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A query to a web search engine usually consists of a list of keywords, to which the search engine
responds with the best or “top” k pages for the query. This top-k query model is prevalent over
multimedia collections in general, but also over plain relational data for certain applications. For
example, consider a relation with information on available restaurants, including their location,
price range for one diner, and overall food rating. A user who queries such a relation might simply
specify the user’s location and target price range, and expect in return the best 10 restaurants in
terms of some combination of proximity to the user, closeness of match to the target price range,
and overall food rating. Processing top-k queries efficiently is challenging for a number of rea-
sons. One critical such reason is that, in many web applications, the relation attributes might not
be available other than through external web-accessible form interfaces, which we will have to
query repeatedly for a potentially large set of candidate objects. In this article, we study how to
process top-k queries efficiently in this setting, where the attributes for which users specify tar-
get values might be handled by external, autonomous sources with a variety of access interfaces.
We present a sequential algorithm for processing such queries, but observe that any sequential
top-k query processing strategy is bound to require unnecessarily long query processing times,
since web accesses exhibit high and variable latency. Fortunately, web sources can be probed in
parallel, and each source can typically process concurrent requests, although sources may impose
some restrictions on the type and number of probes that they are willing to accept. We adapt our
sequential query processing technique and introduce an efficient algorithm that maximizes source-
access parallelism to minimize query response time, while satisfying source-access constraints.
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We evaluate our techniques experimentally using both synthetic and real web-accessible data
and show that parallel algorithms can be significantly more efficient than their sequential
counterparts.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—query processing;
H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—retrieval mod-
els; H.3.4 [Information Storage and Retrieval]: Systems and Software—performance evaluation
(efficiency and effectiveness); H.3.5 [Information Storage and Retrieval]: Online Information
Services—web-based services

General Terms: Algorithms, Measurement, Performance

Additional Key Words and Phrases: Parallel query processing, query optimization, top-k query
processing, web databases.

1. INTRODUCTION

A query to a web search engine usually consists of a list of keywords, to which
the search engine responds with the best or “top” k pages for the query. This
top-k query model is prevalent over multimedia collections in general, but also
over “structured” data for applications where users do not expect exact answers
to their queries, but instead a rank of the objects that best match the queries. A
top-k query in this context is then simply an assignment of target values to the
attributes of a relation. To answer a top-k query, a database system identifies
the objects that best match the user specification, using a given scoring function.

Example 1. Consider a relation with information about restaurants in the
New York City area. Each tuple (or object) in this relation has a number of
attributes, including Address, Rating, and Price, which indicate, respectively,
the restaurant’s location, the overall food rating for the restaurant represented
by a grade between 1 and 30, and the average price for a diner. A user who
lives at 2590 Broadway and is interested in spending around $25 for a top-
quality restaurant might then ask a top-10 query {Address=“2590 Broadway”,
Price=$25, Rating=30}. The result to this query is a list of the 10 restau-
rants that match the user’s specification the closest, for some definition of
proximity.

Processing top-k queries efficiently is challenging for a number of reasons.
One critical such reason is that, in many web applications, the relation at-
tributes might not be available other than through external web-accessible
form interfaces. For instance, in our example above, the Rating attribute might
be available through the Zagat-Review website,1 which, given an individual
restaurant name, returns its food rating as a number between 1 and 30 (random
access). This site might also return a list of all restaurants ordered by their food
rating (sorted access). Similarly, the Price attribute might be available through
the New York Times’s NYT-Review website.2 Finally, the scoring associated

1http://www.zagat.com.
2http://www.nytoday.com.
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with the Address attribute might be handled by the MapQuest website,3 which
returns the distance (in miles) between the restaurant and the user addresses.

To process a top-k query over web-accessible databases, we then have to
interact with sources that export different interfaces and access capabilities.
In our restaurant example, a possible query processing strategy is to start
with the Zagat-Review source, which supports sorted access, to identify a set of
candidate restaurants to explore further. This source returns a rank of restau-
rants in decreasing order of food rating. To compute the final score for each
restaurant and identify the top-10 matches for our query, we then obtain the
proximity between each restaurant and the user-specified address by querying
MapQuest, and check the average dinner price for each restaurant individ-
ually at the NYT-Review source. Hence, we interact with three autonomous
sources and repeatedly query them for a potentially large set of candidate
restaurants.

Our query scenario is related to a (centralized) multimedia query sce-
nario where attributes are reached through several independent multimedia
“subsystems,” each producing scores that are combined to compute a top-k
query answer. While multimedia systems might support sorted and random
attribute access, there are important differences between processing top-k
queries over multimedia systems and over web sources. First, web sources
might only support random access (e.g., MapQuest returns the distance be-
tween two given addresses). Second, attribute access for centralized multi-
media systems might be faster than for web sources, because accessing web
sources requires going over the Internet. Finally, and importantly, unlike in
multimedia systems where attribute access requires “local” processing, appli-
cations accessing web sources can take full advantage of the intrinsic par-
allel nature of the web and issue probes to several web sources simultane-
ously, possibly issuing several concurrent probes to each individual source
as well.

In this article, we present algorithms to efficiently process top-k queries
over web sources that support just random access and, optionally, sorted access
as well. We first introduce an efficient sequential top-k query processing algo-
rithm that interleaves sorted and random accesses during query processing and
schedules random accesses at a fine-granularity per-object level. Then, we use
our sequential technique as the basis to define a parallel query processing al-
gorithm that exploits the inherently parallel nature of web sources to minimize
query response time. As we will see, making the algorithms parallel results in
drastic reductions in query processing time.

The rest of the article is structured as follows. Section 2 defines our query
and data models, notation and terminology. Section 3 reviews relevant work.
Section 4 presents our sequential top-k query processing technique, as well as
improvements of algorithms presented by Fagin et al. [2001] that are applica-
ble to our scenario. Section 5 focuses on parallel query-processing strategies,
and presents an algorithm that fully exploits the available source-access paral-
lelism, resulting in reduced query processing times. We evaluate the different

3http://www.mapquest.com.
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strategies experimentally in Section 7 using the data sets and metrics presented
in Section 6. Finally, Section 8 concludes the paper.

2. DATA AND QUERY MODELS

In traditional relational systems, query results consist of an unordered set
of tuples. In contrast, the answer to a top-k query is an ordered set of tu-
ples, where the ordering is based on how closely each tuple matches the given
query. Furthermore, the answer to a top-k query does not include all tuples that
“match” the query, but rather only the best k such tuples. In this section we
define our data and query models in detail.

Consider a relation R with attributes A1, . . . , An, plus perhaps some other
attributes not mentioned in our queries. A top-k query over relation R simply
specifies target values for each attribute Ai. Therefore, a top-k query is an
assignment of values {A1 = q1, . . . , An = qn} to the attributes of interest. Note
that some attributes might always have the same “default” target value in
every query. For example, it is reasonable to assume that the Rating attribute
in Example 1 above might always have an associated query value of 30. (It is
unclear why a user would insist on a lesser-quality restaurant, given the target
price specification.) In such cases, we simply omit these attributes from the
query, and assume default values for them.

Consider a top-k query q = {A1 = q1, . . . , An = qn} over a relation R. The
score that each tuple (or object) t in R receives for q is a function of t ’s score for
each individual attribute Ai with target value qi. Specifically, each attribute Ai
has an associated scoring function ScoreAi that assigns a proximity score to qi
and ti, where ti denotes the value of object t for attribute Ai. We assume that
the scoring function for each individual attribute returns scores between 0 and
1, with 1 denoting a perfect match. To combine these individual attribute scores
into a final score for each object, each attribute Ai has an associated weight wi
indicating its relative importance in the query. Then, the final score for object
t is defined as a weighted sum of the individual scores4:

Score(q, t) = ScoreComb(s1, . . . , sn) =
n∑

i=1

wi · si

where si = ScoreAi (qi, ti). The result of a top-k query is the ranked list of the k
objects with highest Score value, where we break ties arbitrarily. In this article,
we only consider techniques that return the top-k objects along with their scores.

Example 1 (cont.). We can define the scoring function for the Address at-
tribute of a query and an object as inversely proportional to the distance (say, in
miles) between the two addresses. Similarly, the scoring function for the Price
attribute might be a function of the difference between the target price and
the object’s price, perhaps “penalizing” restaurants that exceed the target price
more than restaurants that are below it. The scoring function for the Rating
attribute might simply be based on the object’s value for this attribute. If price

4Our model and associated algorithms can be adapted to handle other scoring functions, which we
believe are less meaningful than weighted sums for the applications that we consider.
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and quality are more important to a given user than the location of the restau-
rant, then the query might assign, say, a 0.2 weight to attribute Address, and
a 0.4 weight to attributes Price and Rating.

This article focuses on the efficient evaluation of top-k queries over a (dis-
tributed) “relation” whose attributes are handled and provided by autonomous
sources accessible over the web with a variety of interfaces. For instance, the
Price attribute in our example is provided by the NYT-Review website and can
only be accessed by querying this site’s web interface.5 We distinguish between
three types of sources based on their access interface:

Definition 2.1 (Source Types). Consider an attribute Ai and a top-k query
q. Assume further that Ai is handled by a source S. We say that S is an
S-Source if we can obtain from S a list of objects sorted in descending order
of ScoreAi by (repeated) invocation of a getNext(S, q) probe interface. Alter-
natively, assume that Ai is handled by a source R that only returns scoring
information when prompted about individual objects. In this case, we say that
R is an R-Source. R provides random access on Ai through a getScore(R, q, t)
probe interface, where t is a set of attribute values that identify an object in
question. (As a small variation, sometimes an R-Source will return the actual
attribute Ai value for an object, rather than its associated score.) Finally, we say
that a source that provides both sorted and random access is an SR-Source.

Example 1 (cont.). In our running example, attribute Rating is associated
with the Zagat-Review web site. This site provides both a list of restaurants
sorted by their rating (sorted access), and the rating of a specific restaurant
given its name (random access). Hence, Zagat-Review is an SR-Source. In con-
trast, Address is handled by the MapQuest website, which returns the dis-
tance between the restaurant address and the user-specified address. Hence,
MapQuest is an R-Source.

At a given point in time during the evaluation of a top-k query q, we might
have partial score information for an object, after having obtained some of the
object’s attribute scores via source probes, but not others:

—U (t), the score upper bound for an object t, is the maximum score that t might
reach for q, consistent with the information already available for t. U (t) is
then the score that t would get for q if t had the maximum possible score for
every attribute Ai not yet probed for t. In addition, we define Uunseen as the
score upper bound of any object not yet retrieved from any source via sorted
accesses.

— E(t), the expected score of an object t, is the score that t would get for q
if t had the “expected” score for every attribute Ai not yet probed for t. In
absence of further information, the expected score for Ai is assumed to be
0.5 if its associated source Di is an R-Source, or s`(i)

2 if Di supports sorted

5Of course, in some cases we might be able to download all this remote information and cache it
locally with the query processor. However, this will not be possible for legal or technical reasons for
some other sources, or might lead to highly inaccurate or outdated information.

ACM Transactions on Database Systems, Vol. 29, No. 2, June 2004.



324 • A. Marian et al.

accesses, where s`(i) is the ScoreAi score of the last object retrieved from Di
via sorted access. (Initially, s`(i) = 1.) Several techniques can be used for
estimating score distribution (e.g., sampling); we will address this issue in
Sections 7.1.3 and 7.2.2.

To define query processing strategies for top-k queries involving the three
source types above, we need to consider the cost that accessing such sources
entails:

Definition 2.2 (Access Costs). Consider a source R that provides a random-
access interface, and a top-k query. We refer to the average time that it takes R
to return the score for a given object as tR(R). (t R stands for “random-access
time.”) Similarly, consider a source S that provides a sorted-access interface.
We refer to the average time that it takes S to return the top object for the query
for the associated attribute as tS(S). (tS stands for “sorted-access time.”) We
make the simplifying assumption that successive invocations of the getNext
interface also take time tS(S) on average.

We make a number of assumptions in our presentation. The top-k evaluation
strategies that we consider do not allow for “wild guesses” [Fagin et al. 2001]:
an object must be “discovered” under sorted access before it can be probed using
random access. Therefore, we need to have at least one source with sorted access
capabilities to discover new objects. We consider nsr SR-Sources D1, . . . , Dnsr
(nsr ≥ 1) and nr R-Sources Dnsr+1, . . . , Dn (nr ≥ 0), where n = nsr + nr is the
total number of sources. A scenario with several S-Sources (with no random-
access interface) is problematic: to return the top-k objects for a query together
with their scores, as required by our query model, we might have to access all
objects in some of the S-Sources to retrieve the corresponding attribute scores
for the top-k objects. This can be extremely expensive in practice. Fagin et al.
[2001] presented the NRA algorithm to deal with multiple S-Sources; however,
NRA only identifies the top-k objects and does not compute their final scores.
We plan to relax this restriction and adapt our algorithms to handle S-Sources
in addition to SR-Sources and R-Sources in future work.

We refer to the set of all objects available through the sources as the Objects
set. Additionally, we assume that all sources D1, . . . , Dn “know about” all objects
in Objects. In other words, given a query q and an object t ∈ Objects, we can
obtain the score corresponding to q and t for attribute Ai, for all i = 1, . . . , n.
Of course, this is a simplifying assumption that is likely not to hold in practice,
where each source might be autonomous and not coordinated in any way with
the other sources. For instance, in our running example the NYT-Review site
might not have reviewed a specific restaurant, and hence it will not be able
to return a score for the Price attribute for such a restaurant. In this case, we
simply use a default value for t ’s score for attribute Ai.

3. RELATED WORK

To process queries involving multiple multimedia attributes, Fagin et al. pro-
posed a family of algorithms [Fagin 1996; Fagin et al. 2001, 2003] developed
as part of IBM Almaden’s Garlic project. These algorithms can evaluate top-k
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queries that involve several independent multimedia “subsystems,” each pro-
ducing scores that are combined using arbitrary monotonic aggregation func-
tions. The initial FA algorithm [Fagin 1996] was followed by “instance optimal”
query processing algorithms over sources that are either of type SR-Source (TA
algorithm) or of type S-Source (NRA algorithm) [Fagin et al. 2001]. In later
work, Fagin et al. [2003] introduced the TAz algorithm, a variation of TA that
handles both SR-Sources and R-Sources. These algorithms completely “pro-
cess” one object before moving to another object. As we will see, by interleaving
random-access probes on different objects, the query processing time can be
dramatically reduced. We discuss these algorithms in Section 4.1, and show
how they can be adapted to our parallel access model in Section 5.2. We also
compare them experimentally against our techniques in Section 7.

Nepal and Ramakrishna [1999] and Güntzer et al. [2000] presented varia-
tions of Fagin et al.’s TA algorithm [Fagin et al. 2001] for processing queries over
multimedia databases. In particular, Güntzer et al. [2000] reduce the number
of random accesses through the introduction of more stop-condition tests and
by exploiting the data distribution. The MARS system [Ortega et al. 1998] uses
variations of the FA algorithm and views queries as binary trees where the
leaves are single-attribute queries and the internal nodes correspond to “fuzzy”
query operators.

Chaudhuri et al. built on Fagin’s original FA algorithm and proposed a cost-
based approach for optimizing the execution of top-k queries over multime-
dia repositories [Chaudhuri and Gravano 1996; Chaudhuri et al. 2004]. Their
strategy translates a given top-k query into a selection query that returns a
(hopefully tight) superset of the actual top-k tuples. Ultimately, the evaluation
strategy consists of retrieving the top-k′ tuples from as few sources as possible,
for some k′ ≥ k, and then probing the remaining sources by invoking existing
strategies for processing selections with expensive predicates [Hellerstein and
Stonebraker 1993; Kemper et al. 1994]. This technique is thus related to the
TAz-EP algorithm that we present in Section 4.1.2.

More recently, Chang and Hwang [2002] presented MPro, an algorithm to
optimize the execution of expensive predicates for top-k queries, rather than for
our web-source scenario. MPro is more general than our techniques in that it
targets a wider range of scenarios: local expensive predicates, external expen-
sive predicates, arbitrary monotonic scoring functions, and joins. Their “probes”
are typically not as expensive as our web-source accesses, hence the need for
faster probe scheduling. Unlike our Upper technique [Bruno et al. 2002b] (see
Section 4.2), MPro defines a fixed schedule of accesses to R-Sources during
an initial object-sampling step, and thus selects which object to probe next
during query execution but avoids source selection on a per-object basis. For
completeness, we evaluate MPro experimentally in Section 7.1.3. However, as
we discuss in that section, the object sampling on which MPro relies is prob-
lematic for a web scenario, since SR-Sources on the web do not typically sup-
port random sampling. In the same paper, Chang and Hwang briefly discussed
parallelization techniques for MPro and proposed the Probe-Parallel-MPro al-
gorithm, which sends one probe per object for the k objects with the highest
score upper bounds. We adapt this algorithm to our settings and evaluate it
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experimentally in Section 7.2.2. A second proposed parallelization of MPro,
Data-Parallel MPro, partitions the objects into several processors and merges
the results of each processor’s individual top-k computations. This paralleliza-
tion is not applicable to our scenario where remote autonomous web sources
“handle” specific attributes of all objects.

Over relational databases, Carey and Kossmann [1997, 1998] presented tech-
niques to optimize top-k queries when the scoring is done through a traditional
SQL order-by clause. Donjerkovic and Ramakrishnan [1999] proposed a prob-
abilistic approach to top-k query optimization. Bruno et al. [2002a] exploited
multidimensional histograms to process top-k queries over an unmodified re-
lational DBMS by mapping top-k queries into traditional selection queries. Fi-
nally, Chen and Ling [2002] used a sampling-based approach to translate top-k
queries over relational data into approximate range queries.

Additional related work includes the PREFER system [Hristidis et al. 2001],
which uses pre-materialized views to efficiently answer ranked preference
queries over commercial DBMSs. Natsev et al. [2001] proposed incremental al-
gorithms to compute top-k queries with user-defined join predicates over sorted-
access sources. The WSQ/DSQ project [Goldman and Widom 2000] presented
an architecture for integrating web-accessible search engines with relational
DBMSs. The resulting query plans can manage asynchronous external calls to
reduce the impact of potentially long latencies. This asynchronous iteration is
closely related to our handling of concurrent accesses to sources in Section 5.
Finally, Avnur and Hellerstein [2000] introduced “Eddies”, a query processing
mechanism that reorders operator evaluation in query plans. This work shares
the same design philosophy as Upper and pUpper (Sections 4.2 and 5.3), where
we dynamically choose the sources to access next for each object depending on
previously extracted probe information (and other factors).

4. SEQUENTIAL TOP-K QUERY PROCESSING STRATEGIES

In this section, we present sequential strategies for evaluating top-k queries,
as defined in Section 2. In a sequential setting, a strategy can have at most one
outstanding (random- or sorted-access) probe at any given time. When a probe
completes, a sequential strategy chooses either to perform sorted access on a
source to potentially obtain unseen objects, or to pick an already seen object,
together with a source for which the object has not been probed, and perform a
random-access probe on the source to get the corresponding score for the object.
We discuss an existing strategy in Section 4.1 and present a sequential top-k
query processing technique in Section 4.2. Our new technique will then serve
as the basis for our parallel query processing algorithm of Section 5.

4.1 An Existing Sequential Strategy

We now review an existing algorithm to process top-k queries over sources
that provide sorted and random access interfaces. Specifically, in Section 4.1.1,
we discuss Fagin et al.’s TA algorithm [Fagin et al. 2001] and propose
improvements over this algorithm in Section 4.1.2.
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Algorithm TAz (Input: top-k query q)
(01) Initialize Uunseen = 1. (Uunseen is an upper bound on the score of any object not yet

retrieved.)
(02) Repeat
(03) For each SR-Source Di (1 ≤ i ≤ nsr):
(04) Get the best unretrieved object t for attribute Ai from Di : t ← getNext(Di , q).
(05) Update Uunseen = ScoreComb(s`(1), . . . , s`(nsr), 1, . . . , 1︸ ︷︷ ︸

nr times

),

where s`( j ) is the last score seen under sorted access in D j . (Initially, s`( j ) = 1.)
(06) For each source D j (1 ≤ j ≤ n):
(07) If t ’s score for attribute Aj is unknown:
(08) Retrieve t ’s score for attribute Aj , sj , via a random probe to D j :

sj ← getScore(D j , q, t).
(09) Calculate t ’s final score for q.
(10) If t ’s score is one of the top-k scores seen so far, keep object t along with its score.
(11) Until we have seen at least k objects and Uunseen is no larger than the scores of the

current k top objects.
(12) Return the top-k objects along with their score.

Fig. 1. Algorithm TAz.

4.1.1 The TA Strategy. Fagin et al. [2001] presented the TA algorithm for
processing top-k queries over SR-Sources. We adapted this algorithm in Bruno
et al. [2002b] and introduced the TA-Adapt algorithm, which handles one
SR-Source and any number of R-Sources. Fagin et al. [2003] generalized TA-
Adapt to handle any number of SR-Sources and R-Sources. Their resulting
algorithm, TAz , is summarized in Figure 1.

At any point in time, TAz keeps track of Uunseen, the highest possible score
an object that has not yet been seen by the algorithm can have. TAz proceeds in
the following way: for each SR-Source, the algorithm retrieves the next “best”
object via sorted access (Step (4)), probes all unknown attribute scores for this
object via random access (Steps (6)–(8)) and computes the object’s final score
(Step (9)). At any given point in time, TAz keeps track of the k known objects
with the highest scores. As soon as no unretrieved object can have a score higher
that the current top-k objects, the solution is reached (Step (11)) and the top-k
objects are returned (Step (12)). The original version of TAz assumes bounded
buffers [Fagin et al. 2003] to minimize space requirements and discards in-
formation on objects whose final scores are too low to be top-k. This may lead
to redundant random accesses when such objects are retrieved again from a
different SR-Source. To avoid redundant accesses, a simple solution—which
we use in our implementation—is to keep all object information until the al-
gorithm returns, which requires space that is linear in the number of objects
retrieved.

4.1.2 Improvements over TA. Fagin et al. [2003] showed that TA and TAz
are “instance optimal” with respect to the family of top-k query processing al-
gorithms that do not make wild guesses (see Section 4.3.2). Specifically, the TA
and TAz execution times are within a constant factor of the execution times of
any such top-k algorithm. However, it is possible to improve on TA and TAz by

ACM Transactions on Database Systems, Vol. 29, No. 2, June 2004.



328 • A. Marian et al.

Algorithm TAz-EP (Input: top-k query q)
(01) Initialize Uunseen = 1. (Uunseen is an upper bound on the score of any object not yet

retrieved.)
(02) Repeat
(03) For each SR-Source Di (1 ≤ i ≤ nsr):
(04) Get the best unretrieved object t for attribute Ai from Di : t ← getNext(Di , q).
(05) Update Uunseen = ScoreComb(s`(1), . . . , s`(nsr), 1, . . . , 1︸ ︷︷ ︸

nr times

),

where s`( j ) is the last score seen under sorted access in D j . (Initially, s`( j ) = 1.)
(06) For each source D j (1 ≤ j ≤ n) in decreasing order of Rank(D j ) :
(07) If U (t) is less than or equal to the score of k objects, skip to (11).
(08) If t ’s score for attribute Aj is unknown:
(09) Retrieve t ’s score for attribute Aj , sj , via a random probe to D j :

sj ← getScore(D j , q, t).
(10) Calculate t ’s final score for q.
(11) If we probed t completely and t ’s score is one of the top-k scores, keep object t along

with its score.
(12) Until we have seen at least k objects and Uunseen is no larger than the scores of the current

k top objects.
(13) Return the top-k objects along with their score.

Fig. 2. Algorithm TAz-EP.

saving object probes. In Bruno et al. [2002b], we presented two optimizations
over TA that can be applied over TAz . The first optimization (TA-Opt in Bruno
et al. [2002b]) saves random access probes when an object is guaranteed not
to be part of the top-k answer (i.e., when its score upper bound is lower than
the scores of the current top-k objects). This optimization is done by adding a
shortcut test condition after Step (6) of TAz . The second optimization (TA-EP
in Bruno et al. [2002b]) exploits results on expensive-predicate query optimiza-
tion [Hellerstein and Stonebraker 1993; Kemper et al. 1994]. Research in this
area has studied how to process selection queries of the form p1 ∧ · · · ∧ pn,
where each predicate pi can be expensive to calculate. The key idea is to or-
der the evaluation of predicates to minimize the expected execution time. The
evaluation order is determined by the Rank of each predicate pi, defined as
Rank(pi) = 1−selectivity(pi )

cost-per-object(pi )
, where selectivity(pi) is the fraction of the objects

that are estimated to satisfy pi, and cost-per-object(pi) is the average time
to evaluate pi over an object. We can adapt this idea to our framework as
follows.

Let w1, . . . , wn be the weights of the sources D1, . . . , Dn in the scoring function
ScoreComb. If e(Ai) is the expected score of a randomly picked object for source
Ri, the expected decrease of U (t) after probing source Ri for object t is δi =
wi · (1 − e(Ai)). We sort the sources in decreasing order of their Rank, where
Rank for a source Di is defined as Rank(Ri) = δi

t R(Ri )
. Thus, we favor fast sources

that might have a large impact on the final score of an object; these sources are
likely to substantially change the value of U (t) fast.

We combine these two optimizations to define the TAz-EP algorithm
(Figure 2). The first optimization appears in Steps (7) and (11). The second
optimization appears in Step (6).
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Fig. 3. Snapshot of the execution of the Upper strategy.

4.2 The Upper Strategy

We now present a top-k query processing strategy that we call Upper, a variant
of which we introduced in Bruno et al. [2002b]. Our original formulation of
Upper was for a restricted scenario of only one SR-Source and any number
of R-Sources. In this article, we relax this restriction to allow for any number
of SR-Sources and R-Sources. Unlike TAz , which completely probes each
object immediately after the object is identified, Upper allows for more flexible
probe schedules in which sorted and random accesses can be interleaved even
when some objects have only been partially probed. When a probe completes,
Upper decides whether to perform a sorted-access probe on a source to get
new objects, or to perform the “most promising” random-access probe on the
“most promising” object that has already been retrieved via sorted access.
More specifically, Upper exploits the following property to make its choice of
probes [Bruno et al. 2002b]:

PROPERTY 4.1. Consider a top-k query q. Suppose that at some point in time
Upper has retrieved some objects via sorted access from the SR-Sources and
obtained additional attribute scores via random access for some of these objects.
Consider an object t ∈ Objects whose score upper bound U (t) is strictly higher
than that of every other object (i.e., U (t) > U (t ′) ∀t ′ 6= t ∈ Objects), and such
that t has not been completely probed. Then, at least one probe will have to be
done on t before the answer to q is reached:

—If t is one of the actual top-k objects, then we need to probe all of its attributes
to return its final score for q.

—If t is not one of the actual top-k objects, its score upper bound U (t) is higher
than the score of any of the top-k objects. Hence t requires further probes so
that U (t) decreases before a final answer can be established.

This property is illustrated in Figure 3 for a top-3 query. In this figure, the
possible range of scores for each object is represented by a segment, and objects
are sorted by their expected score. From Property 4.1, the object with the highest
score upper bound, noted U in the figure, will have to be probed before a solution
is reached: either U is one of the top-3 objects for the query and its final score
needs to be returned, or its score upper bound will have to be lowered through
further probes so that we can safely discard the object.
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Algorithm Upper (Input: top-k query q)
(01) Initialize Uunseen = 1, Candidates = ∅, and returned = 0.
(02) While (returned < k)
(03) If Candidates 6= ∅, pick tH ∈ Candidates such that U (tH ) = maxt∈Candidates U (t).
(04) Else tH is undefined.
(05) If tH is undefined or U (tH ) < Uunseen (unseen objects might have larger scores than

all candidates):
(06) Use a round-robin policy to choose the next SR-Source Di (1 ≤ i ≤ nsr) to access

via a sorted access.
(07) Get the best unretrieved object t from Di : t ← getNext(Di , q).
(08) Update Uunseen = ScoreComb(s`(1), . . . , s`(nsr), 1, . . . , 1︸ ︷︷ ︸

nr times

),

where s`( j ) is the last score seen under sorted access in D j . (Initially, s`( j ) = 1.)
(09) Else If tH is completely probed (tH is one of the top-k objects):
(10) Return tH with its score; remove tH from Candidates.
(11) returned = returned+ 1.
(12) Else:
(13) Di ← SelectBestSource(tH ,Candidates).
(14) Retrieve tH ’s score for attribute Ai , si , via a random probe to Di :

si ← getScore(Di , q, t).

Fig. 4. Algorithm Upper.

The Upper algorithm is detailed in Figure 4. Exploiting Property 4.1, Upper
chooses to probe the object with the highest score upper bound, since this object
will have to be probed at least once before a top-k solution can be reached. If
the score upper bound of unretrieved objects is higher than the highest score
upper bound of the retrieved objects, Upper chooses to retrieve a new object via
sorted access. In this case, Upper has to choose which SR-Source to access. This
can be decided in several ways. A simple approach that works well in practice
is to use a round-robin algorithm (Step (6)).

After Upper picks an object to probe, the choice of source to probe for the
object (Step (13)) is handled by the SelectBestSource function, and is influenced
by a number of factors: the cost of the random access probes, the weights of
the corresponding attributes in the scoring function (or the ranking function
itself if we consider a scoring function different than weighted sum), and the
expected attribute scores.

The SelectBestSource function chooses the best source with which to probe
object tH next. (Object tH is picked in Step (3).) This choice should depend on
whether tH is one of the top-k objects or not. To define this function, we would
then need to know the kth highest actual score scorek among all objects in
Objects. Of course, Upper does not know the actual object scores a priori, so
it relies on expected scores to make its choices and estimates the value scorek
(i.e., the kth top score) using score′k , the kth largest expected object score. (We
define score′k = 0 if we have retrieved fewer than k objects.) We considered
several implementations of the SelectBestSource function [Gravano et al. 2002]
such as a greedy approach, or considering the best subset of sources for ob-
ject tH that is expected to decrease U (tH ) below score′k (this implementation
of SelectBestSource was presented in Bruno et al. [2002b]). Our experimental
evaluation [Gravano et al. 2002] shows that using the “nonredundant sources”
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approach that we discuss below for SelectBestSource results in the best per-
formance, so we only focus on this version of the function in this paper, for
conciseness.

Our implementation of SelectBestSource picks the next source to probe for
object tH by first deciding whether tH is likely to be one of the top-k objects or
not:

Case 1. E(tH ) < score′k. In this case, tH is not expected to be one of the
top-k objects. To decide what source to probe next for tH , we favor sources that
can have a high “impact” (i.e., that can sufficiently reduce the score of tH so
that we can discard tH ) while being efficient (i.e., with a relatively low value
for t R). More specifically, 1 = U (tH )—score′k is the amount by which we need
to decrease U (tH ) to “prove” that tH is not one of the top-k answers. In other
words, it does not really matter how large the decrease of U (tH ) is beyond 1
when choosing the best probe for tH . Note that it is always the case that 1 ≥ 0:
from the choice of tH , it follows that U (tH ) ≥ score′k . To see why, suppose that
U (tH ) < score′k . Then U (tH ) < E(t) ≤ U (t) for k objects t, from the definition
of score′k . But U (tH ) is highest among the objects in Candidates, which would
imply that the k objects t such that U (t) > U (tH ) had already been removed
from Candidates and output as top-k objects. And this is not possible since the
final query result has not been reached (returned < k; see Step (2)). Also, the
expected decrease of U (tH ) after probing source Ri is given by δi = wi ·(1−e(Ai)),
where wi is the weight of attribute Ai in the query (Section 2) and e(Ai) is the
expected score for attribute Ai. Then, the ratio:

Rank(Ri) = Min{1, δi}
tR(Ri)

is a good indicator of the “efficiency” of source Ri: a large value of this ratio
indicates that we can reduce the value of U (tH ) by a sufficiently large amount
(i.e., Min{1, δi}) relative to the time that the associated probe requires (i.e.,
t R(Ri)).6 Interestingly, while choosing the source with the highest rank value
is efficient, it sometimes results in provably sub-optimal choices, as illustrated
in the following example.

Example 2. Consider an object t and two R-Sources R1 and R2, with access
times t R(R1) = 1 and t R(R2) = 10, and query weights w1 = 0.1 and w2 = 0.9.
Assume that score′k = 0.5 and U (t) = 0.9, so the amount by which we need
to decrease t to “prove” it is not one of the top answers is expected to be 1 =
0.9− 0.5 = 0.4. If we assume that e(A1) = e(A2) = 0.5, we would choose source
R1 (with rank Min{0.4,0.05}

1 = 0.05) over source R2 (with rank Min{0.4,0.45}
10 = 0.04).

However, we know that we will need to eventually lower U (t) below score′k = 0.5,

6SelectBestSource might need to be modified to handle scoring functions other than the weighted-
sum function on which we focus in this article. In particular, for functions where the final object
scores cannot be in general approximated or usefully bounded unless all input values are known
(e.g., as is the case for the min function), a per-object scheduling strategy is not necessary. In such
cases, the probe history of an object does not impact source choice and so, the SelectBestSource
function should make decisions at a higher level of granularity (e.g., by ordering sources based on
source access time).
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and that R1 can only decrease U (t) by 0.1 to 0.8, since w1 = 0.1. Therefore, in
subsequent iterations, source R2 would need to be probed anyway. In contrast,
if we start with source R2, we might decrease U (t) below score′k = 0.5 with only
one probe, thus avoiding a probe to source R1 for t.

The previous example shows that, for a particular object t, a source Ri can
be “redundant” independently of its rank Min{1, δi}/t R(Ri). Therefore, such
a source should not be probed for t before the “nonredundant” sources. The
set of redundant sources for an object is not static, but rather depends on the
execution state of the algorithm. (In the example above, if score′k = 0.89, there
are no redundant sources for object t.) To identify the subset of nonredundant
available sources for object tH , we let 1 = U (tH ) − score′k as above and let
R = {R1, . . . , Rm} be the set of sources not yet probed for tH . If 1 = 0, all
sources are considered not to be redundant. Otherwise, if 1 > 0 we say that
source Ri is redundant for object tH at a given step of the probing process if
∀Y ⊆ R − {Ri}: If wi +

∑
j :R j∈Y wj ≥ 1, then

∑
j :R j∈Y wj ≥ 1 (i.e., for

every possible choice of sources {Ri} ∪ Y that can decrease U (tH ) to score′k or
lower, Y by itself can also do it). By negating the predicate above, replacing the
implication with the equivalent disjunction, and manipulating the resulting
predicate, we obtain the following test to identify nonredundant sources: Ri is
nonredundant if and only if ∃Y ⊆ R− {Ri}: 1−wi ≤

∑
j :R j∈Y wj < 1. It is not

difficult to prove that, for any possible assignment of values to wi and 1 > 0,
there is always at least one available nonredundant source. Therefore, after
identifying the subset of nonredundant sources, our SelectBestSource function
returns the nonredundant source for object tH with the maximum rank Min{1,δi}

t R(Ri )
if1 > 0. If1 = 0, all sources have the same Rank value, and we pick the source
with the fastest random-access time for the query.

Case 2. E(tH ) ≥ score′k. In this case, tH is expected to be one of the top-k
objects, and so we will need to probe tH completely. Therefore all sources for
which tH has not been probed are nonredundant and SelectBestSource returns
the not-yet-probed source with the highest δi

t R(Ri )
ratio.

In summary, when a probe completes, Upper can either (a) perform a sorted-
access probe on a source if the unseen objects have the highest score upper
bound (Steps (5)–(8)), or (b) select both an object and a source to probe next
(Steps (12)–(14)), guided in both cases by Property 4.1. In addition, Upper can
return results as they are produced, rather than having to wait for all top-k
results to be known before producing the final answer (Steps (9)–(11)).

4.3 Cost Analysis

We now discuss the efficiency of the various algorithms. Specifically,
Section 4.3.1 analyzes the number of sorted accesses that each algorithm re-
quires, and Section 4.3.2 discusses the optimality of Upper.

4.3.1 Counting Sorted Accesses. Interestingly, Upper and TAz behave in
an identical manner with respect to sorted accesses:
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LEMMA 4.2. Consider a top-k query q over multiple SR-Sources and R-
Sources. Then, Upper and all variations of TAz perform the same number of
sorted accesses when processing q.

PROOF. We note that the choice of sorted-access sources in both TAz and
Upper follows the same fixed round-robin strategy, which is independent of the
input (see Step (3) for TAz in Figure 1 and Step (6) for Upper in Figure 4).
Therefore, after Upper or TAz perform some equal number of sorted accesses,
the value of Uunseen is the same for both algorithms. Consider the execution of
both TAz and Upper after both algorithms have retrieved the same set Retrieved
of objects, with |Retrieved| ≥ k. (Naturally, TAz and Upper need to retrieve at
least k objects via sorted access to output the top-k solution.)

—If TAz decides to retrieve a new object after processing the objects in Re-
trieved, then it holds that Uunseen > Score(q, m), where m is the object in
Retrieved with the kth largest score. Suppose that the execution of Upper fin-
ishes without retrieving any new object beyond those in Retrieved, and let m′

be the kth object output as Upper’s result for q. Since m′ was also retrieved by
TAz , and because of the choice of m, it holds that Score(q, m) = Score(q, m′).
Then Score(q, m′) < Uunseen and hence Upper could never have output this
object as part of the query result (see Step (5) in Figure 4), contradicting the
choice of m′. Therefore Upper also needs to retrieve a new object, just as TAz
does.

—If Upper decides to retrieve a new object after processing the objects in Re-
trieved, then it holds that Upper output fewer than k objects from Retrieved as
part of the query result, and that U (t) < Uunseen for each object t ∈ Retrieved
not yet output (see Step (5) in Figure 4). Then, since Score(q, t) ≤ U (t) for
each object t, it follows that Score(q, m) < Uunseen, where m is the object in
Retrieved with the kth largest actual score for q. Therefore, from Step (11)
in Figure 1, it follows that TAz also needs to retrieve a new object, just as
Upper does.

Interestingly, since TAz performs all random accesses for the objects consid-
ered, Upper never performs more random accesses than TAz does.

4.3.2 Instance Optimality. As presented in Fagin et al. [2003], TAz is “in-
stance optimal,” where the definition of “instance optimality”—slightly adapted
from [Fagin et al. 2003] to match our terminology—is:

Definition 4.3 (Instance Optimality). Let A be a class of algorithms and D
be a class of source instances. An algorithm B ∈ A is instance optimal over A
and D if there are constants c and c′ such that for every A ∈ A and D ∈ D we
have that cost(B, D) ≤ c · cost(A, D) + c′, where cost(a, D) is, in our context,
the combined sorted- and random-access time required by algorithm a over the
sources in D.

An interesting observation is that the number of random accesses in TAz is
an upper bound on the number of random accesses in TAz-EP: TAz-EP is an
optimization over TAz aimed at reducing the number of random accesses. The
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shortcuts used in TAz-EP are only used to discard objects sooner than in TAz and
do not affect the number of sorted accesses performed by the algorithm. Also,
as explained in the previous section, Upper performs no more sorted or random
accesses than TAz does. Hence, the TAz “instance optimality” also applies to
the TAz-EP and Upper algorithms. Therefore, the experimental section of the
paper (Section 7), in which we compare the TAz and Upper algorithms, will
evaluate the algorithms with real-world and synthetic data to measure their
“absolute” efficiency (they are all “instance optimal”).

5. PARALLEL TOP-k QUERY PROCESSING STRATEGIES

So far, we have discussed sequential top-k query processing strategies. As ar-
gued earlier in the article, these strategies are bound to require unnecessarily
long query processing times, since web accesses usually exhibit high and vari-
able latency. Fortunately, web sources can be probed in parallel, and also each
source can typically process concurrent requests. In this section, we use the se-
quential strategies of Section 4 as the basis to define parallel query processing
algorithms. We start in Section 5.1 by extending our source model to capture
constraints that the sources might impose on the number of parallel requests
that can be outstanding at any point in time. Then, we introduce query process-
ing algorithms that attempt to maximize source-access parallelism to minimize
query response time, while observing source-access constraints. Specifically, in
Section 5.2, we discuss a simple adaptation of the TAz algorithm to our par-
allel setting with source-access constraints. Then, in Section 5.3, we present
an algorithm based on Upper that considers source congestion when making
its probing choices. As we will see, this algorithm is robust and has the best
performance in our experimental evaluation of the techniques in Sections 6
and 7.

5.1 Source Access Constraints

On the web, sources can typically handle multiple queries in parallel. However,
query processing techniques must avoid sending large numbers of probes to
sources. More specifically, our query processing strategies must be aware of
any access restrictions that the sources in a realistic web environment might
impose. Such restrictions might be due to network and processing limitations
of a source, which might bound the number of concurrent queries that it can
handle. This bound might change dynamically, and could be relaxed (e.g., at
night) when source load is lower.

Definition 5.1 (Source Access Constraints). Let R be a source that supports
random accesses. We refer to the maximum number of concurrent random
accesses that a top-k query processing technique can issue to R as pR(R),
where pR(R) ≥ 1. In contrast, sorted accesses to a source are sequential by
nature (e.g., matches 11–20 are requested only after matches 1–10 have been
computed and returned), so we assume that we submit getNext requests to a
source sequentially when processing a query. However, random accesses can
proceed concurrently with sorted access: we will have at most one outstanding
sorted access request to a specific SR-Source S at any time, while we can have
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Function SelectBestSubset (Input: object t)
(1) If we have seen k or more objects through sorted access, let t ′ be the object with the kth

largest expected score, and let score′k = E(t ′).
(2) Else score′k = 0.
(3) If E(t) ≥ score′k :
(4) Define S ⊆ {D1, . . . , Dn} as the set of all sources not yet probed for t.
(5) Else:
(6) Define S ⊆ {D1, . . . , Dn} as the set of sources not yet probed for t such that

(i) U (t) < score′k if each source D j ∈ S were to return the expected value for t, and
(ii) the time

∑
D j ∈S eR(D j , t) is minimum among the source sets with this

property (see text).
(7) Return S.

Fig. 5. Function SelectBestSubset.

up to pR(S) outstanding random-access requests to this same source, for a total
of up to 1+ pR(S) concurrent accesses.

Each source Di can process up to pR(Di) random accesses concurrently.
Whenever the number of outstanding probes to a source Di falls below pR(Di),
a parallel processing strategy can decide to send one more probe to Di.

5.2 Adapting the TA Strategy

The TA algorithm (Section 4.1.1) as described by Fagin et al. [2001] does not
preclude parallel executions. We adapt the TAz version of this algorithm [Fagin
et al. 2003] to our parallel scenario and define pTA, which probes objects in
parallel in the order in which they are retrieved from the SR-Sources, while re-
specting source-access constraints. Specifically, each object retrieved via sorted
access is placed in a queue of discovered objects. When a source Di becomes
available, pTA chooses which object to probe next for that source by selecting
the first object in the queue that has not yet been probed for Di. Addition-
ally, pTA can include the TA-Opt optimization over TAz to stop probing objects
whose score cannot exceed that of the best top-k objects already seen (Sec-
tion 4.1.2). pTA then takes advantage of all available parallel source accesses
to return the top-k query answer as fast as possible. However, it does not make
choices on which probes to perform, but rather only saves probes on “discarded”
objects.

5.3 The pUpper Strategy

A parallel query processing strategy might react to a source Di having fewer
than pR(Di) outstanding probes by picking an object to probe on Di. A direct
way to parallelize the Upper algorithm suggests itself: every time a source Di
becomes underutilized, we pick the object t with the highest score upper bound
among those objects that need to be probed on Di in accordance with (a variation
of) Upper. We refer to the resulting strategy as pUpper.

To select which object to probe next for a source Di, pUpper uses the Se-
lectBestSubset function shown in Figure 5, which is closely related to the Se-
lectBestSource function of the sequential Upper algorithm of Section 4.2. The se-
quential Upper algorithm uses the SelectBestSource function to pick the single
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best source for a given object. Only one source is chosen each time because
the algorithm is sequential and does not allow for multiple concurrent probes
to proceed simultaneously. In contrast, probes can proceed concurrently in a
parallel setting and this is reflected in the SelectBestSubset function, which
generalizes SelectBestSource and picks a minimal set of sources that need to
be probed for a given object. Intuitively, these multiple probes might proceed in
parallel to speed up query execution. When a random-access source Di becomes
underutilized, we identify the object t with the highest score upper bound such
that Di ∈ SelectBestSubset(t).

The SelectBestSubset function attempts to predict what probes will be per-
formed on an object t before the top-k answer is reached: (1) if t is expected
to be one of the top-k objects, all random accesses on sources for which t ’s at-
tribute score is missing will be considered (Step (4)); otherwise (2) only the
fastest subset of probes expected to help discard t—by decreasing t ’s score up-
per bound below the kth highest (expected) object score score′k—are considered
(Step (6)). SelectBestSubset bases its choices on the known attribute scores of
object t at the time of the function invocation, as well as on the expected access
time eR(D j , t) for each source D j not yet probed for t, which is defined as the
sum of two terms:

(1) The time wR(D j , t) that object t will have to “wait in line” before being
probed for D j : any object t ′ with U (t ′) > U (t) that needs to be probed for
D j will do so before t. Then, if precede(D j , t) denotes the number of such
objects, we can define wR(D j , t) = bprecede(D j ,t)

pR(D j ) c · t R(D j ). To account for
the waiting time wR and the precede(D j , t) value for all sources accurately,
objects are considered in decreasing order of their score upper bounds.

(2) The time t R(D j ) to actually perform the probe.

The time eR(D j , t) is then equal to:

eR(D j , t) = wR(D j , t)+ t R(D j )

= t R(D j ) ·
(⌊

precede(D j , t)
pR(D j )

⌋
+ 1

)
Without factoring in the wR waiting time, all best subsets tend to be similar
and include only sources with high weight in the query and/or with low access
time t R. Considering the waiting time is critical to dynamically account for
source congestion, and allows for slow sources or sources with low associated
query weight to be used for some objects, thus avoiding wasting resources by not
taking advantage of all available concurrent source accesses. The fastest subset
of probes expected to help discard t is chosen based on the sum of the expected
access time of its associated sources. While using their maximum value would
give a better estimation of the expected time to probe all sources in the subset,
the sum function helps to take into consideration the global source congestion
that would result from probing the subset.

As mentioned before, this SelectBestSubset function is closely related to the
SelectBestSource function of Section 4.2. Both functions allow for dynamic
query evaluation by relying on current available information on object scores
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Fig. 6. An execution step of pUpper.

to make probing choices. However, SelectBestSubset is used in a parallel set-
ting where probes can be issued concurrently, so there is no need to determine
a total order of the source probes for each object and “subset” probes can be
issued concurrently. Therefore, the Rank metric presented in Section 4.2 is not
strictly needed in the SelectBestSubset function. Interestingly, in the specific
scenario where any one source is expected to be enough to discard an object
t, SelectBestSubset selects the same source for t as SelectBestSource would if
we ignore the source waiting time: in this scenario, any source is expected to
decrease the score upper bound of t by at least 1 (Section 4.2), and SelectBest-
Subset picks the fastest such source. This choice is equivalent to selecting the
source with the highest Min{1,δi}

t R(Ri )
rank value, as is done by SelectBestSource.

The query-processing strategy above is expensive in local computation time:
it might require several calls to SelectBestSubset each time a random-access
source becomes available, and SelectBestSubset takes time that is exponential
in the number of sources. To reduce local processing time, we devise an effi-
cient algorithm based on the following observation: whenever SelectBestSubset
is invoked to schedule probes for a source Di, information on the best probes to
perform for Di as well as for other sources is computed. Scheduling probes for
just one source at any given time results in discarding the information on valu-
able probes to the other sources, which results in redundant computation when
these other sources become underutilized and can then receive further probes.

With the above observations in mind, our parallel top-k processing algo-
rithm, pUpper, precomputes sets of objects to probe for each source. When a
source becomes available, pUpper checks whether an object to probe for that
source has already been chosen. If not, pUpper recomputes objects to probe for
all sources, as shown in Figure 6. This way, earlier choices of probes on any
source might be revised in light of new information on object scores: objects
that appeared “promising” earlier (and hence that might have been scheduled
for further probing) might now be judged less promising than other objects after
some probes complete. By choosing several objects to probe for every source in
a single computation, pUpper drastically reduces local processing time.

The pUpper algorithm (Figure 7) associates a queue with each source for
random access scheduling. The queues are regularly updated by calls to the
function GenerateQueues (Figure 8). During top-k query processing, if a source
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Fig. 7. Algorithm pUpper.

Fig. 8. Function GenerateQueues.

Di is available, pUpper checks the associated random-access queue Queue(Di).
If Queue(Di) is empty, then all random access queues are regenerated (Steps
(7)–(8) in Figure 7). If Queue(Di) is not empty, then simply a probe to Di on
the first object in Queue(Di) is sent (Steps (9)–(11)). To avoid repeated calls
to GenerateQueues when a random access queue is continuously empty (which
can happen, for example, if all known objects have already been probed for
its associated source), a queue left empty from a previous execution does not
trigger a new call to GenerateQueues.

As sorted accesses are sequential in nature (Definition 5.1, Section 5.1), pUp-
per attempts to always have exactly one outstanding sorted-access request per
SR-Source Di (Steps (2)–(4)). As soon as a sorted access to Di completes, a new
one is sent until all needed objects are retrieved from Di.

Source accesses are performed by calling pGetNext and pGetScore, which
are asynchronous versions of the getNext and getScore source interfaces
(Definition 2.1); these asynchronous calls, similar to the asynchronous iteration
described in WSQ/DSQ [Goldman and Widom 2000], allow the query process-
ing algorithm to continue without waiting for the source accesses to complete.
pGetNext and pGetScore send the corresponding probes to the sources, wait for
their results to return, and update the appropriate data structures with the
new information. Of course, pUpper keeps track of outstanding probes so as
not to issue duplicate probes. The top-k query processing terminates when the
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top-k objects are identified, which happens when no object can have a final score
greater than that of any of the current top-k objects.

To allow for dynamic queue updates at regular intervals, and to ensure that
queues are generated using recent information, we define a parameter L that
indicates the length of the random-access queues generated by the Generate-
Queues function. A call to GenerateQueues to populate a source’s random-access
queue provides up-to-date information on current best objects to probe for all
sources, therefore GenerateQueues regenerates all random-access queues. An
object t is only inserted into the queues of the sources returned by the Se-
lectBestSubset(t) function from Figure 5 (Steps (6)–(8) in Figure 8). Addition-
ally, objects are considered in the order of their score upper bound (Step (5)),
considering only “alive” objects, that is, objects that have not been discarded
(Step (1)).

pUpper precomputes a list of objects to access per source, based on expected
score values. Of course, the best subset for an object might vary during process-
ing, and pUpper might perform “useless” probes. Parameter L regulates the
tradeoff between queue “freshness” and local processing time, since L deter-
mines how frequently the random access queues are updated and how reactive
pUpper is to new information.

6. EVALUATION SETTING

In this section, we discuss data structures that we use to implement the query
processing strategies of Sections 4 and 5 (Section 6.1). We also define the syn-
thetic and real data sets (Section 6.2) that we use for the experimental evalua-
tion of the various techniques, as well as the prototype that we implemented for
our experiments over real web-accessible sources (Section 6.3). Finally, we dis-
cuss the metrics and other settings that we use in our experimental evaluation
(Section 6.4).

6.1 Supporting Data Structures

Our algorithms keep track of the objects retrieved and their partial score in-
formation in a hash table indexed by the object IDs. For each object, we record
the attribute scores returned by the different sources (a special value is used
when information about a particular source is not yet available). For efficiency,
we also incrementally maintain the score upper bounds of each object. Finally,
depending on the algorithm, each object is augmented with a small number of
pointers that help us to efficiently maintain the rank of each object in different
ordered lists (see Gravano et al. [2002]). During the execution of the algorithms
of Sections 4 and 5, each object can be part of multiple sorted lists. As an ex-
ample, Upper (Section 4.2) needs to keep track of the object with the largest
score upper bound (Step (3) in the algorithm in Figure 4). The SelectBestSource
and SelectBestSubset functions also need to identify the object with the kth
highest expected score. We implement each sorted list using heap-based pri-
ority queues, which provide constant-time access to the first ranked element,
and logarithmic-time insertions and deletions. We additionally modified these
standard priority queues to extract in constant time the kth ranked object in
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the list still with logarithmic-time insertions and deletions (we refer the reader
to Gravano et al. [2002] for further implementation details).

6.2 Local Sources

We generate a number of synthetic SR-Sources and R-Sources for our exper-
iments. The attribute values for each object are generated using one of the
following distributions:

Uniform. Attributes are independent of each other and attribute values are
uniformly distributed (default setting).

Gaussian. Attributes are independent of each other and attribute values
are generated from five overlapping multidimensional Gaussian bells [Williams
et al. 1993].

Zipfian. Attributes are independent of each other and attribute values are
generated from a Zipf function with 1,000 distinct values and Zipfian parameter
z = 1. The 1,000 distinct attribute values are generated randomly in the [0,1]
range, and the ith most frequent attribute value appears f (i) = |Obj ects|/(iz ·∑1,000

j=1 1/j z ) times.

Correlated. We divide sources into two groups and generate attribute val-
ues so that values from sources within the same group are correlated. In each
group, the attribute values for a “base” source are generated using a uniform
distribution. The attribute values for the other sources in a group are picked for
an object from a short interval around the object’s attribute value in the “base”
source. Our default Correlated data set consists of two groups of three sources
each.

Mixed. Attributes are independent of each other. Sources are divided into
three groups, and the attribute values within each group are generated using
the Uniform, Gaussian, and Zipfian distributions, respectively.

Cover. To validate our techniques on real data distributions, we performed
experiments over the Cover data set, a six-dimensional projection of the Cov-
Type data set [Blake and Merz 1998], used for predicting forest cover types from
cartographic variables. The data contains information about various wilderness
areas. Specifically, we consider six attributes: elevation (in meters), aspect (in
degrees azimuth), slope (in degrees), horizontal distance to hydrology (in me-
ters), vertical distance to hydrology (in meters), and horizontal distance to road-
ways (in meters). We extracted a database of 10,000 objects from the CovType
data set.

For simplicity, we will refer to the synthetic and the Cover sources as the
“local” sources, to indicate that these are locally available sources under our
control, as opposed to the real web sources described next. For our experiments,
we vary the number of SR-Sources nsr, the number of R-Sources nr , the number
of objects available through sorted access |Objects|, the random access time
t R(Di) for each source Di (a random value between 1 and 10), the sorted access
time tS(Di) for each source Di (a random value between 0.1 and 1), and the
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Table I. Default Parameter Values for Experiments Over Synthetic
Data

k nsr nr |Objects| t R tS pR Data Sets
50 3 3 10,000 [1, 10] [0.1, 1] 5 Uniform

Table II. Real Web-Accessible Sources Used in the Experimental Evaluation

Source Attribute(s) Input

Verizon Yellow Pages (S) Distance type of cuisine, user address
Subway Navigator (R) SubwayTime restaurant address, user address
MapQuest (R) DrivingTime restaurant address, user address
AltaVista (R) Popularity free text with restaurant name

and address
Zagat Review (R) ZFood, ZService, restaurant name

ZDecor, ZPrice
NYT Review (R) TRating, TPrice restaurant name

maximum number of parallel random accesses pR(Di) for each source Di (for
the parallel algorithms only). Table I lists the default value for each parameter.
Unless we specify otherwise, we use this default setting.

6.3 Real Web-Accessible Sources

In addition to experiments over the “local” data sets above, we evaluated the al-
gorithms over real, autonomous web sources. For this, we implemented a proto-
type of the algorithms to answer top-k queries about New York City restaurants.
Our prototype is written in C++ and Python, using C++ threads and multiple
Python subinterpreters to support concurrency for parallel algorithms.

6.3.1 Attributes. Users input a starting address and their desired type of
cuisine (if any), together with importance weights for the following R-Source
attributes: SubwayTime (handled by the SubwayNavigator site7), DrivingTime
(handled by the MapQuest site), Popularity (handled by the AltaVista search
engine8; see below), ZFood, ZService, ZDecor, and ZPrice (handled by the Zagat-
Review web site), and TRating and TPrice (provided by the New York Times’s
NYT-Review web site). The Verizon Yellow Pages listing,9 which for sorted ac-
cess returns restaurants of the user-specified type sorted by shortest distance
from a given address, is the only SR-Source. Table II summarizes these sources
and their interfaces.

Attributes Distance, SubwayTime, DrivingTime, ZFood, ZService, ZDecor,
and TRating have “default” target values in the queries (e.g., a DrivingTime of
0 and a ZFood rating of 30). The target value for Popularity is arbitrarily set to
100 hits, while the ZPrice and TPrice target values are set to the least expen-
sive value in the scale. In the default setting, the weights of all six sources are
equal. The Popularity attribute requires further explanation. We approximate
the “popularity” of a restaurant with the number of web pages that mention the

7http://www.subwaynavigator.com.
8http://www.altavista.com.
9http://www.superpages.com.
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restaurant, as reported by the AltaVista search engine. (The idea of using web
search engines as a “popularity oracle” has been used before in the WSQ/DSQ
system [Goldman and Widom 2000].) Consider, for example, restaurant “Tav-
ern on the Green,” which is one of the most popular restaurants in the United
States. As of the writing of this article, a query on AltaVista on “Tavern on
the Green” AND “New York” returns 4,590 hits. In contrast, the corresponding
query for a much less popular restaurant on New York City’s Upper West Side,
“Caffe Taci” AND “New York,” returns only 24 hits. Of course, the reported
number of hits might inaccurately capture the actual number of pages that
talk about the restaurants in question, due to both false positives and false
negatives. Also, in rare cases web presence might not reflect actual “popular-
ity.” However, anecdotal observations indicate that search engines work well as
coarse popularity oracles.

Naturally, the real sources above do not fit our model of Section 2 perfectly.
For example, some of these sources return scores for multiple attributes simul-
taneously (e.g., the Zagat-Review site). Also, as we mentioned before, informa-
tion on a restaurant might be missing in some sources (e.g., a restaurant might
not have an entry at the Zagat-Review site). In such a case, our system will give
a default (expected) score of 0.5 to the score of the corresponding attribute.

6.3.2 Adaptive Time. In a real web environment, source access times are
usually not fixed and depend on several parameters such as network traffic or
server load. Using a fixed approximation of the source response time (such as
an average of past response times) may result in degraded performance since
our algorithms use these times to choose what probe to do next.

To develop accurate adaptive estimates for the t R times, we adapt tech-
niques for estimating the round trip time of network packets. Specifically, TCP
implementations use a “smoothed” round trip time estimate (SRTT) to predict
future round trip times, computed as follows:

SRTTi+1 = (α × SRTTi)+ ((1− α)× si)

where SRTTi+1 is the new estimate of the round trip time, SRTTi is the current
estimate of the round trip time, si is the time taken by the last round trip
sample, and α is a constant between 0 and 1 that controls the sensitivity of the
SRTT to changes. For good performance, Mills [1983] recommends using two
values for α: α = 15/16, when the last sample time is lower than the estimate
time (SRTTi), and α = 3/4, when the last sample time is higher than the
estimate. This makes the estimate more responsive to increases in the source
response time than to decreases. Our prototype keeps track of the response
time of probes to each R-Source Ri and adjusts the average access time for
Ri, t R(Ri), using the SRTT estimates above. Since the sorted accesses to the
SR-Sources Si are decided independently of their sorted-access times, we do
not adjust tS(Si).

6.4 Evaluation Metrics and Other Experimental Settings

To understand the relative performance of the various top-k processing tech-
niques over local sources, we time the two main components of the algorithms:
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—tprobes is the time spent accessing the remote sources, in “units” of time. (In
Section 7.1.2, we report results for different values—in ms—of this time
unit.)

—tlocal is the time spent locally scheduling remote source accesses, in seconds.

While source access and local scheduling happen in parallel, it is revealing to
analyze the tprobes and tlocal times associated with the query processing tech-
niques separately, since the techniques that we consider differ significantly in
the amount of local processing time that they require. For the experiments over
the real-web sources, we report the total query execution time:

—ttotal is the total time spent executing a top-k query, in seconds, including
both remote source access and scheduling.

We also report the number of random probes issued by each technique10:

— |probes| is the total number of random probes issued during a top-k query
execution.

Finally, we quantify the extent to which the parallel techniques exploit the
available source-access parallelism. Consider Upper, the sequential algorithm
that performed the best for our web-source scenario (with relatively expen-
sive probes and no information on the underlying data distribution known in
advance) according to the experimental evaluation in Section 7.1. Ideally, par-
allel algorithms would keep sources “humming” by accessing them in parallel
as much as possible. At any point in time, up to nsr +

∑n
i=1 pR(Di) concur-

rent source accesses can be in progress. Hence, if tU pper is the time that Upper
spends accessing remote sources sequentially, then tU pper/(nsr +

∑n
i=1 pR(Di))

is a (loose) lower bound on the parallel tprobes time for the parallel algorithms,
assuming that parallel algorithms perform at least as many source accesses as
Upper. To observe what fraction of this potential parallel speedup the parallel
algorithms achieve, we report:

Parallel Efficiency = tUpper/(nsr +
∑n

i=1 pR(Di))
tprobes

A parallel algorithm with Parallel Efficiency = 1 manages to essentially
fully exploit the available source-access parallelism. Lower values of Parallel
Efficiency indicate that either some sources are left idle and not fully utilized
during query processing, or that some additional probes are being performed
by the parallel algorithm.

For the local sources, unless we note otherwise we generate 100 queries
randomly, with attribute weights randomly picked in the [1,10] range. We report
the average values of the metrics for different settings of nsr, nr , |Objects|, pR,
and k for different attribute distributions. We conducted experiments on 1.4-
Ghz 2-Gb RAM machines running Red Hat Linux 7.1.

10For sequential algorithms, the number of sorted accesses is the same for all presented techniques
(Section 4.3.1). For parallel algorithms, we observed comparable number of sorted accesses across
techniques.
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Table III. “Dimensions” to Characterize Sequential Query Processing Algorithms

Per-Query Scheduling Per-Object Scheduling
of Probes of Probes

No Interleaving of TAz-EP TAz-SelectBestSource
Probes across Objects

Interleaving No Sampling MPro-EP Upper
of Probes Available

across Objects Sampling MPro Upper-Sample
Available

For the real web sources, we defined queries that ask for top French, Ital-
ian, and Japanese restaurants in Manhattan, for users located in different
addresses. For the sequential algorithms (Section 7.1.4), attribute weights are
arbitrarily picked from the [1,10] range for each query. For the parallel algo-
rithms (Section 7.2.3), all attribute weights are equal. We report the average
ttotal value for different settings of pR and k. We conducted experiments on a
550-Mhz 758-Mb RAM machine running Red Hat Linux 7.1.

7. EVALUATION RESULTS

We now present the experimental results for the sequential (Section 7.1) and the
parallel (Section 7.2) techniques, using the data and general settings described
in Section 6.

7.1 Sequential Algorithms

In this section, we compare the performance of Upper (Section 4.2) with that of
TAz-EP (Section 4.1.1). Upper is a technique in which source probes are sched-
uled at a fine object-level granularity, and where probes on different objects
can be interleaved (see Table III). In contrast, TAz-EP is a technique in which
source probes are scheduled at a coarse query-level granularity, and where
each object is fully processed before probes on a different object can proceed.
The MPro algorithm of Chang and Hwang [2002] (Section 3) is an example of a
technique with interleaving of probes on different objects and with query-level
probe scheduling. (We evaluate MPro in Section 7.1.3, where we consider a sce-
nario in which object sampling—as required by MPro—is possible. We also defer
the discussion of the Upper-Sample technique until that section.) MPro-EP is
an instantiation of the MPro algorithm with a different source-order criterion.
Specifically, MPro-EP departs from the original MPro algorithm in that it does
not rely on object sampling and orders sources by their Rank values as defined
in Section 4.1.2. Note that MPro-EP can also be regarded as a modification of
Upper for which the SelectBestSource function always considers each source’s
object-independent Rank value as defined in Section 4.1.2 when deciding what
source to pick for a given object.

The “dimensions” outlined in Table III suggest an additional technique. This
technique, denoted as TAz-SelectBestSource in Table III, is similar to TAz-EP in
that it does not interleave probes on multiple objects. However, the schedule of
probes on each object is not fixed, but rather is influenced by the returned probe
scores and determined dynamically using Upper’s SelectBestSource function.
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Fig. 9. Performance of the different strategies for the default setting of the experiment parameters,
and for alternate attribute-value distributions.

For conciseness, we do not report experimental figures for this technique, since
it results in only minor time savings over the simpler TAz-EP algorithm. Sim-
ilarly, we do not consider variations of TAz-EP and TAz-SelectBestSource that
exploit sampling-derived information.

By comparing MPro-EP and TAz-EP, our experiments help quantify the sav-
ing in probing time that is due to the interleaving of object probes. By comparing
MPro-EP and Upper, our experiments help understand the impact of the rela-
tively expensive per-object scheduling on query processing efficiency.

7.1.1 Local Data Sets: Probing Time. We first study the performance of
the techniques when we vary the local data set parameters.

Effect of the Attribute Value Distribution. Figure 9 reports results for the
default setting (Table I), for various attribute value distributions. In all cases,
Upper substantially outperforms TAz-EP. The performance of MPro-EP is just
slightly worse than that of Upper, which suggests that the gain in probing time
of Upper over TAz-EP mostly results from interleaving probes on objects. Inter-
estingly, while Upper has faster overall probing times that MPro-EP, MPro-EP
results in slightly fewer random accesses (e.g., for the Uniform data set, Up-
per performed on average 11,342 random accesses and MPro-EP performed
on average 11,045 random accesses). For the Cover data set, which consists of
real-world data, the results are similar to those for the other data sets.

Effect of the Number of Objects Requested k. Figure 10 reports results for
the default setting (Table I) as a function of k. As k increases, the time needed by
each algorithm to return the top-k objects increases as well, since all techniques
need to retrieve and process more objects. Once again, the Upper strategy con-
sistently outperforms TAz-EP, with MPro-EP as a close second.

Effect of the Number of Sources n. Figure 11 reports results for the default
setting, as a function of the total number of sources n (half the sources are
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Fig. 10. Performance of the different strategies for the default setting of the experiment parame-
ters, as a function of the number of objects requested k.

Fig. 11. Performance of the different strategies for the Uniform data set, as a function of the
number of sources.

SR-Sources, half are R-Sources). Not surprisingly, the tprobes time needed by
all the algorithms increases with the number of available sources. When we
consider a single SR-Source and a single R-Source, tprobes is the same for all
algorithms. However, when more sources are available, the differences between
the techniques become more pronounced, with Upper and MPro-EP consistently
resulting in the best performance.

Effect of the Number of SR-Sources nsr. Figure 12 reports results for the de-
fault setting, as a function of the total number of sources nsr (out of a total of six
sources). The performance of TAz-EP remains almost constant when we vary
the number of SR-Sources. In contrast, the performance of Upper and MPro-EP
improves when the number of SR-Sources is high, as more information on the
top objects is obtained from sorted accesses, which are cheaper than random
accesses. The information gained from these extra sorted accesses allows these
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Fig. 12. Performance of the different strategies for the Uniform data set, as a function of the
number of SR-Sources.

Fig. 13. Performance of the different strategies for the Uniform data set, as a function of the
cardinality of Obj ects.

algorithms to identify high-score objects (objects with high scores for all the
SR-Sources attributes) sooner and therefore to return the top-k objects faster.
Upper is slightly better than MPro-EP, with savings in probing time that re-
mains close to constant for all values of nsr.

Effect of the Cardinality of the Objects Set. Figure 13 studies the impact of
the number of objects available. As the number of objects increases, the perfor-
mance of each algorithm drops since more objects have to be evaluated before
a solution is returned. The tprobes time needed by each algorithm is approxi-
mately linear in |Objects|. MPro-EP is faster and scales better than TAz-EP
since MPro-EP only considers objects that need to be probed before the top-k
answer is reached and therefore does not waste resources on useless probes.
Upper’s reduction in probing time over MPro-EP increases with the number of
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Fig. 14. The local processing time for Upper, MPro-EP, and TAz-EP, as a function of the number
of objects.

objects, suggesting that per-object source scheduling becomes more efficient as
the number of objects increase.

7.1.2 Local Data Sets: Local Processing Time. In the previous section, we
showed that Upper and MPro-EP result in substantially fewer random probes
than TAz-EP. However, probe interleaving requires expensive computation as
object score information needs to be kept and sorted. In addition, Upper requires
more expensive probe scheduling than TAz-EP and MPro-EP do, so we now
turn to studying the effect of this local computation on overall performance.
Interestingly, we show experimentally that Upper results in considerably faster
executions than TAz-EP, considering both probing time and local execution
time. Our experiments also show that Upper results in slightly faster overall
query execution times than MPro-EP.

Figure 14 shows the tlocal time for Upper, MPro-EP, and TAz-EP for the de-
fault setting of the experiments in Table I, and for varying number of objects.
Not surprisingly, TAz-EP is locally more efficient than Upper and MPro-EP. The
additional local processing needed by Upper and MPro-EP is spent maintain-
ing object queues. (Both techniques need access to the object with the largest
score upper bound at different points in time.) In turn, Upper is more expen-
sive than MPro-EP because of two factors: (1) Upper schedules probes at the
object level, while MPro-EP does so at a coarser query level, and (2) unlike
MPro-EP, Upper needs fast access to the object with the kth largest expected
score, for which the modified priority queue mentioned in Section 6.1 needs to
be maintained. Interestingly, the second factor above accounts for most of the
difference in execution time between Upper and MPro-EP according to our ex-
periments. If random accesses are fast, then the extra processing time required
by Upper is likely not to pay off. In contrast, for real web sources, with high
latencies, the extra local work is likely to result in faster overall executions. To
understand this interaction between local processing time and random-access
time, we vary the absolute value of the time “unit” f with which we measure
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Fig. 15. The total processing time for Upper, MPro-EP, and TAz-EP, as a function of the time
unit f.

the random-access time tR. Figure 15 shows the total processing time of all
three techniques for varying values of f (tR is randomly chosen between 1
and 10 time units), normalized with respect to the total processing time of
TAz-EP. This figure shows that, for TAz-EP to be faster than Upper in total
execution time, the time unit for random accesses should be less than 0.075 ms,
which translates in random access times no larger than 0.75 ms. For compari-
son, note that the fastest real-web random access time in our experiments was
around 25 ms. For all realistic values of f , it follows that while TAz-EP is lo-
cally faster than Upper, Upper is globally more efficient. Additionally, Figure 15
shows that Upper slightly outperforms MPro-EP for f higher than 1 ms, which
means that the extra computation in the SelectBestSource function of Upper
results in (moderate) savings in probing time and thus in slightly faster overall
query execution times. Note that, for high values of f , the local processing time
of the techniques becomes negligible in comparison with the random-access
time. In conclusion, the extra local computation required by Upper for selecting
the best object-source pair to probe next allows for savings in total query ex-
ecution time when random-access probes are slow relative to local CPU speed,
which is likely to be the case in the web-source scenario on which we focus in this
article.

7.1.3 Local Data Sets: Using Data Distribution Statistics. The experi-
ments we presented so far assume that no information about the underlying
data distribution is known, which forces Upper to rely on default values (e.g.,
0.5) for the expected attribute scores (Section 4.2). We now study this aspect of
Upper in more detail, as well as consider the scenario where additional statis-
tics on the data distribution are available (see last row of Table III).

Effect of Average Expected Scores. In absence of reliable information
on source-score distribution, our techniques initially approximate “expected”
scores with the constant 0.5. (As a refinement, this value then continuously
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Fig. 16. The performance of Upper improves when the expected scores are known in advance.

decreases for SR-Sources as sorted accesses are performed; see Section 2.) This
estimation could in principle result in bad performance when the actual average
attribute scores are far from 0.5. To evaluate the effect of this choice of expected
scores on the performance of Upper, we generate data sets with different score
distributions and compare the performance of Upper with and without knowl-
edge of the actual average scores. In particular, we first evaluate 100 queries
using Upper, MPro-EP, and TAz-EP assuming that the average scores are 0.5.
Then, we evaluate the same queries, but this time we let Upper use the actual
average scores to choose which sources to probe, progressively “shrinking” these
average scores as sorted accesses are performed (see Section 2). We refer to this
“hypothetical” version of Upper as Upper-H. (Note that TAz-EP and MPro-EP
do not rely on expected scores.) The results are shown in Figure 16. For the first
experiment, labeled “Fixed Expected Values” in the figure, the scores for four
out of the six sources are uniformly distributed between 0 and 1 (with average
score 0.5), the scores for the fifth source range from 0 to 0.2 (with average score
0.1), and the scores for the sixth source range from 0.8 to 1 (with average score
0.9). For the second experiment, labeled “Random Expected Values” in the fig-
ure, the mean scores for all sources were random values between 0 and 1. Not
surprisingly, Upper-H results in smaller tprobes time than Upper, showing that
Upper can effectively take advantage of any extra information about expected
sources in its SelectBestSource routine. In any case, it is important to note that
the performance of Upper is still better than that of TAz-EP and comparable to
that of MPro-EP even when Upper uses the default value of 0.5 as the expected
attribute score.

Comparison with MPro. As discussed in Section 3, a key difference between
Chang and Hwang’s MPro algorithm [Chang and Hwang 2002] and Upper is
that MPro assumes a fixed query-level schedule of sources to access as ran-
dom probes, and does not base its source-order choices on the current query
state. MPro uses sampling to determine its fixed random probe schedule [Chang
and Hwang 2002]. To determine its schedule, MPro computes the aggregate
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Fig. 17. Performance of Upper-Sample, Upper, MPro-EP, and MPro, when sampling is available
and for different data sets.

selectivities of the various query predicates (random probes) based on the sam-
ple results.

Sampling of objects in our web scenario is problematic: SR-Sources on the
web do not typically support random sampling, so there is no easy way to imple-
ment MPro’s sampling-based probe scheduling over general web sources. Still,
for completeness, in this section we compare MPro experimentally with Upper
and MPro-EP over the local data sets. Furthermore, we also evaluate a simple
variation of Upper, Upper-Sample, that exploits a sample of the available ob-
jects to determine the expected score for each attribute, rather than assuming
this value is 0.5. Both MPro and Upper-Sample are possible query processing
techniques for scenarios in which object sampling is indeed feasible.

We experimentally compared MPro, Upper, Upper-Sample, and MPro-EP.
For these experiments, we set the number of SR-Sources to 1. (While MPro
could support multiple SR-Sources by “combining” them into a single object
stream using TA [Chang and Hwang 2002], MPro would not attempt to inter-
leave random probes on the SR-Sources. Hence, to make our comparison fair we
use only one SR-Source for the experiments involving MPro.) We use a sample
size of 1% of |Objects| for MPro and Upper-Sample. We report results without
taking into account the sampling cost and the associated probes for the sample
objects, which favors MPro and Upper-Sample in the comparison. In addition,
we performed these experiments over 10,000 queries to be able to report sta-
tistically significant results. Figure 17 shows the probing time of the different
techniques for different data sets and for the default setting. In all cases, Upper
performs (slightly) better than MPro. In addition, MPro has probing times that
are similar to those for MPro-EP, which also uses query-level probe schedules
but does not require object sampling before execution. Using sampling to derive
better expected scores helps Upper-Sample save probing time with respect to
Upper. To study the impact of the more expensive local scheduling required by
Upper and Upper-Sample, Figure 18 shows the total processing time of Upper
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Fig. 18. Total processing time for Upper and MPro, as a function of the time unit f, for the real-life
Cover data set.

Fig. 19. Performance of Upper-H, Upper-Sample, Upper, MPro-EP, and MPro for different expected
score distributions.

and MPro for the real-life Cover data set when varying the time unit f , normal-
ized with respect to MPro’s total processing time. (The corresponding plots for
the other local data sets that we tried show the same trends.) Upper is globally
faster than MPro for random access times larger than 0.35 ms ( f larger than
0.035 ms). For all configurations tested, with the exception of Correlated, Upper
is faster in terms of tprobes time than both MPro and MPro-EP with a statistical
significance of 99.9% according to the t-Test as described by Freedman et al.
[1997]. For the Correlated data set, Upper is faster than MPro-EP with a statis-
tical significance of 99.9%, but the difference between Upper and MPro is not
statistically significant.

Figure 19 shows the effect of the source-score distribution on the different
techniques when sampling is available. This experiment is similar to that of
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Fig. 20. Experimental results for the real web-accessible data sets relevant to our New York City
restaurant scenario.

Figure 16, but only one SR-Source is available. In this scenario, MPro slightly
outperforms Upper: MPro exploits sampling to characterize the score distri-
bution and determine the scheduling strategy. Upper-Sample, which also uses
sampling, performs almost as well as the hypothetical Upper-H technique. In-
terestingly, Upper-Sample outperforms MPro in both experiments. MPro-EP
has the worst performance of all techniques as it relies on (incorrect) expected
values (in the Rank metric) and—unlike Upper—does not dynamically reeval-
uate its scheduling choices based on previous probe results.

7.1.4 Real Web-Accessible Data Sets. Our next results are for the six web-
accessible sources, handling 10 attributes, which we described in Section 6.3
and summarized in Table II. To model the initial access time for each source,
we measured the response times for a number of queries at different hours and
computed their average. We then issued four different queries and timed their
total execution time. The source access time is adjusted at run time using the
SRTT value discussed in Section 6.3.2. Figure 20 shows the execution time for
each of the queries, and for the Upper and TAz-EP strategies. Because real-
web experiments are expensive, and because we did not want to overload web
sources, we limited the number of techniques in our comparison. We then focus
on our new technique for our web-source scenario, Upper, and include TAz-EP
as a reasonable “baseline” technique. Just as for the local data sets, our Upper
strategy performs substantially better than TAz-EP. Figure 20 shows that real-
web queries have high execution time, which is a result of accessing the sources
sequentially. Parallel versions of the algorithms discussed in this article result
in lower overall running times (see Section 7.2). (The R-Sources we used are
slow, with an average random access time of 1.5 seconds.)

7.1.5 Conclusions of Sequential Query Processing Experiments. In sum-
mary, our experimental results show that Upper and MPro-EP consistently
outperform TAz-EP: when probing time dominates over CPU-bound probe-
scheduling time, interleaving of probes on objects based on the score upper
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bounds of the objects helps return the top-k query results faster than when
we consider objects one at a time. Upper outperforms all other techniques—
albeit often by a small amount—when no information on the underlying data
distribution is known in advance. MPro-EP is a very close second and might be
an interesting alternative if probes are not too slow relative to local schedul-
ing computation, or for scoring functions where the final object scores cannot
be in general approximated or usefully bounded unless all input values are
known, as is the case for the min function (see Section 4.2). While Upper’s dy-
namic probe scheduling is more expensive in terms of local processing time than
MPro-EP’s fixed scheduling, the saving in probing time makes Upper globally
faster than MPro-EP in total processing time (although by just a small margin)
even for moderate random access times. In addition, Upper is globally faster
that TAz-EP for realistic random access times. In conclusion, Upper results
in faster query execution when probing time dominates query execution time.
When sampling is possible, a variation of Upper, Upper-Sample, can take ad-
vantage of better expected-score estimates, which results in faster query execu-
tions. Similarly, MPro performs well and adapts better to the data distribution
than MPro-EP does. Generally, MPro-EP (and MPro when sampling is possi-
ble) are very close in performance to Upper, suggesting that the complexity of
per-object scheduling of probes (Table III) might not be desirable. However, as
we will see in Section 7.2, per-object probe scheduling results in substantial
execution-time savings in a parallel processing scenario: per-object scheduling
can adapt to intra-query source congestion on the fly, and therefore different
probing choices can be made on different objects. As a final observation, note
that all the algorithms discussed in this paper correctly identify the top-k ob-
jects for a query according to a given scoring function. Hence there is no need
to evaluate the “correctness” or “relevance” of the computed answers. However,
the design of appropriate scoring functions for a specific application is an im-
portant problem that we do not address in this article.

7.2 Parallel Algorithms

In this section, we compare the performance of pUpper (Section 5.3) with that
of pTA (Section 5.2). pUpper is a technique in which source probes are sched-
uled at a fine object-level granularity, and where reevaluation of probing choices
can lead objects to be probed in different orders for different sources. In con-
trast, pTA is a technique in which objects are probed in the same order for all
sources. In addition, we compare these two techniques with pUpper-NoSubsets,
a simplification of pUpper that does not rely on the SelectBestSubset function to
make its probing choices. Rather, when a source Di becomes available, pUpper-
NoSubsets selects the object with the highest score upper bound among the ob-
jects not yet probed on Di. pUpper-NoSubsets is then similar to pTA, but with
the difference that objects are considered in score-upper-bound order rather
than in the order in which they are discovered.

By comparing pUpper-NoSubsets and pTA, our experiments help identify
the saving in probing time that is derived from prioritizing objects on their
partial scores. By comparing pUpper-NoSubsets and pUpper, our experiments

ACM Transactions on Database Systems, Vol. 29, No. 2, June 2004.



Evaluating Top-k Queries Over Web-Accessible Databases • 355

Fig. 21. Effect of the attribute score distribution on performance.

help understand the impact of dynamically selecting probes in a way that ac-
counts for source congestion and known source-score information. These three
techniques all react to a source Di being available to pick a probe to issue
next. In Section 7.2.2 we compare these techniques with Probe-Parallel MPro,
a parallelization of MPro presented by Chang and Hwang [2002]. Unlike the
other techniques, Probe-Parallel MPro does not consider source availability to
issue its probes (recall that MPro was originally designed for a different setting,
namely the execution of expensive predicates for top-k queries, not for our web-
source scenario) but is based on the concept of “necessary probes,” and thus
only issues probes that are known to be needed to compute the top-k answer.

To deploy the pUpper algorithm, we first need to experimentally establish a
good value for the L parameter, which determines how frequently the random-
access queues are updated (Section 5.3). To tune this parameter, we ran exper-
iments over a number of local sources for different settings of |Objects|, pR,
and k. As expected, smaller values of L result in higher local processing time.
Interestingly, while the query response time increases with L, very small val-
ues of L (i.e., L < 30) yield larger tprobes values than moderate values of L
(i.e., 50 ≤ L ≤ 200) do: when L is small, pUpper tends to “rush” into perform-
ing probes that would have otherwise been discarded later. We observed that
L = 100 is a robust choice for moderate to large database sizes and for the query
parameters that we tried. Thus, we set L to 100 for the local data experiments.

7.2.1 Local Data Sets: Performance. We now report results for the parallel
techniques over the local data sets presented in Section 6.2.

Effect of the Attribute Value Distribution. Figure 21 shows results for the
default setting described in Table I and for different attribute-value distribu-
tions. The probing time tprobes of pUpper, pUpper-NoSubsets, and pTA is re-
ported in Figure 21(a). pUpper consistently outperforms both pTA and pUpper-
NoSubsets. The dynamic per-object scheduling of pUpper, which takes into
account source congestion, allows for substantial savings over the simpler
pUpper-NoSubsets technique. Figure 21(b) shows that pTA’s Parallel Efficiency
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Fig. 22. Effect of the number of objects requested k on performance.

varies slightly among all configurations, with values around 0.45. In contrast,
pUpper’s Parallel Efficiency ranges from 0.57 (Cover data set) to 0.69 (Gaussian
data set), with values of 0.59 for the Correlated data sets, 0.63 for the Mixed
data set, 0.67 for the Uniform data set, and 0.68 for the Zipfian data set.

Effect of the Number of Objects Requested k. Figure 22 shows results for the
default setting, with tprobes and Parallel Efficiency reported as a function of k. As
k increases, the parallel time needed by pTA, pUpper-NoSubsets, and pUpper
increases since all three techniques need to retrieve and process more objects
(Figure 22(a)). The pUpper strategy consistently outperforms pTA, with the per-
formance of pUpper-NoSubsets between that of pTA and pUpper. The Parallel
Efficiency of pUpper, pUpper-NoSubsets, and pTA is almost constant across dif-
ferent values of k (Figure 22(b)), with Upper attaining Parallel Efficiency values
of around 0.68, which roughly means it is only one third slower than an ideal
parallelization of Upper.

Effect of the Cardinality of the Objects Set. Figure 23 shows the impact of
|Objects|, the number of objects available in the sources. As the number of ob-
jects increases, the parallel time taken by all three algorithms increases since
more objects need to be processed. The parallel time of pTA, pUpper-NoSubsets,
and pUpper increases approximatively linearly with |Objects| (Figure 23(a)).
The Parallel Efficiency of all three algorithms decreases slightly with the num-
ber of objects.

Effect of the Number of Parallel Accesses to Each Source pR(Di). Figure 24
reports performance results as a function of the total number of concurrent
random accesses per source. As expected, the parallel query time decreases
when the number of parallel accesses increases (Figure 24(a)). However, pTA,
pUpper-NoSubsets, and pUpper have the same performance for high pR(Di)
values. Furthermore, the Parallel Efficiency of the techniques dramatically de-
creases when pR(Di) increases (Figure 24(b)). This results from a bottleneck on
sorted accesses: when pR(Di) is high, random accesses can be performed as soon
as objects are discovered, and algorithms spend most of the query processing
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Fig. 23. Effect of the number of source objects |Objects| on performance.

Fig. 24. Effect of the number of parallel accesses per source pR(Di) on performance.

time waiting for new objects to be retrieved from the SR-Sources. Surprisingly,
for small values of pR, we report Parallel Efficiency values that are greater
than 1. This is possible since, in the parallel case, algorithms can get more
information from sorted accesses than they would have in the sequential case
where sorted accesses are stopped as early as possible to favor random accesses;
in contrast, parallel algorithms do not have this limitation since they can per-
form sorted accesses in parallel with random accesses. The extra information
learned from those extra sorted accesses might help discard objects faster, thus
avoiding some random accesses and decreasing query processing time.

Additional Experiments. We also experimented with different attribute
weights and source access times. Consistent with the experiments reported
above, pUpper outperformed pTA for all weight-time configurations tested.

7.2.2 Local Data Sets: Using Data Distribution Statistics. If sampling is
possible, we can use data distribution information obtained from sampling in
the parallel algorithms. In this section, we compare pUpper and pTA with a
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Fig. 25. Performance of pTA, pUpper, and PP-MPro-Constraints over different attribute value
distributions (one SR-Source).

parallelization of the MPro algorithm introduced by Chang and Hwang [2002].
For completeness, we also implemented pUpper-Sample, a variation of pUpper
that exploits a sample of the available objects to determine the expected score for
each attribute, just as Upper-Sample does in the sequential-execution scenario
(Section 7.1.3). We observed experimentally that the performance of pUpper-
Sample is very similar to that of pUpper, so for conciseness we do not discuss
this technique further.

As mentioned in Section 3, Chang and Hwang [2002] presented a simple
parallelization of their MPro algorithm, Probe-Parallel MPro, which also re-
lies on object sampling to determine its query-level probe schedules. The key
observation behind Probe-Parallel MPro is that the k objects with the high-
est score upper bounds all have to be probed before the final top-k solution is
found. (Note that this is a more general version of Property 4.1 in Section 4.2.)
Probe-Parallel MPro simultaneously sends one probe for each of the k objects
with the highest score upper bounds. Thus, this strategy might result in up
to k probes being sent to a single source when used in our web-source sce-
nario, hence potentially violating source-access constraints. To observe such
constraints, we modify Probe-Parallel MPro so that probes that would violate a
source access constraint are not sent until later. Such a technique, to which we
refer as PP-MPro-Constraints, does not fully exploit source-access parallelism
as some sources may be left idle if they are not among the “top” choices for the
k objects with the highest score upper bound. This technique would be attrac-
tive, though, for the alternative optimization goal of minimizing the number of
probes issued while taking advantage of available parallelism.

Figure 25(a) compares pTA, pUpper, and PP-MPro-Constraints over different
data distributions, when only one source provides sorted access. (See our ratio-
nale for this setting in Section 7.1.3.) PP-MPro-Constraints is slower than the
other two techniques because it does not take full advantage of source-access
parallelism: a key design goal behind the original MPro algorithm is probe min-
imality. Then, potentially “unnecessary probes” to otherwise idle sources are
not exploited, although they might help reduce overall query response time.
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Fig. 26. Effect of the number of objects requested k (a) and the number of accesses per source
pR(Di) (b) on the performance of pTA, pUpper, and Upper over real web sources.

Figure 25(b) confirms this observation: PP-MPro-Constraints issues on aver-
age substantially fewer random-access probes for our data sets than both pTA
and pUpper do. (The three techniques perform approximatively the same num-
ber of sorted accesses.) For an alternate optimization goal of minimizing source
load, PP-MPro-Constraints emerges as the best candidate as it only performs
“necessary” probes while still taking advantage of the available parallelism.

7.2.3 Real Web-Accessible Data Sets. Our next results are for the real web
sources described in Section 6.3.11 All queries evaluated consider 100 to 150
restaurants. During tuning of pUpper, we observed that the best value for pa-
rameter L for small object sets is 30, which we use for these experiments.

As in the sequential case (Section 7.1.4), we limited the number of techniques
in our comparison because real-web experiments are expensive, and because
we did not want to overload web sources. We then focus on the most promising
parallel technique for our web-source scenario, pUpper, and include pTA and
Upper as reasonable “baseline” techniques. Figure 26(a) shows the actual total
execution time (in seconds) of pTA, pUpper, and the sequential algorithm Upper
for different values of the number of objects requested k. Up to two concurrent
accesses can be sent to each R-Source Di (i.e., pR(Di) = 2). Figure 26(b) shows
the total execution time of the same three algorithms for a top-5 query when we
vary the number of parallel random accesses available for each source pR(Di).
(Note that pR does not apply to Upper, which is a sequential algorithm.) When
the number of parallel random accesses to the sources increases, the difference
in query execution time between pTA and pUpper becomes small. This is consis-
tent with what we observed on the local data sets (see Section 7.2.1, Figure 24),

11Our implementation differs slightly from the description in Section 6.3 in that we only consider
one attribute per source. Specifically, the Zagat-Review source only returns the ZFood attribute,
and the NYT-Review source only returns the TPrice attribute.
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and is due to sorted accesses becoming a bottleneck and slowing down query
execution. We also performed experiments varying the relative weights of the
different sources. In general, our results are consistent with those for local
sources, and pUpper and pTA significantly reduce query processing time com-
pared to Upper. We observed that a query needs 20 seconds on average to
perform all needed sorted accesses, so our techniques cannot return an answer
in less than 20 seconds. For all methods, an initialization time that is linear in
the number of parallel accesses is needed to create the Python subinterpreters
(e.g., this time was equal to 12 seconds for pR(Di) = 5). We do not include this
uniform initialization time in Figure 26. Interestingly, we noticed that some-
times random access time increases when the number of parallel accesses to
that source increases, which might be caused by sources slowing down accesses
from a single application after exceeding some concurrency level, or by sources
not being able to handle the increased parallel load. When the maximum num-
ber of accesses per source is 10, pUpper returns the top-k query results in
35 seconds. For a realistic setting of five random accesses per source, pUpper
is the fastest technique and returns query answers in less than one minute.
In contrast, the sequential algorithm Upper needs seven minutes to return the
same answer. In a web environment, where users are unwilling to wait long for
an answer and delays of more than a minute are generally unacceptable, pUp-
per manages to answer top-k queries in drastically less time than its sequential
counterparts.

7.2.4 Conclusions of Parallel Query Processing Experiments. We evaluated
pTA and pUpper on both local and real-web sources. Both algorithms exploit
the available source parallelism, while respecting source-access constraints.
pUpper is faster than pTA: pUpper carefully selects the probes for each object,
continuously reevaluating its choices. Specifically, pUpper considers probing
time and source congestion to make its probing choices at a per-object level,
which results in faster query processing and better use of the available par-
allelism. In general, our results show that parallel probing significantly de-
creases query processing time. For example, when the number of available
concurrent accesses over six real web sources is set to five per source, pUp-
per performs 9 times faster than its sequential counterpart Upper, returning
the top-k query results—on average—in under one minute. In addition, our
techniques are faster than our adaptation of Probe-Parallel MPro as they take
advantage of all the available source-access parallelism.

8. CONCLUSION

In this article, we studied the problem of processing top-k queries over au-
tonomous web-accessible sources with a variety of access interfaces. We first fo-
cused on a sequential source-access scenario. We proposed improvements over
existing algorithms for this scenario, and also introduced a novel strategy, Up-
per, which is designed specifically for our query model. A distinctive character-
istic of our new algorithm is that it interleaves probes on several objects and
schedules probes at the object level, as opposed to other techniques that com-
pletely probe one object at a time or do coarser probe scheduling. We showed
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that probe interleaving greatly reduces query execution time, while the gains
derived from object-level scheduling are more modest. The expensive object-
level scheduling used in Upper is desirable when sources exhibit moderate
to high random-access time, while a simpler query-level scheduling approach
(such as that used in the MPro-EP and MPro techniques [Chang and Hwang
2002]) is more efficient when random-access probes are fast. Independent of
the choice of probe-scheduling algorithm, a crucial problem with sequential
top-k query processing techniques is that they do not take advantage of the
inherently parallel access nature of web sources, and spend most of their query
execution time waiting for web accesses to return. To alleviate this problem, we
used Upper as the basis to define an efficient parallel top-k query processing
technique, pUpper, which minimizes query response time while taking source-
access constraints that arise in real-web settings into account. Furthermore,
just like Upper, pUpper schedules probes at a per-object level, and can thus
consider intra-query source congestion when scheduling probes. We conducted
a thorough experimental evaluation of alternative techniques using both syn-
thetic and real web-accessible data sets. Our evaluation showed that pUpper
is the fastest query processing technique, which highlights the importance of
parallelism in a web setting, as well as the advantages of object-level probe
scheduling to adapt to source congestion.

The source-access model on which we base this article, with sorted- and
random-access probes, is simple and widely supported by real-web sources. As
web services become popular, however, web sources are starting to support more
expressive interfaces. Extending the source-access model to capture these more
expressive interfaces—as well as developing new query-processing strategies
to exploit them—is one interesting direction for future work that we plan to
explore.
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