
Navigation- vs. Index-Based XML Multi-Query Processing

Nicolas Bruno, Luis Gravano
Columbia University

{nicolas,gravano}@cs.columbia.edu

Nick Koudas, Divesh Srivastava
AT&T Labs–Research

{koudas,divesh}@research.att.com

Abstract
XML path queries form the basis of complex filtering of

XML data. Most current XML path query processing tech-
niques can be divided in two groups. Navigation-based algo-
rithms compute results by analyzing an input document one
tag at a time. In contrast, index-based algorithms take ad-
vantage of precomputed numbering schemes over the input
XML document. In this paper we introduce a new index-
based technique, Index-Filter, to answer multiple XML path
queries. Index-Filter uses indexes built over the document
tags to avoid processing large portions of the input docu-
ment that are guaranteed not to be part of any match. We
analyze Index-Filter and compare it against Y-Filter, a state-
of-the-art navigation-based technique. We show that both
techniques have their advantages, and we discuss the sce-
narios under which each technique is superior to the other
one. In particular, we show that while most XML path query
processing techniques work off SAX events, in some cases
it pays off to preprocess the input document, augmenting it
with auxiliary information that can be used to evaluate the
queries faster. We present experimental results over real and
synthetic XML documents that validate our claims.

1. Introduction
XML employs a tree-structured model for representing

data. Queries in XML query languages, such as XQuery [4],
typically specify patterns of selection predicates on multi-
ple elements that have some specified tree structured (e.g.,
parent-child, ancestor-descendant) relationships, as the basis
for matching XML documents. For example, the path query
//book[.//title = ‘XML’] matches book elements that
have a descendant title element that in turn has a child
XML value. Finding all occurrences of such path queries in
an XML document is a core operation in various XML query
processing scenarios that are considered in the literature.

The traditional XML query processing scenario involves
asking a single query against a (possibly preprocessed and
indexed) XML document 1. The goal here is to identify
the matches to the input query in the XML document. Ap-

1An XML database can be viewed as an XML document, once a dummy
root node has been added to convert the forest into a tree.

proaches to solving this problem, e.g., [2, 5, 18, 25], typically
take advantage of indexes on XML elements and values, and
use specialized join algorithms for composing results of in-
dex lookups and computing answers to the path queries.

XML query processing also arises in the scenario of in-
formation dissemination, where many (standing) XML path
queries have been preprocessed, and a stream of XML doc-
uments is presented as input. The goal here is to identify
the path queries and their matches in the input XML doc-
uments, and disseminate this information to the users who
posed the path queries. Approaches to solving this problem,
e.g., [3, 6, 9, 14, 15], typically navigate through the input
XML document one tag at a time and use the preprocessed
structure of path queries to identify the relevant queries and
their matches.

These two scenarios considered in the literature are both
instances of a general scenario where multiple XML path
queries need to be matched against an XML document, and
either (or neither) of the queries and the document may have
been preprocessed. In principle, each of the query processing
strategies (index-based and navigation-based) could be ap-
plied in our general scenario. How this is best achieved, and
identifying the characteristics of our general scenario where
one strategy dominates the other, are the subjects of this pa-
per. The contributions of the paper are as follows:

• A straightforward way of applying the index-based ap-
proaches in the literature to our general scenario would
answer each path query separately, which may not be
the most efficient approach, as research on multi-query
processing in relational databases has demonstrated.
The first contribution of our paper is a novel index-
based technique, Index-Filter, to answer multiple XML
path queries against an XML document. Index-Filter
generalizes the PathStack algorithm of [5], and takes ad-
vantage of a prefix tree representation of the set of XML
path queries to share computation during multiple query
evaluation. We experimentally show the superiority of
Index-Filter over the independent use of PathStack for
multiple queries.

• Navigation-based approaches in the literature could be
applied to the general scenario as well. The second

1



contribution of our paper is to experimentally compare
Index-Filter against Y-Filter [9, 10], a state-of-the-art
navigation based technique, which we suitably extended
to identify multiple query matches in an XML docu-
ment. Both techniques have their advantages, and we
use a variety of real and synthetic XML documents in
our experiments to establish the following results:

– When the number of queries is small or the
XML document is large, Index-Filter is more ef-
ficient than Y-Filter if the required indexes are al-
ready materialized, due to the focused processing
achieved by the use of indexes.

– When the number of queries is large and the docu-
ment is small, Y-Filter is more efficient due to the
scalability properties of the Y-Filter’s hash tables.

– When we also consider the time spent for build-
ing indexes on the XML document on the fly, the
trends remain generally the same, but the gap be-
tween the algorithms is reduced.

The rest of the paper is structured as follows. In Sec-
tion 2 we discuss our data and query models. Section 3 is the
core of the paper and discusses two query processing tech-
niques. In Section 3.2 we review Y-Filter, a state-of-the-art
navigation-based algorithm, suitably enhancing it for our ap-
plication scenario. Then, in Section 3.3 we introduce our
novel index-based algorithm, Index-Filter. In Section 5 we
report experimental results using the setting of Section 4. Fi-
nally, we review related work in Section 6.

2. Data and Query Models

We now introduce the XML data and query models that
we use in this paper, and define our problem statement.

2.1. XML Documents

An XML document can be seen as a rooted, ordered, la-
belled tree, where each node corresponds to an element or
a value, and the edges represent (direct) element-subelement
or element-value relationships. The ordering of sibling nodes
(children of the same parent node) implicitly defines a total
order on the nodes in a tree, obtained by traversing the tree
nodes in preorder. An XML database can be viewed as an
XML document, once a dummy root node has been added to
convert the forest into a tree.

Example 1 Figure 1 shows a fragment of an XML docu-
ment that specifies information about a book. The figure
shows four children of the book root node, namely: title,
allauthors, year, and chapter, in that order. Intuitively,
we can interpret the XML fragment in the figure as a book
published in the year 2000 by Jane Poe, John Doe, and
Jane Doe, entitled XML. Its first chapter, also entitled XML,
starts with the section Origins.

The meaning and utility of the numbers associated with
the tree nodes will be explained later in Section 3.3.1. Until
then, we can simply think of those numbers as unique node
identifiers in the XML tree.

2.2. Query Language

XQuery [4] path queries can be viewed as sequences of
location steps, where each node in the sequence is an element
tag or a string value, and query nodes are related by either
parent-child steps (depicted using a single line) or ancestor-
descendant steps (depicted using a double line) 2.

book

title

"XML"

�����������������������������������	
�

������������	�
�	�����������

�������������������������
�

(a) Path query. (b) Query answer.

Figure 2. Query model used in this paper.

Given a query q and an XML document D, a match of q

in D is a mapping from nodes in q to nodes in D such that:
(i) node tags and values are preserved under the mapping,
and (ii) structural (parent-child and ancestor-descendant) re-
lationships between query nodes are satisfied by the mapped
document nodes. The answer to a query q with n nodes is an
n-ary relation where each tuple (d1, . . . , dn) consists of the
document nodes identifying a match of q in D 3.

Example 2 Consider again Figure 1. The path query
//book[.//title = "XML"] identifies book elements that
have a descendant title element that in turn has a child
XML node. This query can be represented as in Figure 2(a).
A match for this query in the XML fragment of Figure 1 is the
following mapping, where nodes in the document are repre-
sented by their associated numbers: book → (1 : 150, 1),
title → (2 : 4, 2), and XML → (3 : 3, 3). It is easy to
check that both the name tags and the structural relation-
ships between nodes are preserved by the mapping above.
Figure 2(b) shows the answer to the query in Figure 2(a)
over the XML fragment of Figure 1.

2.3. Problem Statement

Finding all matches of a path query in an XML document
is a core operation in various XML query processing scenar-
ios that have been considered in the literature. In this paper,
we consider the general scenario of matching multiple XML

2XQuery path queries permit other axes, such as following and preced-
ing, which we do not consider in this paper.

3Actually, an XQuery path query is a 1-ary projection of this n-ary rela-
tion. Compositions of path queries need to be used (as in the XQuery FOR
clause) to obtain an n-ary relation. To allow for this generality keeping the
exposition simple, we identify the path query answer with the n-ary relation.

2



����

���������������������������������������������	��	
����������������������������������������������������	�������������������������������	����

������������������	
����������������������	
�������������������������	
�����������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������	�

���	������������������������������������������	�������������������������������������������������������������������������������

�����������������������������	
���������������������������������	��		������������������	�������

�	�	�	����������	�	�����������������	�����������������	�����������	��	��	��������	��	��	�������	�����	�

���������������������������������������������������������������������	��	������������	������

���������������������������������������������������������������������������������������������������
��
���

�����
���

���

���

���

Figure 1. A fragment of an XML document.

path queries against an XML document, and focus on the
following problem:

XML Multiple Query Processing: Given an
XML document D and a set of path queries Q =
{q1, . . . , qn} , return the set R = {R1, . . . , Rn},
where Ri is the answer (all matches) to qi on D.

We now describe some common scenarios that are cov-
ered by the problem formulation above. In the traditional
XML query processing scenario, Q includes a single query
q1, and the document D is large and indexed. When the tradi-
tional XML query processing scenario is augmented to deal
with multi-query processing, Q includes multiple queries,
and the document D is large and indexed. Finally, in the
XML information dissemination scenario, Q includes many
queries, and the document D is small and not indexed. In the
next section we study algorithms for our problem of process-
ing multiple XML path queries efficiently.

3. XML Multiple Query Processing

We now address the central topic of this paper: process-
ing strategies for multiple path queries over an XML docu-
ment. First, in Section 3.1 we describe a mechanism to com-
press the representation of multiple input path queries that
is used by the different algorithms in this section. Then, in
Section 3.2 we review Y-Filter [9, 10], a state-of-the-art algo-
rithm that consumes the input document one tag at a time and
incrementally identifies all input path queries that can lead to
a match 4. Finally, in Section 3.3 we introduce Index-Filter,
a new algorithm that exploits indexes built over the docu-
ment tags and avoids processing tags that will not participate
in a match. Section 3.3.3 addresses the problem on how to
efficiently materialize the indexes needed by Index-Filter.

To draw an analogy with relational query processing,
Y-Filter can be regarded as performing a sequential scan of
the input “relation,” while Index-Filter accesses the relation
via indexes. Extending the above analogy, not surprisingly,

4Another navigation-based technique, X-Trie [6], was presented concur-
rently with Y-Filter. We do not analyze X-Trie in this paper, since X-Trie is
specifically designed to identify at most one match for a given query, and it
is not clear how to modify this technique to return all matches.

neither algorithm is best under all possible scenarios. In Sec-
tion 5, we experimentally identify the scenarios for which
each algorithm is best suited.

3.1. Prefix Sharing

When several queries are processed simultaneously, it is
likely that significant commonalities between queries exist.
To eliminate redundant processing while answering multi-
ple queries, both the navigation- and index-based techniques
identify query commonalities and combine multiple queries
into a single structure, which we call prefix tree. Prefix trees
can significantly reduce both the space needed to represent
the input queries and the bookkeeping required to answer
them, thus reducing the execution times of the different al-
gorithms. Consider the four path queries in Figure 3(a). We
can obtain a prefix tree that represents such queries by shar-
ing their common prefixes, as shown in Figure 3(b). It should
be noted that although other sharing strategies can be applied,
we do not explore them in this work.

(a) Path Queries (b) Prefix Tree Representation

A

B

E

A

C

D

B

D

A

B

C

D

Q1 Q2 Q3 Q4

B C

E

A B

C

D

D

D

(Q1)

(Q2)

(Q4) (Q3)

Figure 3. Using prefix sharing to represent path queries.

3.2. Y-Filter: A Navigation-Based Approach

Y-Filter is a state-of-the-art navigation-based technique
for processing multiple path queries. The main idea is to aug-
ment the prefix tree representation 5 of the input queries into
a non-deterministic finite automaton (NFA) that behaves as
follows: (i) The NFA identifies the exact “language” defined
by the union of all input path queries; (ii) when an output
state is reached, the NFA outputs all matches for the queries

5Actually, Y-Filter uses a slightly different representation of the prefix
tree, but we omit details to simplify the presentation.

3



accepted at such state. Unlike an NFA used to identify a reg-
ular language, the filtering of XML documents requires that
processing continues until all possible accepting states have
been reached. The incoming XML document is parsed one
tag at a time. While parsing, start-tag tokens trigger tran-
sitions in the NFA (the automaton is non-deterministic, so
many states can be active simultaneously). When an end-tag
token is parsed, the execution backtracks to the state imme-
diately preceding the corresponding start-tag. To achieve this
goal, a run-time stack structure is used to maintain the active
and previously processed states.

Example 3 Consider the NFA shown in Figure 4(a), which
corresponds to the prefix tree of Figure 3(b). Note that each
node in the prefix tree is converted to a state in the NFA, and
the structural relationships in the prefix tree are converted to
transitions in the NFA, triggered by the corresponding tags.
As each start-tag from the document fragment in Figure 4(b)
is parsed, the NFA and the run-time stack are updated. Fig-
ure 4(c) shows the run-time stack after each step, where each
node in the stack contains the set of active states in the NFA.
Initially, only the starting state, 0, is active. When reading
the start-tag for node A1, state 0 fires the transition to state
1, and both states 0 and 1 become active (state 0 remains
active due to the descendant edge from state 0 to state 1;
otherwise we would not be able to capture the match that
uses A2, which is a descendant of A1). As another example,
after reading the start-tag D1, both states 5 and 8 become
active, and therefore a match for queries Q2 and Q3 is de-
tected (note that after reading D1, node 2 is not active any-
more, since the firing transition from node 2 to node 5 used
a child –not descendant– structural relationship) 6. As a fi-
nal example, after reading the close-tag for D1, the run-time
stack is backtracked to the state immediately before reading
the start-tag for D1.

Implementation-wise, Y-Filter augments each query node
in the NFA with a hash table. The hash table is indexed by the
children node tags, and is used to identify a particular tran-
sition of a given state. Therefore, the NFA can be seen as a
tree of hash tables. This implementation is a variant of a hash
table-based NFA, which has been shown to provide near con-
stant time complexity to perform state transitions (see [10]
for more details).

Compact Solution Representation. The original formula-
tion of Y-Filter [9, 10] just returns the set of queries with a
non-empty answer in a given document. However, we are in-
terested in returning all matches as the answer for each query
(see Section 2). Consider again Figure 4 when the algorithm

6The actual implementation of Y-Filter’s NFA is slightly more complex
than described above, to address a special situation. In particular, when a
given state has two children with the same tag but different structural rela-
tionships (child and descendant), a new intermediate state is added to the
NFA to differentiate between the two transitions.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��	
�����
���
�
�

��	
�����
��������
���
�
�

�










�









�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 5. Compact solution representation.

processes D1. The partial matches for query Q3 are shown
in Figure 5(a). When parsing node D1, the original Y-Filter
algorithm would get to the final state for Q3, only guarantee-
ing that there is at least one match for Q3 in the document.
In other words, there is no way to keep track of repeating
tags that might result in multiple solutions. To overcome this
limitation, in this paper we augment each node q in the prefix
tree (NFA) with a stack Sq . These stacks Sq efficiently keep
track of all matches in the input document from the root to
a given document node. Each element in the stack is a pair:
〈 node from the XML document, pointer to a position in the
parent stack 〉. At every point during the computation of the
algorithm, the following properties hold:

1. The nodes in Sq (from bottom to top) are guaranteed to
lie on a root-to-leaf path in the XML document.

2. The set of stacks contains a compact encoding of partial
and total matches to the path query, which can represent
in linear space a potentially exponential (in the number
of query nodes) number of answers to the path query.

Given a chain of stacks in a leaf-to-root path in the prefix
tree, corresponding to some input query, the following re-
cursive property allows us to extract the set of matches that
are encoded in the stacks: given a pair 〈tq, pq〉 in stack Sq,
the set of partial matches using tag tq that can be extracted
from the stacks is found by extending tq with either the par-
tial matches that use the tag pointed by pq in Sparent(q) or
any tag that is below pq in stack Sparent(q). The following
example clarifies this property.

Example 4 Consider again Figure 4. The set of all matches
for the NFA in Figure 4(a) is shown in Figure 5(a). Fig-
ure 5(b) shows the chain of stacks for query Q3 and the stack
encoding for the document fragment at the point that D1

is processed. The match [A2, C2, D1] is encoded since D1

points to C2, and C2 points to A2. Since A1 is below A2 on
SA, [A1, C2, D1] is also encoded. Finally, since C1 is below
C2 on SC and C1 points to A1, [A1, C1, D1] is also encoded.
Note that [A2, C1, D1] is not encoded, since A2 is above the
node (A1) on SA to which C1 points.

It can be shown that in order to maintain the stacks in the
NFA we need to proceed as follows: (i) every time an open
tag to is read and consequently some state n becomes active
due to a transition from state np, we push into n’s stack to
along with a pointer to the top of np’s stack; and (ii) every
time a close tag tc is read and the top of the (global) run-time

4



��������	
���	���

�
�

�
�

�
�

�
�

�
�

�
�

������� �����������	��������	

� �

�

� �

�

�

�

�

��
�
�

��
�
�

��
�
� ��

�
�

� �

�

� !

"#$

%

�������
�

%&�

%&�&#

%&�&#

%&�&#

%&�&�&$&#

%&�

%&�&#

%&�&#

%&�&#

������	
�

%&�

%&�&#

%&�&#

%&�&#

%&�&�&$&#

%&�&#&"&������������
�


������
�
��

�
�

������
�

�����	
�

������
�

������
�

������
�

Figure 4. Y-Filter algorithm.

stack structure contains states {n1, . . . , nk}, we pop the top
element from the stacks, associated with states ni, that were
modified when the corresponding open-tag to was read. It is
important to note that the stacks are shared among queries in
the prefix-tree. In fact, we only need one stack per state in the
NFA to represent all partial matches of the queries that share
such state. We refer to [5] for more details about maintaining
compact solutions using stacks.

In conclusion, our modification to the original Y-Filter al-
gorithm allows us to return not only the queries that have at
least one match in the document, but all its matches. More-
over, this can be done by using a limited amount of memory
(proportional to the height of the input XML document and
the number of active states). We present now an alternative
technique to return the set of all matches for the given input
queries that is based on a different design principle: the use
of index information over the input XML document.

3.3. Index-Filter: An Index-Based Approach

In this section we present Index-Filter, a novel technique
to answer multiple path queries by exploiting indexes that
provide structural information about the tags in the XML
document. By taking advantage of this additional informa-
tion, Index-Filter is able to avoid processing certain tags
in the document that are guaranteed not to be part of any
match. We first discuss the index structure that we use in
Index-Filter, and then we present the main algorithm.

3.3.1 Indexing XML Documents
We now describe how to extend the classic inverted index
data structure used in information retrieval [21] to provide a
positional representation of elements and values in the XML
document. This representation was introduced in [7, 8] and
has been used in [2, 5, 25] for matching XML path queries.
As we will see, this representation allows us to efficiently
check whether two tags in the XML documents are related
by a parent/child or ancestor/descendant structural relation-
ship. The position of an element occurrence in the XML doc-
ument is represented as the pair (L:R,D) where L and R are
generated by counting word numbers from the beginning of
the document to the start and the end of the element being in-
dexed, respectively, and D is the nesting depth of the element

in the document (see Figure 1 for examples of pairs associ-
ated with some tree nodes based on this representation).

We can easily determine structural relationships between
tree nodes using this indexing scheme. Consider document
nodes n1 and n2, encoded as (L1: R1, D1) and (L2: R2, D2),
respectively. Then, n1 is an ancestor of n2 (and n2 is a de-
scendant of n1) if and only if L1 < L2 and R2 < R1. To
check whether n1 is the parent of n2 (n2 is a child of n1) we
also need to verify whether D1+1=D2.

Example 5 Consider the XML fragment in Figure 1. The
author node with position (6:13, 3) is a descendant of the
book node with position (1:150, 1), since Lbook = 1 <

6 = Lauthor, and Rauthor = 13 < 150 = Rbook. Also,
the author node just mentioned is the parent of the fn node
with position (7:9, 4), since Lauthor = 6 < 7 = Lfn, Rfn =
9 < 13 = Rauthor, and Dfn = 4 = 3 + 1 = Dauthor + 1.

An important property of this positional representation is
that checking an ancestor-descendant relationship is compu-
tationally as simple as checking a parent-child relationship,
i.e., we can check for an ancestor-descendant structural re-
lationship without knowledge of intermediate nodes on the
path. We now introduce the Index-Filter algorithm. Later,
in Section 3.3.3 we address the issue of how to efficiently
materialize a set of indexes for a given XML document.

3.3.2 Algorithm Index-Filter
Based on the representation of positions in the XML docu-
ment described above, we now present the Index-Filter algo-
rithm. Analogously to the case of Y-Filter, we augment the
input prefix tree structure for Index-Filter. Specifically, be-
fore executing Index-Filter, we associate with each node q

in the input prefix tree the following information: (i) an in-
dex stream Tq , which contains the indexed positions of doc-
ument nodes that match q sorted by their L values, (ii) an
empty stack Sq as discussed in Section 3.2, and (iii) a prior-
ity queue Pq that allows dynamic and efficient access to the
child of q having the smallest L value in its stream. To ensure
correctness, initially we add the index entry (−∞ : +∞, 0)
to the stack Sroot. In the rest of the section, the concepts of
a prefix tree and its root node are used interchangeably. We
denote the current element in stream Tq as the head of Tq,

5



Algorithm Index-Filter(q)
01 while (true) // find candidate node
02 repeat
03 min = getMin(Pq)

04 if (¬min ∨ (isAccept(q) ∧ nextL(Tmin) > nextR(Tq)))
05 q.knowSolution=true; return
06 while (nextR(Tq) < nextL(Tmin))
07 advance(Tq) // advance q’s stream
08 if (eof(Tmin)) q.knowSolution=false; return
09 while (¬empty(Sq) ∧ topR(Sq) < nextL(Tmin))
10 pop(Sq) // clean q’s stack
11 while (nextL(Tmin) < skipToL(q))
12 advance(Tmin)
13 min.knowSolution=false
14 knewSolution= min.knowSolution
15 if (¬min.knowSolution) Index-Filter(min)
16 until (knewSolution)

17 // process candidate node
18 if (nextL(Tmin) > nextL(Tq))

19 q.knowSolution= true
20 return
21 else
22 push(Smin, (next(Tmin), ptr top(Sq)))
23 if (isAccept(min))
24 outputSolutions(min)
25 advance(Tmin); if (isLeaf(min)) pop(Smin)

26 Index-Filter(min)
27 end while

Function skipToL(q)

01 if (empty(Sq)) return nextL(Tq)

02 else return topL(Sq)

Figure 6. Algorithm Index-Filter.

and we access the head’s L and R components by the func-
tions nextL and nextR, respectively (if we consume Tq en-
tirely, nextL(Tq)=nextR(Tq)=+∞). Similarly, we access
the L and R components of the top of Sq by the functions
topL and topR, respectively. We now describe Index-Filter,
which is shown in pseudocode in Figure 6.

We execute Index-Filter(q) to get all the answers for the
prefix tree rooted at q. The algorithm’s invariant ensures
that after executing Index-Filter(q), we are guaranteed that
either (1) Tq’s head participates in a new match when all
structural relationships are regarded as ancestor/descendant
(outputSolutions in line 24 will later enforce the appro-
priate relationships); or otherwise (2) the stream Tq is con-
sumed entirely. Additionally, we can guarantee that for all
descendants q′ of q in the prefix tree, every index entry in
Tq′ with L component smaller than nextL(Tq) was already
processed. To avoid redundant computations, we memorize
this property by carefully manipulating the boolean variable
q.knowSolution: if q.knowSolution=true, we know that
Tq’s head participates in at least one new match; otherwise all
we can say is that Tq’s head might participate in a new match,
but we do not know for sure (initially, q.knowSolution is set
to false for every node q). The algorithm iterates through two
phases until all matches are returned. In the first phase (lines
2-16), we identify min, the child of q with the minimal L
value in its stream’s head that participates in some match. In
the second phase (lines 17-26), we process min depending
on the actual relationship with Tq’s head. We now give some
details on each phase.

To identify min, we first use the priority queue Pq to se-
lect the child of q with the smallest stream head (line 3).
Lines 4-5 cover the special case that node q is a leaf node
in the prefix tree (so q has no children and there is no min

child), or q is an internal node in the prefix tree but some
query has q as its accept state and q’s position ends before
the position of any of q’s children. In such cases, we simply

update q.knowSolution = true and return. Otherwise, in
the general case, if Tmin’s head starts after Tq’s head ends,
we can guarantee that no new match can exist for Tq’s head,
so we advance Tq (see Figure 7(a)). At this point, if Tmin is
consumed entirely, we know that there are no new solutions
for q so we return (line 8). Otherwise, we clean from q’s
stack all elements that cannot participate in any new match,
i.e., those elements in Sq whose R component is smaller than
the L component of Tmin’s head (see Figure 7(b)). After
that, we compute the value skipToL, which is the small-
est L value for a node from q for which a new match can
exist. If Tmin’s head starts before skipToL, we know that
Tmin’s head cannot participate in any new match, so we ad-
vance Tmin (see Figure 7(c)). In such a case, we need to
reset the value min.knowSolution (line 13), since we can
no longer guarantee that Tmin’s head participates in a new
match after advancing Tmin in line 12. At this point, in line
15, if we cannot guarantee that Tmin’s head participates in
a match (i.e., min.knowSolution = false), we recursively
call Index-Filter(min). After we return from this recursive
call, we can guarantee (from the algorithm’s invariant) than
Tmin’s head participates in a new match. However, Tmin

could have been advanced in the recursive call, so we can-
not guarantee that min is the children of q with the minimal
value of L participating in a match. Therefore, we only con-
tinue with the second phase if we could guarantee that min

participated in a match before the recursive call (see lines 14
and 16). Otherwise, we simply repeat the procedure of find-
ing the minimal child of q with a match (of course, in the
next iteration node min could be the minimal one, although
it is not always the case).

When we enter the second phase, we can guarantee that
Tmin’s head participates in some match and its position rel-
ative to q can be just one of the two cases of Figure 7(d).
In the case that Tmin’s head starts after Tq’s head (case 2 in
Figure 7(d)), we know that Tq’s head participates in a match

6



���������
	



�
�

�
���

����
	



�
�

�
���

��	 �
	

��	 ��	

�������

�

�
���

����������	

���������
���



�������������


�������

�

�
���

����	�������

����������

������
���
����

���
�

���������
���
���������

���������������


�������
	



�����������������



�����������������
�����

�������������������������

�������� ����������

Figure 7. Possible scenarios in the execution of Index-Filter.

as well, so we set q.knowSolution and return (lines 19-20).
Otherwise (case 1 in Figure 7(d)), Tmin’s head ends before
Tq’s head starts but participates in a match with nodes in Sq.
Therefore, we need to process node min before returning
with any match for Tq’s head. We first push Tmin’s head
to Smin, and if some query has min as its accept node, we
expand the new matches from the chain of stacks. Finally,
in preparation for the next iteration, we advance Tmin and
recursively call Index-Filter(min) to process any remaining
entries from the subtree rooted at min.

3.3.3 Building Indexes

When analyzing the Index-Filter algorithm in the previous
section, we assumed that the required indexes were already
precomputed and available to Index-Filter. We now give
more details on how to efficiently materialize a set of indexes
given an input XML document. Conceptually, we can assign
the positional representation of the nodes in the XML doc-
ument by traversing the XML tree in preorder as explained
next. We maintain a global counter and increment it every
time we move to a new node (either by moving to a new child
or when returning to the parent node after traversing all of its
subtrees). Whenever we reach a node for the first time, we
assign the current value of the counter to the L component of
the positional representation, and when we leave a node after
traversing all its subtrees we assign the current value of the
counter to the R component of the positional representation
(the D component of the positional representation is easily
derived from the number of ancestors of each node). We now
present a concrete implementation of this procedure that uses
little main memory and scales gracefully with the size of the
input XML document. The general procedure to obtain the
indexes for the nodes of the XML document consists of two
steps that can be summarized as follows (see Figure 8):

1. Use a SAX-based parser on the input XML tree. The
i-th tag found (irrespective of whether it is a start- or
an end-tag) receives integer i as its identifier 7. Every

7To keep the presentation simple, we treat values, such as ’Jane’ or

time we parse a start-tag, we push into a global stack the
value of the tag along with its identifier, which becomes
the L value for the node, and the level value, which
is simply the current number of elements in the stack.
(Figure 8 shows a snapshot of the execution right after
parsing the start-tag for node C1.) On the other hand,
every time we parse an end-tag, we know (assuming the
XML document is consistent) that the top element in the
stack has the information of the corresponding start-tag,
so we pop the top of the stack, assign the current iden-
tifier to the R component, and output the index entry to
a temporary file.

2. The order of the tags in the intermediate file produced
in the previous step would match that of a post-order
traversal of the XML tree (in particular, the different
tags are not even grouped together). As seen in the de-
scription of Index-Filter (Section 3.3) a crucial property
of the index entries for a given tag is that they are sorted
by L value. For that reason, in the second step we sort
the intermediate file by 〈tag, L〉. In that way, all tags are
grouped together and sorted by their L value, as desired
(see Figure 8).

To provide efficient access to the indexes of individual
tags, we build a B-tree over the tags. Throughout the index-
building process, and with the exception of the sorting phase,
memory requirements are proportional to the height of the
XML tree to maintain the stack. Interestingly, the memory
requirements are independent of the size of the XML tree.

Main Memory Optimization. It turns out that if the whole
document and the indexes fit in main memory, we can build
the indexes without the sorting step. The intuition is to use
growing arrays in memory to hold the index for each tag sep-
arately. Every time we parse a start-tag, we append a new
index entry to the corresponding tag array with the L and D

entries as before (the R entry remains unknown). We still
use a global stack, but this time we just store in it pointers
to index entries in the arrays, which still contain unknown R

values. When we parse an end-tag, we pop the top pointer
from the stack and update the corresponding index entry in
the array with the R value as explained before. This way,
each index is created independently and in the right order, so
there is no need to sort any intermediate result.

4. Experimental Setting

In Section 3 we studied two algorithms to answer multiple
path queries over XML documents simultaneously: Y-Filter
and Index-Filter. Although both techniques can be used for

’XML’, as if they were composed of adjacent pairs of open- and close-tags,
e.g., <Jane></Jane>, but we assign the same integer to both the open- and
close-tags.

7



���������	
�

�
�������	



����������
�

���������
�

�����������
�

����������
�

�����������
�

�����������



����������



�������

�
�
�����

�
�
�������

	


�
���
�

	
�
�������

�
�
����

�
�
������

�
�
�������

�
�
������

�


�������

������

	
�
�������

	


�
����
�

�
�
�������

�


�������
�

�
�
����

������

���������	�
�����
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��������������
���
 �����������
���� ������

!���"#����


��� 
�� ���� 
 ��

�������

Figure 8. Materializing the positional representation of XML nodes.

the same purpose, there are important conceptual differences
between them. On one hand, Y-Filter computes results by
analyzing input documents one tag at a time, using very effi-
cient data structures to process each tag. On the other hand,
Index-Filter takes advantage of indexes built over the input
document to avoid processing large portions of the input that
are guaranteed not to be part of any match. It is therefore in-
teresting to study under which conditions each technique is
more efficient than the other. Below we describe the data sets
and query workloads that we use in our experiments of Sec-
tion 5, as well as the metric we use to compare the algorithms
of Section 3.

4.1. XML Documents

XML is a general and flexible encoding that can be used
in a large variety of scenarios. In fact, both strictly regular
data sets (such as relational tables) and highly unstructured
information can be modeled by XML documents. We tried to
cover this wide spectrum of possibilities by using both semi-
structured and highly structured XML documents in our ex-
periments, with both deep and shallow nesting. Specifically,
we use three families of XML documents, which we call
DBLP, TPC-H, and Random, and are explained below.

DBLP: This family of documents consists of “unfolded”
fragments of the DBLP database [16], which represents
information about authors and their papers. We gen-
erated the DBLP document by starting with an arbi-
trary author and converting its information to XML for-
mat. Then, for each paper, we recursively replaced each
coauthor name with its actual XML information. We
continued “unfolding” authors until we reached a previ-
ously traversed author, a depth of 100 authors, or a pre-
defined document size. The resulting XML document
has depth 805 and around 3 million nodes, representing
93,536 different papers from 36,900 unique authors. To
obtain a family of DBLP documents of different sizes,
we post-filtered the original XML document and cre-
ated DBLP documents with sizes ranging from 1Kb to
1Mb (roughly corresponding to 100 to 100,000 tags).

TPC-H: This family of XML documents was generated
from the popular TPC-H benchmark for relational

databases [23]. We first created TPC-H databases of
sizes 1M, 5M, and 10MB, and then used the strategy de-
scribed in [22] to translate relational databases to XML
documents. In particular, we used the chain of foreign-
key joined tables lineitem, orders, customer,

nation, and region. The resulting XML documents
ranged from 225,000 to around 2,000,000 tags.

Random: This family of XML documents was produced
with a similar data generation tool as the one presented
in [1], and consists of random, binary, and balanced
XML trees with depths ranging from 10 to 18 (corre-
sponding to 1K to 256K tags in the resulting XML doc-
uments). We allowed repeating tags in any leaf-to-root
path, and the tags were generated from a uniform dis-
tribution. We used 25 distinct tags for internal nodes in
the XML document and 250 distinct tags for leaf nodes.

4.2. Query Workloads

In each experiment, the set of queries consists of 1 to
25, 000 path queries, with a random number of nodes be-
tween 2 and 10. We varied these and other parameters and
obtained comparable results, so we do not report those ex-
periments in this work.

4.3. Metrics

To evaluate the relative merits of Y-Filter and Index-Filter,
we implemented both algorithms in C++, sharing as much
code and data structures as possible for a fair comparison.
In most of the experiments, we compare the execution time
of both Y-Filter and Index-Filter to answer multiple path
queries. In particular, we report the relative performance of
Y-Filter with respect to Index-Filter (i.e., we divide Y-Filter’s
execution time by that of Index-Filter). Hence, ratios that are
lower than 1 correspond to cases in which Y-Filter is more ef-
ficient, and ratios greater than 1 correspond to cases in which
Index-Filter is more efficient.

4.4. Techniques Compared

In our experiments, we compare the techniques presented
in Section 3 against each other, and also against other

8



proposed approaches in the literature for processing XML
queries one at a time. In particular, we will study the follow-
ing techniques:

• Y-Filter: The navigation-based technique of Section 3.2
augmented with our stack-based extensions to return all
matches.

• Index-Filter: The index-based technique of Section 3.3.
As explained before, Index-Filter uses indexes built
over certain tags of the input XML document. In some
situations the relevant indexes can be already material-
ized for Index-Filter to use (e.g., when the input docu-
ments are static and we receive batches of input queries
to process). Other times (e.g., when processing multiple
streaming documents), relevant indexes must be built on
the fly before using Index-Filter. In the next section we
compare these two scenarios in detail.

• PathStack: Both Y-Filter and Index-Filter combine
query commonalities in a prefix tree to speed up query
processing (see Section 3). To evaluate the effec-
tiveness of multi-query processing algorithms, we use
PathStack [5], the state-of-the-art algorithm to answer
individual path queries, as a baseline technique. To pro-
cess multiple queries using PathStack, we simply exe-
cuted each query in the workload separately and then
aggregated the results.

5. Experimental Results

We now report the results we obtained with the experi-
mental setting of Section 4. We ran all experiments on a
550Mhz Pentium III processor with 768MB of main mem-
ory. In Section 5.1, we compare PathStack against our al-
gorithm Index-Filter, for varying number of input queries.
Then, in Section 5.2 we present the main experimental results
comparing the navigation-based technique, Y-Filter, against
our index-based technique, Index-Filter.

5.1. Index-Filter vs. PathStack

In this section we compare PathStack [5], the state-of-the-
art algorithm to answer individual path queries, against our
proposed algorithm Index-Filter, when varying the number
of queries asked. In [5] it is shown that PathStack is CPU
and I/O optimal among all sequential algorithms that read
the complete input. Therefore, an important validation is to
compare PathStack against our algorithm Index-Filter, which
was specifically designed to answer multiple queries simulta-
neously. As we can see in Figure 9, PathStack is slower than
Index-Filter when the number of input queries is increased.
With a small number of queries it is almost impossible to dis-
tinguish between the algorithms. However, for a large num-
ber of queries Index-Filter results in execution times that are

three to five times more efficient than those of PathStack. As
expected, Index-Filter takes advantage of query commonali-
ties by using the prefix tree representation to avoid process-
ing the same portions of similar queries multiple times.

0

1

2

3

4

5

1 10 50 100 1000 10000 25000

Number of Queries

P
at

hS
ta

ck
Ti

m
e /

 In
de

x-
Fi

lte
r T

im
e 1K�nodes 4K�nodes 16K�nodes

Figure 9. Index-Filter vs. PathStack for Random data.

5.2. Index-Filter vs. Y-Filter

We now present experimental results comparing Y-Filter
against Index-Filter for a variety of scenarios. In particular,
Figures 10, 11, and 12 show the performance of Y-Filter rel-
ative to that of Index-Filter (as explained in Section 4.3) for
the DBLP, TPC-H, and Random document families, respec-
tively. Each figure shows two scenarios: one in which the
indexes for Index-Filter are materialized in advance, and one
in which Index-Filter creates the indexes on the fly for each
incoming document.

In general, when the number of input queries is small (i.e.,
fewer than 500 queries), Index-Filter is much more efficient
than Y-Filter if the required indexes are already materialized
(see Figures 10(a), 11(a), and 12(a)). The reasons for this
behavior are as follows. First, in these scenarios Index-Filter
effectively traverses a small fragment of the input document,
since it only processes the indexes whose tags are present in
the input queries. Also, since each node in the prefix tree
is relatively sparse (due to the moderate number of input
queries), the efficiency of the priority queues is comparable
to that of Y-Filter’s hash tables. Finally, for larger document
sizes, Index-Filter takes advantage of the structural (contain-
ment) properties of the index elements to avoid processing
significant portions of the document that are guaranteed not
to participate in any match.

In contrast, when we continue increasing the number of
queries, the situation is reversed. The nodes in the prefix tree
become more and more populated, and Y-Filter’s hash tables
start scaling better than Index-Filter’s priority queues. More-
over, the prefix tree becomes larger, and Index-Filter spends
more time analyzing its structure to decide which nodes to
process next. For those reasons, in the scenario explained
above, Y-Filter results in faster executions than Index-Filter,
especially when using small documents. The tradeoff involv-
ing number of queries and document sizes mentioned above
is further illustrated in Figure 13 when the lines cross each

9



0.1

1

10

100

1 10 100 1000 10000 25000
Number�of�Queries

Y-
Fi

lte
r T

im
e�
/�I

nd
ex

-F
ilt

er
Ti

m
e

1K 10K
50K 100K
500K 1M

0.1

1

10

1 10 100 1000 10000 25000
Number�of�Queries

Y-
Fi

lte
r T

im
e�
/�I

nd
ex

-F
ilt

er
Ti

m
e

1K 10K
50K 100K
500K 1M

(a) Ratio not including index creation. (b) Ratio including index creation.

Figure 10. Y-Filter vs. Index-Filter for DBLP data.

0.1

1

10

100

1000

1 10 100 1000 10000 25000
Number�of�Queries

Y-
Fi

lte
r T

im
e�
/�I

nd
ex

-F
ilt

er
Ti

m
e 1MB

5MB
10MB

0.1

1

10

1 10 100 1000 10000 25000
Number�of�Queries

Y
-F

ilt
er

Ti
m

e�
/�I

nd
ex

-F
ilt

er
Ti

m
e

1MB
5MB
10MB

(a) Ratio not including index creation. (b) Ratio including index creation.

Figure 11. Y-Filter vs. Index-Filter for TPC-H data.

other. The figure shows the absolute execution times for both
algorithms over the different document families 8.

When we also consider the time spent for building indexes
on the fly, the gap between both algorithms is reduced. If
the number of queries is large, the results are similar to the
precomputed-index case, because the index creation cost is
small compared to the cost of answering the queries. In con-
trast, the largest differences between both scenarios occur
for small numbers of queries. For instance, in Figure 10(a)
Index-Filter is close to 100 times more efficient than Y-Filter
for answering a single query over large documents, and in
Figure 10(b) both techniques behave roughly the same. In
fact, for a small number of input queries the creation of in-
dexes is the actual bottleneck of Index-Filter. In any case, it
is interesting to note that even when indexes over the input
documents need to be created on the fly to answer queries,
Index-Filter is still more efficient than Y-Filter in several sit-
uations. This behavior has an analogous counterpart in tradi-
tional relational query processing, where sometimes the most
efficient plan for a join query is to create an index over one
operand and then use an index-based join to get the results.

Finally, it is interesting to note that for the TPC-H
documents (Figure 11), the relative performance of both
Index-Filter and Y-Filter algorithms is insensitive to the doc-
ument size. This is surprising given the large variations
between both algorithms when considering other document

8Figure 13(c) shows results for varying number of queries over the
TPC-H documents since we obtained almost the same ratios for both al-
gorithms when varying document sizes.

families, and the fact that Index-Filter and Y-Filter are based
on significantly different approaches. We believe that this
conduct is caused by the flat and highly regular structure of
the TPC-H documents (which are exported from traditional
relational data sets). We plan to further investigate this be-
havior in future work.

6. Related Work

In the context of semistructured and XML databases,
query evaluation and optimization has attracted a lot of
research attention. In particular, work done in the Lore
DBMS [17, 18, 20] and the Niagara system [19] has con-
sidered various aspects of query processing on such data.
XML data and various issues in their storage and query
processing using relational DBMSs have been considered
in [11, 12, 13, 22]. In [13, 22], the mapping of XML data
to a number of relational tables was considered along with
translation of a subset of XML queries to relational queries.

The representation of positions of XML elements is simi-
lar to that of [7, 8], who considered a fragment of the PAT text
searching operators for indexing text databases. This rep-
resentation was used to compute containment relationships
between “text regions” in the text databases. The focus of
that work was on theoretical issues, without elaborating on
efficient algorithms for computing these relationships.

References [2, 5, 25] introduced various index-based
structural join algorithms as primitives for matching a single
path or twig query against an XML document. In particular,

10



0.1

1

10

100

1 10 100 1000 10000 25000
Number�of�Queries

Y-
Fi

lte
r T

im
e�
/�I

nd
ex

-F
ilt

er
Ti

m
e

1K 4K
16K 64K
256K

0.1

1

10

1 10 100 1000 10000 25000
Number�of�Queries

Y-
Fi

lte
r T

im
e�
/�I

nd
ex

-F
ilt

er
Ti

m
e

1K 4K
16K 64K
256K

(a) Ratio not including index creation. (b) Ratio including index creation.

Figure 12. Y-Filter vs. Index-Filter for Random data.

0.1

1

10

100

1K 4K 16K 64K 256K
Data�Size

E
xe

cu
tio

n�
Ti

m
e�

(s
ec

on
ds

)

Y-Filter
Index-Filter

(a) 25,000 queries and DBLP data.

0.1

1

10

100

1K 4K 16K 64K 256K
Data�Size

E
xe

cu
tio

n�
Ti

m
e�

(s
ec

on
ds

)

Y-Filter
Index-Filter

(b) 25,000 queries and Random data.

0

5

10

15

20

1 10 100 1000 10000 25000
Number�of�Queries

Ex
ec

ut
io

n�
Ti

m
e�

(s
ec

on
ds

)

Y-Filter
Index-Filter

(c) 5M document and TPC-H data.

Figure 13. Execution times for Index-Filter and Y-Filter.

[2, 25] proposed binary structural join algorithms as primi-
tives for matching twig queries. While [25] uses an adap-
tation of a merge-sort technique to process the input docu-
ments, reference [2] introduces stack-based algorithms that
are I/O optimal for the binary case. The algorithms in [5] are
generalizations of the MPMGJN algorithm of [25] to match
path queries, and the algorithms of [2] to match path and twig
queries. The main contribution of the algorithms in [5] is that

no large intermediate results are generated for complex path
or twig queries, eliminating the need for an optimization step
that was needed when stitching together partial results from
the algorithms in [2, 25]. Our Index-Filter algorithm of Sec-
tion 3.3 is loosely based on the TwigStack technique [5].

Finally, [3, 6, 9, 14, 15] proposed various navigation-
based techniques to match single and multiple, path and
twig queries. Reference [14] introduces the X-Scan opera-
tor, which matches path expression patterns over a streaming
(non materialized) XML document. References [3, 9] con-
sider the problem of answering multiple path queries over
incoming documents. The algorithms and data structures in
both [3] and [9, 10] are tailored for the case of very large
numbers of queries and small input documents. While [3]
uses separate finite state machines to represent each query,
the follow-up work [9, 10] compresses the pool of input
queries by sharing prefixes, as explained in Section 3.1. It
is interesting to note that reference [3] presents an optimiza-
tion of the main algorithm called prefiltering, which can be
seen as a simple index-based preprocessing step that takes
into account the occurrence of tags but not the structure of
the incoming XML documents. The idea of prefiltering is to
eliminate from consideration any query that contains an el-
ement tag that is not present in the input document, and it
is adapted from previous algorithms for filtering plain text
documents [24]. Reference [6] proposes a trie-based data
structure, called XTrie, to support filtering of complex twig
queries. The XTrie, along with a sophisticated matching al-
gorithm, are able to reduce the number of redundant match-
ings. We note that the query model in [3, 9, 6] is slightly
different from ours. They are mainly concerned on the set
of queries for which at least one match exists (therefore sev-
eral optimizations are available to avoid processing queries
beyond their first match). In contrast, in this work we are
interested in returning the set of all matches for each input
query. Finally, reference [15] addresses the problem of ob-
taining all matches for a set of path and tree queries. The
algorithms use an index structure, denoted the “requirements
index,” which helps to quickly determine the set of queries
for which a certain structural relationship (e.g., parent-child,
or ancestor-descendant) is relevant. The main difference with
our query model is that in [15] each input query identifies

11



a unique “distinguished” query node, so the result matches
are 1-ary relations. The algorithms in [15] make at most
two passes on the input document, and provide performance
guarantees on the number of I/O invocations required to find
the resulting matches.

7. Conclusions and Future Work

In this paper we studied algorithms to answer multiple
path queries over XML documents efficiently. In particu-
lar, we reviewed Y-Filter, a state-of-the-art navigation-based
algorithm. Y-Filter computes results by analyzing an input
document stream one tag at a time, typically by using SAX-
based parsers. We extended Y-Filter’s original formulation
so that it returns all matches for the set of input queries. We
also introduced a novel index-based algorithm, Index-Filter,
which avoids processing portions of the XML document that
are guaranteed not to be part of any match. Index-Filter takes
advantage of precomputed indexes over the input document,
but can also build the indexes on the fly. Finally, we com-
pared Y-Filter and Index-Filter, both conceptually and exper-
imentally. We showed that both techniques have their advan-
tages, and we discussed the scenarios under which each tech-
nique is superior to the other one. In particular, we showed
that while most XML query processing techniques work off
SAX events, in some cases it pays off to parse the input doc-
ument in advance and augment it with auxiliary information
that can be used to evaluate the queries faster. As part of fu-
ture work, we plan to extend our results to cover more gen-
eral XML queries and incorporate other recent navigation-
based algorithms from the literature (e.g., [6, 15]). We also
plan to study other sharing schemes for path queries and the
applicability of such schemes on each approach.

References

[1] A. Aboulnaga, J. Naughton, and C. Zhang. Generating synthetic
complex-structured XML data. In Proceedings of the WebDB’01
Workshop, 2001.

[2] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava,
and Y. Wu. Structural joins: A primitive for efficient XML query pat-
tern matching. In Proceedings of the 2002 International Conference
on Data Engineering, 2002.

[3] M. Altinel and M. J. Franklin. Efficient filtering of XML documents
for selective dissemination of information. In Proceedings of the 2000
International Conference on Very Large Data Bases, 2000.

[4] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Ro-
bie, J. Simeon, and M. Stefanescu. XQuery 1.0: An
XML query language. In W3C Working Draft. Available from
http://www.w3.org/TR/xquery, Dec. 2001.

[5] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: Optimal
XML pattern matching. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, 2002.

[6] C. Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient filter-
ing of XML documents with XPath expressions. In Proceedings of the
2002 International Conference on Data Engineering, 2002.

[7] M. Consens and T. Milo. Optimizing queries on files. In Proceedings
of the 1994 ACM SIGMOD International Conference on Management
of Data, 1994.

[8] M. Consens and T. Milo. Algebras for querying text regions. In Pro-
ceedings of the ACM Symposium on Principles of Database Systems,
1995.

[9] Y. Diao, P. Fischer, M. Franklin, and R. To. YFilter: Efficient and
scalable filtering of XML documents. In Proceedings of the 2002 In-
ternational Conference on Data Engineering, 2002.

[10] Y. Diao, H. Zhang, and M. Franklin. NFA-based filtering for efficient
and scalable XML routing. Technical report, Computer Science Divi-
sion, University of California, Berkeley, 2002.

[11] M. Fernandez and D. Suciu. SilkRoute: Trading between relations and
XML. WWW9, 2000.

[12] R. Fiebig and G. Moerkotte. Evaluating queries on structure with ac-
cess support relations. Proceedings of WebDB’00, 2000.

[13] D. Florescu and D. Kossmann. Storing and querying XML data using
an RDBMS. IEEE Data Engineering Bulletin, 22(3), 1999.

[14] Z. Ives, A. Levy, and D. Weld. Efficient evaluation of regular path
expressions on streaming XML data. Technical report, University of
Washington, 2000.

[15] L. V. S. Lakshmanan and S. Parthasarathy. On efficient matching of
streaming XML documents and queries. In Proceedings of EDBT,
2002.

[16] M. Ley. DBLP. Computer Science Bibliography. Available at
http://www.informatik.uni-trier.de/∼ley/db.

[17] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore:
A database management system for semistructured data. SIGMOD
Record, 26(3), 1997.

[18] J. McHugh and J. Widom. Query optimization for XML. In VLDB’99,
Proceedings of the 25th International Conference on Very Large Data
Bases, 1999.

[19] J. F. Naughton, D. J. DeWitt, D. Maier, A. Aboulnaga, J. Chen,
L. Galanis, J. Kang, R. Krishnamurthy, Q. Luo, N. Prakash, R. Rama-
murthy, J. Shanmugasundaram, F. Tian, K. Tufte, S. Viglas, Y. Wang,
C. Zhang, B. Jackson, A. Gupta, and R. Chen. The Niagara Internet
Query System. IEEE Data Engineering Bulletin, 24(2), 2001.

[20] D. Quass, J. Widom, R. Goldman, K. Haas, Q. Luo, J. McHugh,
S. Nestorov, A. Rajaraman, H. Rivero, S. Abiteboul, J. D. Ullman,
and J. L. Wiener. Lore: A lightweight object repository for semistruc-
tured data. In Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, 1996.

[21] G. Salton and M. J. McGill. Introduction to modern information re-
trieval. McGraw-Hill, 1983.

[22] J. Shanmugasundaram, E. J. Shekita, R. Barr, M. J. Carey, B. G. Lind-
say, H. Pirahesh, and B. Reinwald. Efficiently publishing relational
data as XML documents. In Proceedings of the 2000 International
Conference on Very Large Data Bases, 2000.

[23] TPC Benchmark H. Decision support. Available at
http://www.tpc.org.

[24] T. W. Yan and H. Garcia-Molina. Index structures for selective dis-
semination of information under the boolean model. TODS, 19(2),
1994.

[25] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. M. Lohman. On
supporting containment queries in relational database management
systems. In Proceedings of the 2001 ACM SIGMOD International
Conference on Management of Data, 2001.

12


