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Figure 1: Examples of woven objects constructed with ribbons: Venus consists of five distinct cycles. The bunny has eight cycles, the rocker
arm has only two cycles, and the genus-three object has 16 cycles. The first three models are created by the Quadcover method [Kalberer

et al. 2007], courtesy of Wenping Wang and Li Yupei. The genus-three object is created using TopMod3D [Akleman et al. 2007].

Abstract

In this paper, we show how to create plain-weaving over an arbi-
trary surface. To create a plain-weaving on a surface, we need to
create cycles that cross other cycles (or themselves) by alternatingly
going over and under. We prove that it is possible to create such
cycles, starting from any given manifold-mesh surface, by simply
twisting every edge of the manifold mesh. Our proof is based on
our extended theory of graph rotation systems, which is also first in-
troduced in this paper. Our extended theory relates non-orientable
meshes with links. We have developed a new method that converts
plain-weaving cycles to 3D thread structures. Using this method, it
is possible to cover a surface without large gaps between threads
by controlling the sizes of the gaps. We have developed a sys-
tem that converts any manifold mesh to a plain-woven object, by
interactively controlling the shapes of the threads with a set of pa-
rameters. We have demonstrated that by using this system, we can
create a wide variety of plain-weaving patterns, some of which may
not have been seen before.

CR Categories: G.2.2 [Graph Theory]: Topological Graph
Theory—Graph Rotation Systems; I.3.5 [Computational Geometry
and Object Modeling]: Geometric Algorithms—Links, Knots and
Weaving.

Keywords: Shape Modeling, Links and Knots, Weaving

1 Introduction

Knots and links are interesting structures that are widely used for
tying objects together and for creating beautiful shapes such as wo-
ven baskets. To topologists, a knot is a 3D embedding of a circle
and a link is a 3D embedding of more than one circle. We pre-
fer to use the general term link, since each component of a link

is also a knot. Mathematical links can be used to represent weav-
ing structures such as a fabric, a cloth, or a basket. There exist a
wide variety of weaving methods. Among them, the most popular is
plain-weaving, which consists of threads that are interlaced so that
a traversal of each thread alternately goes over and under the other
threads (or itself) as it crosses them. To model a plain-weaving pat-
tern on a surface, we construct an alternating projection of a link.
We prove that it is possible to create such a plain-weaving pattern
for any given manifold mesh by twisting all of the edges of a related
orientable manifold mesh.

Our proof uses a combinatorial structure called an extended graph
rotation system (EGRS), which is introduced in Section 2 of this
paper. Extended graph rotation systems facilitate representation of
linked knots by manifold mesh structures. They also provide a for-
malism for the development of tools for interactive modeling of
mathematical knots and links. In the representation by extended
graph rotation systems, an orientable manifold mesh corresponds
to an unlink, which is a link in which for each component, there
is an embedding of a sphere that separates that component from
all the others. If we twist any of the edges of the orientable mani-
fold mesh, we create a non-orientable mesh and two cycles become
linked. Section 2 proves a theorem that by twisting all edges of a
manifold mesh, we obtain an alternating link on the surface, which
represents a plain-woven pattern. Our theoretical work can also be
viewed as a formalization of methods for drawing Celtic knots us-
ing planar graphs [Mercat 2001; Kaplan and Cohen 2003].

A mathematical link is 1-dimensional, without solid shape. For
practical applications, the components of a link need to be con-
verted to 3D thread structures, such as extruded lines (ribbons)
or extruded surfaces (yarns). The resulting 3D thread structures
must also be “smooth-looking” and “non-self-intersecting”. Sec-
tion 3 presents our conversion method, which we call projection.
The projection method is significantly different from Celtic-knot
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Figure 2: (a) A photograph of real ”sparse” triaxial weaving that leaves gaps (see the large hexagonal-shaped gaps). (b) Our projection
method (PR) can create the same type of ”sparse” weaving, by leaving gaps as shown. (c) A real ”dense” triaxial weaving. This type of
weaving is not very common, since it is difficult to manufacture. (d) Using our projection method (PR), we can also create dense triaxial
weaving on any regular triangular mesh, as shown. This particular mesh consists of 18 cycles of ribbons. (e) Unfolded versions of these
ribbons show that the ribbons are wavy and that there are only two types used in (d). The construction requires 12 from the circular-type
ribbon (left) and 6 from the straight-type ribbon (right). Photographs in (a) and (c) are courtesy of Tim Tyler.

drawing methods [Mercat 2001; Kaplan and Cohen 2003; Kaplan
et al. 2004], which are based on the extrusion of a line or circle
with smooth C1 or C2 continuous arcs that are defined by free-
form parametric curves. Celtic-knot drawing methods can create
results strongly resembling familiar woven-basket structures, which
are created using bendable but straight structures. These structures
can leave large gaps in some weaving patterns, such as sparse tri-
axial weaving [Scardino and Ko 1981], as shown in Figure 2. Our
projection method is developed to control the size of the gaps, so
that we can obtain both sparse and dense plain-weaving. Using this
method, we can cover the original manifold shape with almost no
gaps, with ribbons whose unfolded versions are wavy as shown in
Figure 2e.

As a practical example, we have developed a system that converts
any manifold mesh to a plain-woven object. Our system converts
the mathematical knots to 3D thread structures, such that the shapes
of the threads can be interactively controlled with a set of param-
eters. These 3D structures can cover the original orientable mani-
fold meshes without having large gaps. In Section 3.2, we provide
examples of some plain-woven objects. Most importantly, with
this system we can create a wide variety of plain-weaving patterns.
Section 4 presents our approach for creating and classifying plain-
weaving patterns. Section 5 gives our conclusions and describes
possibilities for future work.

2 Extended Graph Rotation Systems

Formally, a cyclic plain-weaving on an orientable surface S is a
projection of a link L on S, such that (1) there are no triple inter-
sections at a single point on S, and (2) a traversal of the image on
S of each component of L goes over and under alternatingly as it
crosses the images of other components or of itself.

Our theoretical framework for cyclic plain-weaving is based on an
extension of graph rotation systems, which have been extensively
studied in topological graph theory [Gross and Tucker 1987]. It is
well-known [Edmonds 1960] that a graph rotation system uniquely
determines a graph embedding on an orientable or non-orientable
surface, and thus uniquely determines the surface. Some of the
concepts related to graph rotation systems have been implicitly
[Mantyla 1988; Baumgart 1972; Guibas and Stolfi 1985] and ex-
plicitly [Akleman and Chen 1999] studied in computer graphics.
An important concept in graph rotation systems is edge twisting. In
the pre-existing theory, an edge has type 0 if it is untwisted and type

1 if it is twisted. Topologically, a double-twisted edge is the same
as an untwisted edge [Gross and Tucker 1987].

Face-Tracing Algorithm.
(A slight revision of the algorithm given by Gross and Tucker)

Subroutine FaceTrace(hu0, w0i, t0)
nnhu0, w0i is an oriented edge, t0 2 f0, 1g is the “trace type”.

1. trace hu0, w0i;
2. t = t0 + type([u0, w0]) (mod 2);
3. hu,wi = Next(hw0, u0i, t); nnu = w0

4. while (hu,wi 6= hu0, w0i) and (t 6= t0) do
trace hu,wi;
t = t+ type([u,w]) (mod 2);
hu,wi = Next(hw, ui, t).

Algorithm Trace-All-Faces (ρ(G))
nn ρ(G) is a general graph rotation system. while there is an
untraced face corner (u, e, e0) in ρ(G) do

suppose that e0 = hu,wi;
call FaceTrace(hu,wi, 0).

A fundamental algorithm on graph rotation systems, known as face-
tracing, is given immediately above. This algorithm on a graph
rotation system ρ(G) returns a collection of graph cycles that are
the boundary-walks of the faces in ρ(G). For detailed explanation
and discussion of the face-tracing algorithm see [Gross and Tucker
1987; Akleman et al. 2009].

In this paper, we extend the concept of edge twisting. Here, the
direction in which an edge is twisted and the number of revolutions
in the twisting are taken into consideration.

Definition. An edge is k+-twisted (resp. k−-twisted) if it is ob-
tained from a flat paper strip by standing on one end of the strip
and twisting the other end in clockwise (resp. counterclockwise)
direction by k � 1800.

Definition. An extended graph rotation system (EGRS) is a graph
rotation system with extended edge twists. Note that the face-
tracing algorithm can be applied to an EGRS without change if we
take the edge type of a k+-twisted (resp. k−-twisted) edge to be k
(resp. −k).
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Figure 3: (a) An untwisted/�at edge. (b) A counterclockwise twist
of an edge. (c) A clockwise twist of an edge. (d) A counterclockwise
double twist of an edge. (e) A clockwise double twist of an edge.

To construct a cyclic plain-weaving on an orientable surface Sh, we
start with a graph rotation system ρ0(G) with no twisted edges that
determines a graph embedding on Sh. The face boundary walks of
ρ0(G) form a collection of disjoint cycles on Sh, which we regard
a projection of a link onto that surface. This is the initial weaving
on Sh, in which each edge of G lies between two parallel strands
on Sh. When we apply the extended edge-twisting operations on
ρ0(G), we obtain an EGRS ρ(G). Under the face tracing algo-
rithm, this will result in a new collection of cycles. Moreover, if we
associate the edge-twists with crossings of the link components on
the surface Sh, then the EGRS ρ(G) specifies a link projection on
the surface Sh.

The following theorem is a foundation for our development of
cyclic plain-weaving (see [Akleman et al. 2009] for a proof of the
theorem):

Theorem 2.1 Let ρ0(G) be a graph rotation system with no twisted
edges, which corresponds to an embedding of the graph G on an
orientable surface Sh. Let A be an arbitrary subset of edges of G.
If we twist all edges in A positively, or if we twist all edges in A
negatively, then the resulting EGRS induces a cyclic plain-weaving
on Sh.

The plain-weaving cycles that are created by twisting edges are
mathematical links and do not have a solid shape. In order to create
geometric forms, these cycles need to be converted to 3D thread
structures, such as ribbons (extruded lines) or yarns (extruded poly-
gons). The resulting 3D thread structures must look smooth and
must not self-intersect.

(a) One edge-twisted (b) PR Control Polygon
Base Mesh of (a)

Figure 4: An illustration of the smooth curve creation process.
(a) An initial mesh, with one twisted edge. (b) The corresponding
PR control polygon.

3 Creating 3D Thread Structures

In practice, we twist all the edges of graph G, instead of an arbi-
trary subset of edges, and for our rotation system ρ0(G), we only
consider the most commonly used polygonal mesh surfaces in com-
puter graphics. In our polygonal mesh surfaces, every vertex has
valence at least 3, and every face has at least three sides (i.e. trian-
gles). Moreover, every edge has positive length, and every vertex
has position information.

LetEi denote an edge of a manifold mesh, and letEi,0 andEi,1 de-
note the over and under half-edges (in the sense of [Mantyla 1988])
that lie close beside the twisted edge Ei. We assume that we can
assign and compute a unit normal vector ~ni for every edge Ei. The
faces do not have to be flat, but we assume that for each face we
have an approximating planar polygon that is given by a normal
vector and a center point. The edge normal vector ~ni can be com-
puted as the average of the normals of the two approximating planes
for the two respective sides of edge Ei. The faces do not have to
be convex but if we project a face to its approximate plane from the
center point of the face, then all projected edges must be visible.
All these conditions eliminate degenerate faces, and they guarantee
that we can have a normal vector defined for all the edges of the
manifold mesh.

Our goal is to create dense weaves, such as the dense triaxial weav-
ing shown in Figure 2. Extrusion methods are appropriate for draw-
ing Celtic knots in a planar surface [Mercat 2001; Kaplan and Co-
hen 2003], but they are not suitable for covering an arbitrary surface
since they leave large gaps, and they cannot create dense weaving
for all possible weaving patterns. In order to be able to create a
dense weaving on an arbitrary polygonal surface, we have devel-
oped the projection method (PR) that provides control of the size of
the gaps in the weave. Moreover, by using our method, the unusual
structure of some weaving patterns becomes more perceptible (this
is demonstrated by the images in Figures such as 11(a) and 11(b)
at the end of the paper).

3.1 Projection Method

With projection method (PR), we create two types of 3D thread
structures, which we call ribbons and yarns. To simplify the presen-
tation, we also differentiate between control and smooth versions of
these structures. Smooth ribbons are simply smoothly curved ver-
sions of control ribbons, which are cyclic chains of quadrilaterals.
Similarly, smooth yarns are created from control yarns, which are
toroidal meshes. The method is presented only for surfaces with all
edges 1+-twisted. The algorithm of the projection method consists
of four main steps. The first step is to construct a control polygon
which we call the PR control polygon. Without loss of general-
ity, we will explain the process using two examples on a cube that
include mostly untwisted edges (see Figure 4). The second step
is to construct a PR control ribbon from the PR control polygon.
The third step is to create PR control yarns from PR control ribbon.
The last step converts PR control ribbons and PR control yarns to
smooth ribbons and smooth yarns. We explain the steps of the pro-
cess using the example shown in Figure 5, using a cube-shaped
manifold with all edges 1+-twisted.

Step 1. Construct PR Control Polygons:

1.1. Trace all face boundary walks using the Face-Tracing Algo-
rithm: Figure 4a shows the face boundary walks. For instance, for
the face with a twisted edge in Figure 4a, the computed face bound-
ary walk is the cyclically ordered set

K1 = fE0,0, E1,0, E2,0, E3,0, E6,1, E5,1, E4,1, E3,1g
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Figure 5: The steps of the projection method (PR). (a) The initial mesh, a cube, with all its edges 1+-twisted, to create a cyclic plain-weaving.
(b) The projection planes. (c) Quadrilateral edge regions that are obtained from the two endpoints of the edge and centers of the two faces
on the two sides of the edge. (d) A projection of an edge region to one of the its corresponding projection planes. (e) All the projected
edge-regions. (f) Planar pieces that consist of two quadrilaterals. (g) Pink-colored quadrilateral connecters that connect two corresponding
planar pieces. (h) The resulting control meshes with one consistent color for each cycle. (i) The final smooth ribbon that is created from the
control mesh in (h).

1.2. Assign a position pi,j to each half-edge Ei,j : We compute pi,j

by adding a displacement vector ~v to the average of the positions of
two endpoints of Ei,j as

pi,j = (p1
i,j + p2

i,j)/2 + (−1)jhei~ni

where p1
i,j and p2

i,j denote the positions of two endpoints of Ei,j .
The user controlled parameter h is a small positive real number that
controls relative displacement. The quantity ei is the length of the
edge Ei, the parameter ~ni is the normal vector to edge Ei, and
(−1)j is +1 if the cycle segment Ei,0 is over and −1 otherwise.

1.3. For each face boundary walk, construct a PR control polygon
by replacing Ei,j with pi,j : With this operation, a boundary walk
such as K1 turns into a polygon

P1 = fp0,0, p1,0, p2,0, p3,0, p6,1, p5,1, p4,1, p3,1g

that we call the PR control polygon (see Figure 4b). Note that since
p3,0 is slightly above the cube surface and p3,1 is slightly below,
the polygon P1 is not self-intersecting.

Step 2. Construct PR Control Ribbons:

2.1. Assign a plane to each half-edge Ei,j : The plane is given
as ~ni.(p − pi,j) = 0, where ~ni is the normal vector to edge Ei.
So, each edge has two corresponding planes, one slightly below the
surface, and the other one slightly above. Figure 5b provides an
exploded view to show both planes.
2.2. Assign an edge-region to every edge Ei: An edge region is
defined as the non-planar quadrilateral that consists of the two end-
vertices of the edge and the two centers of the two faces on the two
sides of the edge. Figure 5c shows all of the edge regions for a
cube.
2.3. Project each edge-region to the two planes of its half-edges:
Figure 5d shows one projection; the projection creates two planar
quadrilaterals for each edge as shown in Figure 5e.
2.4. Compute a fractional quadrilateral from the projected quadri-
lateral, and subdivide the fractional quadrilateral into two quadri-
laterals: The fractional quadrilateral is computed as a fraction of
the projected quadrilateral with user controlled fractional values c
and w, using bilinear interpolation. Then this fractional quadrilat-
eral is subdivided by creating two quadrilaterals along the thread,
in the same direction as c. The whole process is illustrated in Fig-
ures 6(b). If the values of c and w are not the same, these shapes
form crosses in space, as shown in Figure 5f.
2.5 Connect these two-quadrilaterals with quadrilateral connectors
using face trace order: Figure 5g shows pink-colored quadrilateral
connecters that connect their two corresponding planar pieces. The
result is the PR Control Ribbon as shown in Figure 5h.

Step 3. Construct the PR Control Yarn:

A PR control yarn is constructed from a PR control ribbon in three
steps, as shown in Figure 6(c):

3.1 Define an ellipsoid for each internal edge of the quadrilaterals.
The center of the ellipsoid is chosen to be the center of the inter-
nal edge. The semi-major and semi-minor axes are chosen to be
h/2 ei ~ni and half of the width of the internal edge.

3.2 Create an n-sided convex polygon by sampling the ellipsoid.

3.3 Construct a generalized toroid by connecting the n-sided convex
polygons.

Step 4. Construct the PR Smooth Ribbons and Yarns:

PR smooth ribbons are constructed by smoothing PR control rib-
bons by cubic Beziér surfaces that use one connector and two side
quadrilaterals as a control mesh. This approach guarantees that re-
sulting piecewise smooth surfaces have G1 continuity in bound-
aries. PR smooth yarns are constructed by smoothing PR control
yarns using off-line Catmull-Clark Subdivision.

(a) Cubic Beziér (b) Quadric B-Spline

Figure 7: A cross-sectional illustration of both upper and lower
ribbons, showing the effect of w and c on collision avoidance. The
green line represents the planar control part of the upper ribbon,
and the orange line represents the lower ribbon. The pink line is
the connector, and the blue curve is the cross-section of the upper
ribbon. (a) A piecewise cubic Beziér. (b) A quadric B-Spline.

3.2 Examples and Results

We have developed a system that converts polygonal meshes to
cyclic plain-woven objects. A user can interactively change the pa-
rameters c, w and h to achieve different results. In the projection
method (PR), a dense weaving is obtained with c � 1, with w � 1,
and with relatively very small h values. Small values of c and w
provide sparse weaving. All the woven-object images in this paper,
except for Figures 8 and 9, are direct screen captures from the sys-
tem; they were created in real-time. The colors of the thread cycles
are randomly chosen. For the images in the paper we used satu-
rated colors. Our PR algorithm guarantees that the sizes are relative



(a) Projection. (b) Parameters.

Initial Step Step Step
Ribbon (1) (2) (3)

(c) Control Yarn Construction.

Figure 6: (a) A cross-sectional view of a projection, where blue circles represent edges, orange lines represent the two faces on the two
sides of an edge, and red points are the centers of these faces. Green lines represent two planes that correspond to the two half-edges of the
given edge, and yellow points are projections of the red center points. (b) An illustration that shows the effect of parameters c and w. The
parameter w controls the relative width of the ribbon and c controls the length of the planar region in the direction of the ribbon. (c) The
construction of a PR control yarn.

to the underlying polygons. Therefore, the actual widths of ribbons
are different in different parts of the mesh.

The projection method closes the gaps better if the angle θ between
two faces on the two sides of the edge, as shown in Figure 6(a), is
between 1200 and 1800. The closer that θ approaches 1800, the
better it is for closing gaps. This can be achieved with a few ap-
plications of a suitable subdivision scheme. For example, using
the Doo-Sabin scheme, after each subdivision all θ values become
closer to 1800, while the faces become more nearly regular, more
nearly convex, and more nearly planar. We do not provide direct
collision avoidance; however, choosing values of c and w between
0 and 1 is sufficient to avoid collisions. As can be seen in Figure 7,
the value of h is not particularly important for collision avoidance
in smooth ribbons. For producing smooth ribbons, the quadric B-
spline provides slightly better collision avoidance, however, visu-
ally we prefer cubic Beziér surfaces.

bunny Venus

Figure 8: PR smooth yarns for the bunny and Venus models in
Figure 1. These are obtained by smoothed PR control yarns with
Catmull-Clark subdivision. The images are off-line rendered.

4 Creating, Analyzing and Categorizing
Plain-Weaving Patterns

Creating interesting weaving patterns is a problem similar to cre-
ating interesting periodic tilings on surfaces [Kaplan et al. 2004;
Kaplan 2007]. Our approach is to create mesh patterns, by apply-
ing a variety of subdivision schemes one after another. In this way,

it is possible to populate a polygonal mesh with all possible regular
and semi-regular tilings [Akleman et al. 2005], which can then be
converted to interesting weaving patterns 1. One advantage of con-
structing cyclic plain-weaving patterns in this way is that we can
also analyze and categorize weaving patterns based on the regular
and semi-regular tiling patterns of the initial meshes.

The cyclic plain-weaving obtained by 1+-twisting of all the edges
of an orientable manifold mesh surface consists of visibly quadri-
lateral ribbon pieces, which correspond to the “upper” pieces at the
crosses of the two sides of the twisted edges. Each quadrilateral
ribbon piece is surrounded by four gaps, two of which correspond
to the two ends of the edge and the other two to the faces on the two
sides of the edge. The number of ribbons around a gap defines the
shape of the gap. We call this the valence of the gap. Since we cre-
ate cyclic weaving on polygonal surfaces in which every face has
three or more sides, and in which every vertex has valence at least
three, in our examples gap valences are always at least three. If in
the initial mesh, the two endpoints of an edge e have valences d0

and d2, respectively, and the two faces on the two sides of the edge
e have numbers of sides d1 and d3, respectively, then the four gaps
around the ribbon piece have valences d0, d1, d2, and d3. The va-
lences of the four gaps around a ribbon piece can be given using a
Schlafli-like notation with a four-tuple (d0, d1, d2, d3), which can
be used to categorize the structure of the weaving pattern. Since
all faces and vertices in the initial mesh correspond to gaps in the
weaving, the dual of the mesh will result in the same cyclic plain-
weaving. Based on this background, we can create and analyze the
weaving patterns that are constructed using polygonal meshes, i.e.,
we ignore cases that include 2-valent gaps.

4.1 Regular Plain-Weaving Patterns

We call weaving pattern regular if all gaps have the same valence.
By the above discussion, if the initial mesh consists entirely of faces
of valence d and vertices of valence d, then the gaps in the resulting

1In the Euclidean plane, there are only two distinct regular tiling patterns
and seven distinct semi-regular tiling patterns and their duals. These tiling
patterns can be described by the Schlafli notation [Akleman et al. 2005]. In
Schlafli notation, (3, 3, 4, 3, 4) is a semi-regular tiling that consists entirely
of pentagons, and the valences of the vertices of every pentagon follow the
cyclic pattern 3, 3, 4, 3, 4. In the dual of this tiling, all the vertices are 5-
valent, and the number of sides of the cycle of polygons around each vertex
follows that same cyclic pattern: triangle, triangle, quadrilateral, triangle,
quadrilateral. The same notation can also be used to represent regular tiling
patterns. For instance, (6, 6, 6) is a triangular tiling in which each vertex
has valence 6.



Figure 9: These off-line rendered images show all five cycles of the Venus model and and all eight cycles of the bunny model in Figure 8.

cyclic plain-weaving will all be of valence d. If the initial mesh
consists entirely of d-sided faces and d-valent vertices, then the re-
sulting gaps will all be d-sided. Therefore, the problem becomes
that of designing initial meshes on surfaces that have both face va-
lence d and vertex valence d.

Let g denote the genus of surface underlying the initial mesh. For
g = 0, there is only one mesh in which all faces are d-sided and
all vertices d-valent, which is the tetrahedron, with d = 3. For
the tetrahedron, the resulting plain-woven object is the Borromean
rings, which is the simplest regular case. There are no other reg-
ular weaving pattern for g = 0. The case of genus g = 1 corre-
sponds both to a toroid and to an infinite plane. For g = 1, valence
d = 4 corresponds to a regular quadrilateral tiling of the infinite
plane (See Figure 10a). This particular pattern is very useful since
we can populate any manifold mesh, regardless of its genus, with
mostly quadrilaterals and 4-valent vertices, simply by applying sev-
eral iterations of vertex insertion schemes such as Catmull-Clark
[Catmull and Clark 1978], corner-cutting schemes such as Doo-
Sabin [Doo and Sabin 1978], and Simplest [Peters and Reif 1997]
or its dual stellation with edge removal [Zorin and Schröder 2002].
This tiling pattern converts to a weaving pattern (4, 4, 4, 4), which
again can be considered as quadrilaterals with 4-valent vertices. It
is therefore possible to create an object with mostly a (4, 4, 4, 4)
weaving pattern for any shape and any genus, by introducing just a
few extraordinary gaps, i.e., gaps that do not have valence 4. Many
of the examples in this paper are mostly (4, 4, 4, 4) non-genus-1
meshes converted to a plain-woven object. Two genus-1 examples
are shown in Figure 10. For every genus higher than 1, cases with
d = 5, 6, 8, and 12 exist; however, it is not possible to populate a
mesh with d = 5, 6, 8, and 12 without increasing the genus [Ak-
leman and Chen 2006]. Hence, the case d = 4 is the only regular
weaving pattern that can be used for any genus with only a few ex-
traordinary gaps. Moreover, the dense (4, 4, 4, 4) weaving pattern
can physically be obtained using plant branches, such as wicker or
rattan. These two facts together may help explain the overwhelming

popularity of the (4, 4, 4, 4) weaving pattern in basket-making.

(a) (b) (c)

Figure 10: Weaving patterns obtained from (a-b) only (4,4,4,4) and
(c) mostly (4,4,4,4) meshes.

4.2 Semi-Regular Plain-Weaving Patterns

We call a weaving pattern semi-regular if the cycle of valences
(d0, d1, d2, d3) is the same for every visible ribbon piece. The pla-
tonic solids other than the tetrahedron result in semi-regular weav-
ing patterns. Since a mesh and its dual produce the same type
of woven object, the octahedron and the cube can be converted
into the same type of the woven object, which we will classify as
(4, 3, 4, 3); and similarly, the dodecahedron and the icosahedron
are converted into an object with a semi-regular (5, 3, 5, 3) weav-
ing pattern. The more interesting cases are the ones that correspond
to planar semi-regular tilings, since it is again possible to popu-
late any-genus mesh with such tilings. We have identified two such
cases that correspond to weaving patterns, which are known as tri-
axial and ring weaving.

Triaxial: semi-regular (6, 3, 6, 3) weaving patterns obtained from
mostly (6, 6, 6) regular structures. Meshes with mostly (6, 6, 6)
regular structures are meshes that consist mostly of triangles with 6-
valent vertices or of hexagons with 3-valent vertices. The weaving
pattern that is obtained by such meshes is called triaxial. Mostly



Sparse Dense
(a) from a mostly (3, 3, 3, 3, 3, 3) mesh.

Sparse Dense
(b) from a mostly (6, 3, 6, 3) mesh.

Sparse Dense
(c) from a mostly (3, 4, 6, 4) mesh.

Sparse Dense
(d) from a mostly (3, 3, 4, 3, 4) mesh.

Sparse Dense
(e) from a mostly (3, 3, 3, 3, 6) mesh.

Sparse Dense
(f) from a mostly (4, 8, 8) mesh.

Figure 11: Examples of weaving patters obtained from mostly regular and semi-regular meshes. The Figures 11(a) and 11(b) show two
semi-regular weaving patterns. The rest of the patterns are not semi-regular.

(6, 6, 6) meshes can easily be obtained by reiteratively applying
subdivisions such as Loop [Loop 1987] or

p
3 subdivision [Kobbelt

2000] and their dual schemes [Oswald and Schröder 2003]. When
we convert such meshes to woven objects, the resulting weaving
patterns shown in Figure 11(a) visually correspond to (6, 3, 6, 3)
type meshes [Akleman et al. 2005].

Ring Weaving: semi-regular (6, 4, 3, 4) weaving patterns obtained
from mostly (6, 3, 6, 3) semi-regular meshes. Ring weaving is just
a derivative of the (6, 3, 6, 3) case. If we have a mostly (6, 3, 6, 3)
semi-regular mesh, it is converted to a plain-weaving pattern that
corresponds to (6, 4, 3, 4)-type tilings. A mesh with a (6, 3, 6, 3)
semi-regularity can easily be obtained by applying a stellation with
edge-removal operation only once to a mesh that consists of mostly
hexagons with 3-valent vertices or of mostly triangles with 6-valent
vertices. Figure 11(b) shows an example of mostly (6, 4, 3, 4) that
is obtained from a mesh that is mostly (6, 3, 6, 3).

4.3 Other Interesting Patterns

Regular and semi-regular weaving patterns come from two regu-
lar tiling patterns and one semi-regular tiling pattern. The other six
semi-regular tiling patterns can also provide some interesting weav-
ing patterns. If we have a mesh that consists mostly of one of these
six planar semi-regular tiling patterns, we can still perceive some
interesting weaving patterns which are easy to classify, based on
the semi-regular tiling patterns of the initial mesh. Here we provide
a few examples of such interesting weaving patterns.

Weaving Patterns obtained from meshes that contain mostly
(3, 4, 6, 4) semi-regular mesh structures. A mesh that contains
mostly (3, 4, 6, 4) structures can be obtained by applying a vertex
insertion scheme such as Catmull-Clark [Catmull and Clark 1978]
to a mesh that contains mostly (6, 6, 6). The resulting weaving
patterns are not semi-regular but they can easily be recognized as
having a character as shown in Figure 11(c).

Weaving Patterns obtained from pentagonal meshes that contain
mostly (3, 3, 4, 3, 4) or (3, 3, 3, 3, 6) semi-regular structures. The
semi-regular pattern (3, 3, 4, 3, 4) can be obtained by applying pen-
tagonal subdivision [Akleman et al. 2004] to a mostly (4, 4, 4, 4)
mesh and (3, 3, 3, 3, 6) can be obtained by applying pentago-
nal subdivision to a mostly (6, 6, 6) mesh. (See Figures 11(d),
and 11(e)).

Weaving Patterns obtained from mostly (4, 8, 8) and (3, 12, 12)
meshes. If the vertex valence exceeds 6, then the resulting pattern
starts to look like it consists of flowers. (4, 8, 8) and (3, 12, 12)
meshes, which can be obtained using vertex truncation, can be con-
verted into nice flower patterns, as shown in Figure 11(f).

The procedures to create other semi-regular tiling patterns are
presented in [Akleman et al. 2005]. All examples in this sec-
tion are created by using TopMod3D [Akleman et al. 2007], a
topological modeling software system that is freely available at
www.topmod3d.org.

5 Conclusion and Future Work

This paper introduces the structure called an extended graph rota-
tion system (EGRS). With the EGRS structure, we have formally
proven that by twisting a subset of the edges of an orientable man-
ifold mesh, we can obtain an alternating link, which is the mathe-
matical model for a plain-weaving. Based on our proof, we have de-
veloped the projection method (PR) to convert a link projection on
a polygonal surface to a plain-woven object. The projection method
is described here only for surfaces with all edges 1+-twisted. This
method can be further extended for other combinations of edge-
twistings, and it can be used to create a much wider variety of 3D
links. Not only can our system provide traditional woven objects,
but it can also create unusual woven patterns that may not have
been used before, since some of these patterns cannot be assembled
by hand. Thus, another advantage is that we are not bound by the
limitations of hand-weaving. We can use wavy ribbons of varying
width that can almost completely cover a surface, without leaving
large gaps.

Although a woven-look can be achieved by using texture maps, hav-
ing 3D geometry allows us to achieve more realism in interactive
rendering, such as real-time shadows and the capacity to change
the width of the ribbons in real-time. Moreover, our smooth-yarn
models can be printed using a 3D printer, and our ribbon models
can be cut using laser cutting and physically constructed. We are
planning to create large sculptures in collaboration with architects
and sculptors, such as the sculptor James Mallos, who has recently
constructed a large triaxial woven sculpture of a fingertip [Mallot
2009], using a Mercat type algorithm on a manifold mesh surface
with a boundary.



The projection method (PR) can be used to create 3D thread struc-
tures for a much wider variety of linked knots than polygonal
meshes with 1+-twisted edges. The method can easily be extended
to k+ or k�-twisted edges, since such twistings can be represented
by subdividing an edge k times and twisting each one of the result-
ing edges once (i.e., thereby creating k � 1 new 2-valent vertices).
In this paper, we restricted to vertex valences larger than 2, but with
a minor modification, the underlying projection method (PR) can
accept any 2-valent vertex. Since the projection method (PR) as
presented here represents the traces of the sides of an edge as two
planar pieces with one atop the other, not side-by-side as in the un-
twisted case, untwisted edges cannot be used. However, untwisted
edges could be included with a relatively minor extension, which
we have omitted here to simplify the description.

The power of the projection method is essential, since our theo-
retical framework already allows the construction of a much wider
variety of weavings than only those that can be created from a man-
ifold mesh with all edges 1+-twisted. For instance, by twisting a
proper subset of the edges instead of all of them, it is possible to
control the number of cycles. There exist several approaches to
creating single-cycle plain-woven objects. Moreover, we observe
that twisting an arbitrary subset of edges creates visual results that
are more similar to Celtic knots than to weaving. By applying neg-
ative and positive twists on different subsets of edges, it is possible
to create weaving structures such as twill or satin. Extended graph
rotation systems provide theoretical tools for exploring, discover-
ing and proving such ideas. It will be exciting to investigate further
applications of EGRS.
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Keyser, Gary Greenfield, Fred Parke, and Lou Tassinary for their
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