In each column, contraction
of the imbeddings in rows 1 and 2 along the edge uivi maps those imbeddings
to the imbedding in row 3, in that same column.
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Figure 5.3: The 2-to-1 correspondence to rotations at a split vertex.

Regarding assertion (2), we observe that a contraction operation decreases
the numbers of vertices and edges, each by 1, and preserves the number of
faces. This implies that the genus of the imbedding surface is unchanged.
With this in mind, Equation (5.1) follows from Equations (5.2) and (5.3). �

Example 5.1 could serve as an example of direct application of the Split-
ting Theorem. That is, we could use values for the three terms on the right
of Equation (5.1) to calculate gd(G).
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5.4. Indirect application of the splitting theorem. Combining some
preexisting results with the Splitting Theorem, we can calculate genus dis-
tributions for various graphs and infinite families indirectly. That is, we
calculate the genus distribution of one of the splits by using the values of
gd(G) and the genus distributions of one or two of the other splits. To
illustrate, we begin with the graph H depicted in Figure 5.4.

H

Figure 5.4: To calculate: the genus distribution of this graph.

We seek a graph G with known genus distribution and a 4-valent vertex
w such that

• H can be obtained by splitting G at w;
• each of the other two splits either has known genus distribution or

is isomorphic to H.
To construct such a graph G, we insert a midpoint on one edge of K4

and thereby obtain a graph we call K̇4. We amalgamate two copies of K̇4 at
their 2-valent vertices and take the resulting graph as G. Figure 5.5 shows
the graph G and the three splits at its 4-valent vertex. The split labeled
K̇4|K̇4 is called a bar-amalgamation of two copies of K̇4, and the other two
are copies of H.

K4 | K4 H HG
. .

Figure 5.5: Splitting the graph G.

By face-tracing, we calculate

d0(K̇4) = 2 d1(K̇4) = 8 s1(K̇4) = 6
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The two preexisting results we need are as follows:

Theorem 5.5. Let (A, t) and (B, u) be single-rooted graphs with 2-valent
roots, and let (C,w) = (A, t) ∗ (B, u). Then

gk(C) = 4
k∑

i=0

di(A)dk−i(B) + 2
k−1∑
i=0

di(A)dk−i−1(B) + 6
k∑

i=0

di(A)sk−i(B)

(5.4)

+ 6
k∑

i=0

si(A)dk−i(B) + 6
k∑

i=0

si(A)sk−i(B).

Proof. This is Corollary 2.3 of [GKP10]. �

Theorem 5.6. Let (A, u) and (B, v) be rooted graphs. The genus distri-
bution of the bar-amalgamation (A, u)|(B, v) is obtained by multiplying the
convolution of the genus distributions of A and B by the product of the
degrees of vertices u and v in the graphs A and B, respectively.

Proof. This is Theorem 5 of [GF87]. �

Using Theorem 5.5 we can calculate gd(G), for G = K̇4 ∗ K̇4:

g0(G) = 4d0(K̇4)d0(K̇4) = 4 · 2 · 2 = 16

g1(G) = 4(d0(K̇4)d1(K̇4) + d1(K̇4)d0(K̇4)) + 2d0(K̇4)d0(K̇4)

+ 6d0(K̇4)s1(K̇4) + 6s1(K̇4)d0(K̇4)

= 4(2 · 8 + 8 · 2) + 2 · 2 · 2 + 6 · 2 · 6 + 6 · 6 · 2 = 280

g2(G) = 4d1(K̇4)d1(K̇4) + 2(d0(K̇4)d1(K̇4) + d1(K̇4)d0(K̇4))

+ 6d1(K̇4)d1(K̇4) + 6s1(K̇4)d1(K̇4)

= 4 · 8 · 8 + 2 · (2 · 8 + b · 2) + 6 · 8 · 6 + 6 · 6 · 8 = 1112

g3(G) = 2d1(K̇4)d1(K̇4) = 128.

Applying Theorem 5.6 to the task of calculating the genus distribution of
(K̇4, u)|(K̇4, u), we now multiply the product of the degrees of the roots by
the convolution of the genus distribution for K̇4 with itself.

(5.5) gd(K̇4|K̇4) = 4(4, 56, 196) = (16, 224, 784).

To calculate gd(H), we solve this linear equation

gd(H) =
1
2

[
2gd(G)− gd(K̇4|K̇4)

]
=

1
2

[
(32, 560, 2224, 256)− (16, 224, 784, 0)

]
=

1
2

[
(16, 336, 1440, 256)

]
= (8, 168, 720, 128).
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5.5. Genus distribution for an infinite sequence. We can generalize
the graph H of Figure 5.5 to an infinite sequence of graphs, in which the
number of “horizontal rungs” is arbitrarily large. Each such graph can be
obtained from a double-vertex-rooted closed-end ladder (see [PKG10] for a
recursion for the genus distributions of all such graphs) with the appropriate
number of rungs by vertex-amalgamation with K̇4 at one root of the ladder,
then a split of the resulting 4-valent vertex, followed by vertex-amalgamation
of another copy of K̇4 to the remaining root of the ladder, and then another
split.

6. Conclusions

The methods presented in this paper enable us to calculate previously
unknown genus distributions for various graphs, including the following:

• the genus distribution of the result of joining the roots of a double-
rooted graph (G, u, v) with 2-valent co-roots whose double-root par-
titioned genus distributions is known;

• the genus distribution of the result of deleting the root edge e, where
edge e has 3-valent endpoints, from an edge-rooted graph (G, e)
whose edge-root partitioned genus distribution is known;

• the genus distributions of graphs obtained by splitting a 4-valent
vertex or by contracting an edge whose endpoints are 3-valent;

• the genus distributions of infinite families of graphs, which are ob-
tained by combining the results here with preexisting results.
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