
STHoles: A Multidimensional Workload-Aware Histogram

Nicolas Bruno
�

Columbia University

nicolas@cs.columbia.edu

Surajit Chaudhuri
Microsoft Research

surajitc@microsoft.com

Luis Gravano
�

Columbia University

gravano@cs.columbia.edu

ABSTRACT
Attributes of a relation are not typically independent. Mul-
tidimensional histograms can be an e�ective tool for accu-
rate multiattribute query selectivity estimation. In this pa-
per, we introduce STHoles, a \workload-aware" histogram
that allows bucket nesting to capture data regions with rea-
sonably uniform tuple density. STHoles histograms are built
without examining the data sets, but rather by just analyz-
ing query results. Buckets are allocated where needed the
most as indicated by the workload, which leads to accurate
query selectivity estimations. Our extensive experiments
demonstrate that STHoles histograms consistently produce
good selectivity estimates across synthetic and real-world
data sets and across query workloads, and, in many cases,
outperform the best multidimensional histogram techniques
that require access to and processing of the full data sets
during histogram construction.

1. INTRODUCTION
A variety of problems require succinct summary repre-

sentations of large data sets. Histograms are an impor-
tant example of such summary representation structures.
In the database �eld, they are mainly used for selectivity
estimation during query optimization [8] and also for ap-
proximate query processing [10, 20] to give rough and fast
responses to expensive queries. Query optimization in re-
lational database systems has traditionally relied on single-
attribute histograms to compute the selectivity of queries.
For queries that involve multiple attributes, most database
systems make the attribute value independence assumption,
i.e., assume that p(A1=v1;A2=v2) = p(A1=v1) �p(A2=v2),
which may of course lead to signi�cant inaccuracy in selec-
tivity estimation (e.g., see [21]).
An alternative to assuming attribute value independence

is to use histograms over multiple attributes, which are gen-
erally referred to as multidimensional histograms [15, 21].

�This work was done in part while the authors were visiting
Microsoft Research in summer 2000.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD 2001May 21-24, Santa Barbara, California, USA
Copyright 2001 ACM 1-58113-332-4/01/05 ...$5.00.

Ideally, multidimensional histograms should consist of buck-
ets that enclose regions of the data domain with close-to-
uniform tuple density, so they can accurately estimate the
selectivity of range queries. At the same time, multidi-
mensional histograms should be suÆciently compact and
eÆciently computable. Unfortunately, existing multidimen-
sional histogram construction techniques, with the exception
of the recently introduced GenHist strategy [7], fail to sat-
isfy these requirements robustly across data distributions,
as we show in this paper through a thorough experimental
evaluation over synthetic and real-life data sets. A funda-
mental problem with many of these techniques is that they
make bucket generation decisions based on unidimensional
information, as we will discuss.
A key observation that we exploit in this paper is that

we can build good quality histograms by exploiting work-
load information and query feedback. Typically, histogram
construction strategies only inspect the data sets that they
characterize, without considering how the histograms will be
used. In particular, if the histograms are to help in query
processing, the implicit assumption is that all queries are
equally likely. This assumption is rarely true in practice, and
certain data regions might be much more heavily queried
than others. Intuitively, we will exploit query workload to
zoom in and spend more resources in heavily accessed ar-
eas, thus allowing some inaccuracy in the rest. We will also
exploit query feedback in a truly multidimensional way to
identify promising areas to enclose in histogram buckets.
In this paper we present STHoles, a novel workload-aware

histogram technique. This histogram identi�es a novel parti-
tioning strategy that is especially well suited to exploit work-
load information. We present algorithms that show how to
exploit results of queries in the workload and gather associ-
ated statistics to progressively build and re�ne an STHoles
histogram (Figure 1). Thus, our technique uses informa-
tion about both the workload (range selection queries) and
the data distribution itself (through statistics collected from
query result streams). An important consequence of this re-
�nement procedure is that our histograms can gracefully
adapt to changes in the data distribution they approximate,
without the need to periodically rebuild them. Our ex-
periments strongly suggest that our approach results in a
customized histogram that is robust across di�erent data
sets and workloads and in many cases results in more ac-
curate estimations for the expected workload than those for
the best workload-independent histogram construction tech-
niques that require inspecting the data sets. Of course, it is
inevitable that histograms built using only query feedback

Query

Plan Enumerator

Selectivity Estimator

Query Optimizer

Query Plan
Execution

Engine

Result Stream

Histogram
Build/Refine Module

Histogram

Figure 1: Workload-driven histogram construction.

are susceptible to errors for queries that target unseen data
regions. As we will see, these errors can be reduced by start-
ing even with a coarse initial histogram. We also studied the
overhead of the re�nement procedure over Microsoft's SQL-
Server 2000, and found that it slows down query execution
by less than 10%, which is acceptable and can be regarded
as an amortized cost we pay for the online construction of
STHoles histograms [3].
The rest of the paper is structured as follows. Section 2

reviews related work. Section 3 describes existing multi-
dimensional histogram techniques and motivates the intro-
duction of the STHoles histograms that we then present in
Section 4. Finally, Sections 5 and 6 report an extensive ex-
perimental evaluation of the new histograms using both real
and synthetic data sets and a variety of query workloads.

2. RELATED WORK
Several techniques exist in the literature to compute selec-

tivity estimators of multidimensional data sets. These tech-
niques include wavelets (e.g., [13]) and discrete cosine trans-
formations (e.g., [12]), sampling (e.g., [17]), and multidimen-
sional histograms. The focus of this paper is on multidimen-
sional histograms, which have been the topic of much theo-
retical and experimental work in the last few years. A con-
ceptually interesting class of histograms is the V-optimal(f,f)
family [22], which groups contiguous sets of frequencies into
buckets and minimizes the variance of the overall frequency
approximation. These histograms are optimal for estimating
the result size of equality join and selection queries under a
de�nition of optimality that captures the average error over
all possible queries and databases [9]. However, these his-
tograms need to record every distinct attribute value inside
each bucket, which is clearly impractical and makes these
techniques be only of theoretical interest. Moreover, the
construction algorithm involves an exhaustive and exponen-
tial enumeration of all possible histograms. A more practical
approach is to restrict the attention to V-optimal(v,f) his-
tograms, which group contiguous sets of values into buckets,
minimizing the variance of the overall frequency approxima-
tion. A dynamic programming algorithm is presented in [11]
for building unidimensional V-optimal(v,f) histograms in
O(N2b) time, where N is the number of tuples in the data
set and b is the number of buckets. Unfortunately, it can be
shown [16] that even for two-dimensional data sets, build-

ing the V-optimal(v,f)histogram using arbitrary rectangular
buckets is NP-Hard. Therefore, practical static multidimen-
sional histogram techniques use heuristics to partition the
data space into buckets, as discussed below.
A multidimensional version of the EquiDepth histogram [19]

presented in [15] recursively partitions the data domain, one
dimension at a time, into buckets enclosing the same num-
ber of tuples. Reference [21] introduced MHist based on
underlying MaxDi�(v,a) histograms [22]. The main idea is
to iteratively partition the data domain using a greedy pro-
cedure. At each step, MaxDi�(v,a) analyzes unidimensional
projections of the data set and identi�es the bucket in most
need of partitioning. Such a bucket will have the largest
\area gap" [22] between two consecutive values along one
dimension. Using this information, MHist iteratively splits
buckets until it reaches the desired number of buckets. Re-
cently, reference [7] introduced GenHist histograms, which
allow unrestricted overlap among buckets. If more than two
buckets overlap, the density of tuples in their intersection is
approximated as the sum of the data densities of the over-
lapping buckets. For the technique to work, a tuple that lies
in the intersection of many buckets is counted in only one
of them (chosen probabilistically). The main idea is to con-
struct progressively coarser grids over the data set, convert
the densest cells into buckets of the histogram, and remove
a certain percentage of tuples in those cells to make the re-
sulting distribution smoother. In contrast, our histograms
allow only a restricted kind of bucket overlap that is less ex-
pensive to manage, which will be crucial to exploit workload
re�nement.
All the histogram techniques above are static in the sense

that, after histograms are built, their buckets and frequen-
cies remain �xed regardless of any changes in the data dis-
tribution. Histograms are typically rebuilt or reorganized
if the number of data set updates or a certain inaccuracy
threshold is exceeded. References [5] and [6] are examples
of reorganization strategies for unidimensional histograms.
As we will see in Section 3, partitioning multidimensional
spaces is challenging, and there are no obvious generaliza-
tions of these techniques for more than one dimension.
The idea of using feedback from the query execution en-

gine is introduced in [4]. Their approach is to represent the
data distribution as a linear combination of model functions.
The weighting coeÆcients of this linear combination are ad-
justed using feedback information and a least squares tech-
nique. The main problem with this approach is that it de-
pends on the choice of the \model" functions, and moreover,
it assumes that the data follows some smooth and known
distribution, which is not the case for arbitrary data sets.
Reference [1] presents the �rst multidimensional histogram

that uses query feedback to re�ne buckets, and shares some
ideas with our work. We refer to this technique as STGrid
histograms in this paper. (\ST" stands for \self tuning.")
An STGrid histogram greedily partitions the data domain
into disjoint buckets that form a grid, and re�nes their fre-
quencies using query feedback. After a predetermined num-
ber of queries, the histogram is restructured by merging and
splitting rows of buckets at a time (to preserve the grid struc-
ture). EÆciency in histogram tuning is the main goal of
this technique, at the expense of accuracy. Since STGrid
histograms need to maintain the grid structure at all times,
and due to the greedy nature of the technique, some locally
bene�cial splits and merges have the side e�ect of modifying

(a) Grid (b) Recursive (c) Arbitrary

Figure 2: Partitioning schemes for building multidi-
mensional histograms.

distant and unrelated regions, hence decreasing the overall
accuracy. For that reason, the resulting histograms are gen-
erally less accurate than their static counterparts and are not
robust across di�erent data distributions. In contrast, our
new technique introduces a new histogram structure with
bucket nesting that results in better accuracy than standard
\at" histograms, at the expense of slightly higher execution
overhead.

3. ANALYSIS OFEXISTING MULTIDIMEN-
SIONAL HISTOGRAMS

Good histograms partition data sets into \smooth" buck-
ets with close-to-uniform internal tuple density. In other
words, the frequency variance of the tuples enclosed by such
buckets is minimized, leading to accurate selectivity esti-
mations for range queries. Unfortunately, current multidi-
mensional histogram techniques do not always manage to
produce close-to-uniform partitions of the data sets, as we
discuss next. Later, Section 6 reports a thorough experi-
mental evaluation of these techniques that complements the
discussion in this section.
A partition of a multidimensional data domain results in

a set of disjoint rectangular buckets that cover all the points
in the domain and assigns to each bucket some aggregated
information, usually the number of tuples enclosed. The
choice of rectangularbuckets is justi�ed by two main reasons:
First, rectangular buckets make it easy and eÆcient to inter-
sect each bucket and a given range query to estimate selec-
tivities. Second, rectangular buckets can be represented con-
cisely, which allows a large number of buckets to be stored
using the given budget constraints. Reference [16] presents
a taxonomy of partitioning schemes for building multidi-
mensional histograms, which we illustrate in Figure 2. In
the grid partitioning scheme (Figure 2(a)), each dimension
di is divided into pi disjoint intervals, which induce a grid
of
Q

i pi buckets. A recursive partition (Figure 2(b)) starts
with one bucket covering the whole domain, and repeatedly
divides some existing bucket in two along some dimension.
Finally, the arbitrary partition scheme (Figure 2(c)) imposes
no restrictions on the arrangement of buckets. In principle,
all the schemes are equivalent in the sense that we can sim-
ulate any partition that follows one scheme with the others
(possibly using more buckets). We say that each partition-
ing scheme in Figure 2 is more exible than those to its left,
since we can simulate any partition following the more ex-
ible scheme with a partition that follows the others using at
most the same number of buckets, but not vice-versa.
Consider Figure 3, which shows di�erent histograms built

for a multigaussian data distribution 1. All histograms use

1See Section 5 for more details on the data distribution.

the same amount of memory (250 bytes), which in turn re-
sults in di�erent numbers of buckets allocated to each his-
togram, since the amount of information needed to describe
each bucket is di�erent across histograms. As we can see
in Figure 3(b), EquiDepth histograms correctly identify the
core of the densest tuple clusters in the data set. However,
the partitioning of the rest of the domain is problematic. For
example, the histogram in Figure 3(b) contains buckets that
touch the boundaries of the main tuple clusters and stretch
all the way to regions having almost no tuples. As a result,
the tuple density inside each of these buckets is far from uni-
form. The reason these poor buckets are generated is that
the partition strategy for EquiDepth histograms is guided
by the wrong principle, that is, instead of capturing buckets
with almost uniform tuple density, EquiDepth buckets have
all the same number of tuples. Consequently, EquiDepth
buckets mix regions with very di�erent tuple densities and
therefore exhibit inadequate buckets around cluster bound-
aries.
MHist histograms try to solve some of the problems with

EquiDepth histograms for cases when the data distribution
is highly skewed. Figure 3(c) shows the MHist histogram
for our data set using MaxDi�(v,a) as the underlying uni-
dimensional partitioning strategy [22]. As we can see in the
�gure, the MHist histogram devotes too many buckets to
the densest tuple clusters, and almost none to the rest of the
data domain, which degrades the overall histogram accuracy.
This problem arises from the way in whichMHist recursively
partitions the data set. At each step, MHist assigns scores
to each bucket-dimension pair by analyzing unidimensional
projections of the original data set, and chooses the pair in
most need of partitioning as the one with the highest score.
Unfortunately, the scores for each bucket-dimension pair are
absolute numbers that depend only on the underlying uni-
dimensional histogram MaxDi�(v,a). When deciding where
to partition in each step, it is crucial to include some infor-
mation about the total number of tuples, the total volume
of the bucket, or even the shape of the bucket. Otherwise, as
the example illustrates, some bad initial partitioning choices
are ampli�ed in later steps. In particular, almost all parti-
tions are done along the same dimension, leading to \thin"
non-uniform buckets.
GenHist histograms are introduced in [7] to address some

of the problems outlined above. They �nd buckets of vari-
able size and allow unrestricted overlap among buckets. Suc-
cessively coarser grids are built over the data set and the
densest cells are converted to buckets. Figure 3(d) shows
the GenHist histogram for the data set in Figure 3(a). A
drawback of this technique is the diÆculty of choosing the
right values for a crucial number of parameters. Speci�cally,
the initial grid size and the number of buckets created per
iteration are given values in [7] that are independent of the
data set. As we will see in Section 6, this technique gener-
ally results in better accuracy than the techniques discussed
above that make bucket generation decisions based only on
unidimensional information. However, this uniform param-
eter setting produces degraded performance in some cases.
Another drawback of this technique is that it requires mul-
tiple passes (at least 5 to 10) over the whole data set [7].
Another promising direction to capture multidimensional

areas with close-to-uniform tuple density and address the
problems explained above is to incorporate workload infor-
mation and feedback from query execution to progressively

(a) Gauss (b) EquiDepth (c) MHist (d) GenHist (e) STGrid (f) STHoles

Figure 3: Gauss data set and histograms.

re�ne the histogram buckets. In this way, we could de-
tect buckets that do not have uniform density and \split"
them into smaller and more accurate buckets, or realize that
some adjacent buckets are too similar and \merge" them,
thus recuperating space for more critical regions. STGrid
histograms use query workloads to re�ne a grid-based his-
togram structure. Figure 3(e) shows the resulting STGrid
histogram when the query workload used for re�nement con-
sists of range queries that follow the data distribution. Al-
though using workload information helps make the histogram
more accurate, the �gure shows that workload alone is not
powerful enough to get good results, since the grid parti-
tioning strategy is still too rigid. Data distributions gen-
erally contain clusters or sub-regions with similar density,
which we would like to capture using as few buckets as pos-
sible. However, the STGrid partitioning scheme results gen-
erally in many not-so-useful buckets. In particular, the split
(merge) of each bucket entails the splitting (merging) of sev-
eral other buckets that could be far away from and unrelated
to the original one, just to restore the grid partitioning con-
straint. Besides, as STGrid histograms are also based on
MaxDi�(v,a) unidimensional histograms, the problems dis-
cussed for MHist histograms also apply in this case.
To avoid the poor bucket layout problems of STGrid his-

tograms and still use query workloads to re�ne histograms,
we introduce a new partitioning scheme for building multidi-
mensional histograms that allows buckets to overlap. Specif-
ically, we will allow inclusion relationships, i.e., some buckets
can be completely included inside others. This way, we im-
plicitly relax the requirement of rectangular regions while
keeping rectangular bucket structures. By allowing bucket
nesting, the resulting histograms do not su�er from the
problems outlined above and can model complex shapes (not
restricted to rectangles anymore); by restricting the way in
which buckets may overlap, the resulting histograms can be
eÆciently created and updated incrementally by using work-
load information. In contrast to multidimensional histogram
techniques that use unidimensional projections of the data
set for bucket creation, STHoles exploits query feedback in
a truly multidimensional way to improve the quality of the
resulting histograms. Figure 3(f) shows STHoles histograms
in which nested buckets capture naturally regions that ex-
hibit varying tuple density.

4. STHOLES HISTOGRAMS
We now describe the general structure of STHoles his-

tograms (Section 4.1). Then, we introduce the various al-
gorithms needed for constructing the new histograms (Sec-
tion 4.2).

4.1 Histogram Definition
As explained in the previous section, the inclusion rela-

tionship among buckets provides an extra degree of ex-
ibility compared to partitioning schemes that use disjoint
buckets. Each bucket b in an STHoles histogram is com-
posed of a rectangular bounding box, denoted box(b), and
a real valued frequency, denoted f(b), which indicates the
number of tuples enclosed by bucket b. In a traditional his-
togram (see Section 2), a bucket b would be \solid," with
no \holes," and hence the region that b covers would be
regarded as having uniform tuple density. In contrast, an
STHoles histogram identi�es sub-regions of b with di�er-
ent tuple density and \pulls" them out from b. Hence a
bucket b can have holes, which are themselves �rst-class his-
togram buckets. These holes are bucket b's children, and
their bounding boxes are disjoint and completely enclosed
in b's bounding box 2. Therefore, an STHoles histogram can
be conceptually seen as a tree structure, where each node
represents a bucket.
The volume of bucket b is de�ned as v(b) = vBox(b) �P
b02 children(b) vBox(b

0), where vBox(b) is the volume of

box(b). Given a histogram H over a data set D, and a range
query q, the estimated number of D tuples that lie inside q,
est(H;q), is:

est(H;q) =
X
b2H

f(b)
v(q \ b)

v(b)

where v(q \ b) denotes the volume of the intersection of q
and b (not box(b)). In the next sections we introduce the
algorithms used to build and re�ne STHoles histograms.

b1(100,)

b2(500,) b3(1000,)

b4(200,)

Figure 4: A four-bucket STHoles histogram.

Example 1.: Figure 4 shows a histogram with four buck-
ets. The root of the tree is bucket b1, with frequency 100.
It has two children, namely buckets b2 and b3, with frequen-
cies 500 and 1,000, respectively. Finally, bucket b3 has one
child, b4, with frequency 200. The region associated with

2Note that an alternative design could add the frequency of
a bucket's descendants to the frequency of the bucket proper.
It is easy to see that this alternative design conveys exactly
the same information as our STHoles histograms do.

a particular bucket excludes that of its descendants, which
can be thought of as \holes" in the parent space. Note that
the region modeled by bucket b1 (shaded in Figure 4) is not
rectangular, even though we only use rectangular buckets for
partitioning the space. A query that covers the lower half
of bucket b3 will be estimated to return nearly 1,000 tuples,
even when it covers half of b3's bounding box, because the
other half is not considered as part of b3. More precisely,
there is another bucket (b4) that covers that region.

4.2 Histogram Construction
A key idea for building STHoles histograms is to inter-

cept the result of queries in the workload and eÆciently
gather some simple statistics over them to progressively re-
�ne the layout and frequency of the existing buckets. This
way, the regions that are more heavily queried will bene�t
from having more buckets with �ner granularity. To build an
STHoles histogram, we start with an empty histogram that
contains no buckets. Alternatively, if we have more informa-
tion about the data distribution, e.g., the total number of
tuples in the data set and the maximum and minimum value
for each attribute 3, we can start with a single-bucket his-
togram. For our experiments, we assume we know nothing
about the data set and therefore we start with an empty his-
togram. (However, for completeness we ran all experiments
in Section 6 using the variations above and obtained similar
results.) More generally, we can use an existing histogram
and start with a more accurate model of the data set (see
Section 6 for more details).
After we set up the initial histogram, for each query q in

the workload we intercept the result stream and count how
many tuples lie inside each bucket of the current histogram.
If the current query q extends beyond the boundaries of the
root bucket (or when considering the �rst query) we expand
the bounding box of the root bucket so that it covers q. Then
we determine which regions in the data domain can bene�t
from using this new information (Section 4.2.1), and re�ne
the histogram by \drilling holes," or zooming into the buck-
ets that cover the query region (Section 4.2.2). Finally,
we consolidate the resulting histogram by merging similar
buckets so that we do not exceed our �xed storage budget
(Section 4.2.3). These high level steps are summarized be-
low:

BuildAndRe�ne
(H: STHoles, D: Data Set, W: Workload)

Initialize H with no buckets (empty histogram).

// Or use an existing histogram if available.

for each query q 2 W do
Gather statistics from q \ bi 8 buckets bi in H.

Identify candidate holes in H (Section 4.2.1).
Drill candidate holes as new buckets in H

(Section 4.2.2).
Merge superfluous buckets in H (Section 4.2.3).

4.2.1 Identifying Candidate Holes
In this section we show how we can use the results of

a query q to identify holes in the buckets of an STHoles
histogram. Such holes correspond to bucket's sub-regions

3Although the approximate total number of tuples in the
data set can be eÆciently retrieved from system catalogs,
the maximum and minimum values for each attribute could
be expensive to maintain in the absence of indexes.

with distinctive tuple frequency, which we exploit to re�ne
and make the STHoles histogram more accurate.
In general, a query q intersects some buckets only par-

tially. For each such bucket bi, we know the exact number
of tuples in q \ bi by inspecting the results for q. Intuitively,
if q \ bi has a disproportionately large or small fraction of
the tuples in bi, then q \ bi is a candidate to become a hole
of bucket bi. Hence, each partial intersection of q and a
histogram bucket could in principle be used to improve the
quality of our histogram, as illustrated in the example below.

Example 2.: Figure 5 shows a bucket b with frequency
f(b) = 100. Suppose that from the result stream for a query
q we count that Tb = 90 tuples lie in the part of bucket b
that is touched by query q, q\ b. Using this information, we
can deduce that bucket b is signi�cantly skewed, since 90%
of its tuples are located in a small fraction of its volume.
We can improve the accuracy of the histogram if we create
a new bucket bn by \drilling" a hole in b that corresponds to
the region q\ b and adjust b and bn's frequencies accordingly
as illustrated in Figure 5.

b, f(b)=10

bn
f(bn)=90

b, f(b)=100

Tb=90
Drill Hole (b)

Query q

bp bp

Figure 5: Drilling a hole in bucket b to improve the
histogram quality.

If the intersection of a query q and a bucket b is rect-
angular, as in Figure 5, we can always consider q \ b as
a candidate hole and proceed as in the previous example.
However, in general it is not always possible to create a hole
in a bucket b to form a new bucket q \ b. The problem is
that some children of b might be taking some of b's space,
and therefore the bounding box of q \ b might not be rect-
angular anymore, thus violating the partitioning constraint
we impose on the histogram. For instance, in Figure 5 the
intersection between q and b's parent bp has an L shape, due
precisely to bucket b. We could simply ignore those inter-
sections in our analysis, but that would result in low quality
histograms, since a signi�cant fraction of the intersections
are not rectangular. We have chosen a middle ground to
approximate the shape of q \ b when it is not rectangular.
Essentially we shrink q \ b to a large rectangular sub-region
that does not partially intersect with the bounding box of
any other bucket. We then estimate the number of tuples
in this sub-region assuming uniformity. That is, if Tb is the
number of tuples in q\b and c is the result of shrinking q\b,
we estimate Tc, the number of tuples in c, as Tc = Tb

v(c)
v(q\b) .

Example 3. : Figure 6 shows a four-bucket histogram
and the progressive shrinking of the initial candidate hole
c = q \ b. At the beginning, the buckets that partially in-
tersect with c, called participants in the algorithm below, are
b1 and b2 (b3 is completely included in c). We �rst shrink
c along the \vertical" dimension so that the resulting can-
didate hole c0 does not intersect with b1 anymore. Then,
we shrink c0 along the \horizontal" dimension so that the
resulting candidate hole c00 does not intersect with b2. At
this point there is no bucket that partially intersects with c00.

b

c=q b
b1

b2 b

c'
b1

b2 b

c''

b1

b2

exclude

b1

exclude

b2

b3 b3 b3

Figure 6: Shrinking a candidate hole c = q \ b.

The resulting candidate hole c00 is rectangular and covers a
signi�cant portion of the original q \ b region.

More generally, the procedure for shrinking the intersec-
tion of a bucket b and a query q is:

Shrink (b:bucket, q:query, Tb: # of tuples in b)

c = q \ b

participants = fbi 2 children(b): c\bi 6= ; ^ bi 6�cg
while (participants 6= ;)

Select bucket bi 2 participants and dimension j
such that shrinking c along j by excluding bi
results in the smallest reduction of c

Shrink c along j

Update participants
end while

Tc = Tb * v(c) / v(q \ b) // adjust frequency
Return candidate hole c with frequency Tc

In summary, for each query q of our workload we identify
the candidate new holes to re�ne a given histogram. Speci�-
cally, these new candidate buckets are the result of invoking
shrink(bi; q; Tbi) for all buckets bi such that q \ bi 6= ;,
where Tbi is the number of tuples in the result of q that lie
inside bucket bi.

4.2.2 Drilling Candidate Holes as New Histogram
Buckets

In the previous section we saw how we identify candidate
new holes to re�ne an STHoles histogram. Each candidate
hole c with frequency Tc that results from shrinking from
q\bi is completely included in bi and does not intersect par-
tially with any child of bi. (As illustrated in Figure 6, some
of bi's children could be fully enclosed in c.) We now show
how to e�ectively \drill" such candidates as new histogram
buckets. For this, we identify three possible scenarios:

1. Bucket bi and candidate hole c reference exactly the
same region in the data domain, i.e., box(c) = box(bi).
In this case, the candidate hole c carries updated in-
formation about the number of tuples in bi, Tc, but
we do not drill c in bi, since they represent essentially
the same region. We handle this situation by simply
replacing bi's frequency with Tc.

2. Candidate hole c covers all bi's remaining space. This
is a relatively rare special case, but we need to handle
it properly to avoid wasting space. Consider the his-
togram in Figure 7, with four buckets b1, b2, b, and bp,
and suppose that we want to drill c in bucket b. Al-
though c 6= box(b), c covers all of b's remaining space
(the rest is covered by buckets b1 and b2). If we simply
added a new child bn to bucket b with box(bn) = c, then
bucket b proper would carry no information, because b
would be completely covered by its children b1, b2, and
bn. Hence adding bn as a new child of b would result
in wasted space. To avoid this situation, we eliminate

bp

b2

b1 c

b

bp

b2

b1 bn

Drill Hole (b, c, Tc)

Figure 7: Drilling bn in bucket b would make b carry
no useful information.

bucket b from the histogram and transfer b's children
to b's parent bp. Speci�cally, we �rst merge b with its
parent bp, and then we drill c again but this time in
bp instead of in b, thus saving one bucket's worth of
space 4.

3. The default situation. We can directly apply the ideas
from the beginning of Section 4.2. That is, we create
a new child of bi, denoted bn, with box(bn) = c and
f(bn) = Tc. We then migrate all of bi's children whose
bounding boxes are completely included in c so they
become children of the new bucket bn. Finally, we
adjust the frequency of bi to restore, whenever possi-
ble, the previous frequency counts. That is, if we had
enough tuples in bi, i.e., f(bi) � Tc, we subtract Tc
from f(bi). Otherwise, we simply set f(bi) to zero.

The complete procedure is described below:

DrillHole (b: bucket, c: candidate hole,

Tc: c's frequency)
// c is included in b and does not partially

// intersect with any child of b.

if box(b)=box(c) // (Scenario 1)
f(b)=Tc

else if v(b) = volume(c\b) then // (Scenario 2)
merge b with its parent bp
DrillHole(bp, c, Tc)

else // default case (Scenario 3)
add a new child of b, bn, to the histogram

box(bn)=c ; f(bn)=Tc
migrate all children of b that are enclosed

by c so they become children of bn
f(b) = MAX{0, f(b) - Tc}

4.2.3 Merging Buckets
The previous section showed how we can re�ne an STHoles

histogram by adding buckets as holes to existing buckets. In
doing so, we might temporarily exceed our target number of
histogram buckets. Hence, after adding buckets, we need to
reduce the number of histogram buckets by merging sim-
ilar ones, speci�cally those buckets with the closest tuple
density.

Example 4.: Consider the three-bucket histogram H in
Figure 8, and suppose that we have a two-bucket budget.
Two choices we have to eliminate one bucket are: merg-
ing buckets b1 and b2, which results in histogram H1, and
merging buckets b1 and b3, which results in histogram H2.
Although buckets b1 and b3 have the same frequency in H

4As an alternative, we could avoid merging b and bp and then
drilling bn by simply changing the frequency of b. However,
our preferred choice results in less overlap among buckets,
which is in general desirable.

(100 tuples each), histogram H1 is more similar to the orig-
inal, three-bucket histogram H than H2 is. In fact, both H

and H1 result in the same selectivity estimation for arbitrary
range queries, since b1 and b2's densities in H are the same.
In contrast, histogram H2 returns lower selectivity estima-
tions than H for range queries that only cover the lower half
of the new bucket bn, since the tuple density of bucket b3 is
lower than the tuple density of bucket b1 in histogram H.

Histogram H

bn
f(bn)=150

b2
f(b2)=50

b1
f(b1)=100

b3
f(b3)=100

merge(b1,b2) merge(b1,b3)

b3
f(b3)=100

b2
f(b2)=50

bn
f(bn)=200Histogram H1 Histogram H2

Figure 8: Merging similar buckets.

More generally, to decide which buckets to merge, we use a
penalty function that returns the cost in histogram accuracy
of merging a pair of buckets.

Calculating Penalties
Suppose we want to merge two buckets b1 and b2 in a given
histogram H. Let H 0 be the resulting histogram after the
merge. We de�ne the penalty of merging buckets b1 and b2
in H as follows:

penalty(H; b1; b2) =

Z
p2dom(D)

��est(H;p)� est(H 0
; p)

�� dp
where dom(D) is the domain of the data set D. In other
words, the penalty for merging two buckets measures the
di�erence in approximation accuracy between the old, more
expressive histogram where both buckets are separate, and
the new, smaller histogram where the two (and perhaps ad-
ditional buckets) have been collapsed. A merge with a small
penalty will result in little di�erence in approximation for
range queries and therefore will be preferred over another
merge with higher penalty. Since the estimated density of
tuples inside a bucket is constant by de�nition, we can calcu-
late penalty functions eÆciently. We can identify all regions
ri in the data domain with uniform density of tuples both
before and after the merge, and just add a �nite number of
terms of the form jest(H;ri) � est(H 0; ri)j 5. This proce-
dure will become clearer in the rest of this section when we
instantiate it to concrete situations.
We identi�ed two main families of merges for STHoles his-

tograms, which correspond to merging \adjacent" buckets
in the tree representation of an STHoles histogram: parent-
child merges, where a bucket is merged with its parent, and
sibling-siblingmerges, where two buckets with the same par-
ent are merged possibly taking some of the parent space
(since we need to enclose both siblings in a rectangular
bounding box). The motivation behind these two classes
of merges is as follows: Parent-child merges are useful to
eliminate buckets that become too similar to their parents,
e.g., when their own children cover all interesting regions

5We can think of this procedure as taking all points p 2
dom(D), \group them by est(H;p); est(H 0; p)," and process-
ing each group individually.

bp, f(bp)=100

bc, f(bc)=50
b2

b1

bn, f(bn)=150
b2

b1
Merge(bp,bc)

Figure 9: Parent-Childmerge.

and therefore carry all useful information. On the other
hand, sibling-sibling merges are useful to extrapolate fre-
quency distributions to yet unseen regions in the data do-
main, and also to consolidate buckets with similar density
that cover close regions. Below we de�ne these two merge
variants in detail.

Parent-Child Merges
Suppose we want to merge buckets bc and bp, where bp is
bc's parent. After the merge (Figure 9) a new bucket bn
replaces bp, and bucket bc disappears. The new bucket bn
has box(bn) = box(bp) and f(bn) = f(bc) + f(bp). The chil-
dren of both buckets bc and bp become children of the new
bucket bn. Therefore, we have that v(bn) = v(bc) + v(bp).
The only regions in the original histogram that change the
estimated number of tuples after the merge are bp and bc.
In conclusion, we have that:

penalty(H; bp; bc)=

����f(bp)�f(bn)v(bp)v(bn)

����| {z }
jest(H;bp)�est(H0;bp)j

+

����f(bc)�f(bn)v(bc)v(bn)

����| {z }
jest(H;bc)�est(H0;bc)j

where H 0 is the histogram that results from merging bp and
bc in H. The remaining points p in the histogram domain are
such that est(H;p) = est(H 0; p), so they do not contribute
to the merge penalty.

Sibling-Sibling Merges
Consider the merge of buckets b1 and b2, with common
parent bp (Figure 10). We �rst determine the bounding
box of the resulting bucket bn. We de�ne box(bn) as the
smallest box that encloses both b1 and b2 and does not
intersect partially with any other child of bp (that is, we
start with a bounding box that tightly encloses b1 and b2
and progressively expand it until it does not intersect par-
tially with any other child of bp). In the extreme situation
that box(bn) is equal to bp, we transform the sibling-sibling
merge of b1 and b2 into two parent-child merges, namely
b1 and bp, and b2 and bp. Otherwise, we de�ne the set
I of \participant" buckets as the set of bp's children (ex-
cluding b1 and b2) that are included in box(bn). After the
merge, the new bucket bn replaces buckets b1 and b2. In
general, bn will also contain a part of the old bp. The vol-
ume of that part is vold = vBox(bn)�

�
vBox(b1)+vBox(b2)+P

bi2I
vBox(bi)

�
. Therefore, the frequency of the new bucket

is f(bn) = f(b1)+f(b2)+f(bp)
vold
v(bp)

. Also, the modi�ed fre-

quency of bp in the new histogram becomes f(bp)
�
1� vold

v(bp)

�
.

To complete the merge, the buckets in I and the children of
the old b1 and b2 become children of the new bn. Therefore,
we have that v(bp) = vold + v(b1) + v(b2). The only regions
in the original histogram that change the estimated number
of tuples after the merge are the ones corresponding to b1,
b2, and the portion of bp enclosed by box(bn). Hence:

bp(f=85)

bn(f=35)

bp(f=100)

Merge(b1,b2)
b1(f=10)

b2(f=10)

b3

b5

b3

b4 b4

b5

Figure 10: Sibling-Sibling merge.

penalty(H; b1; b2) =

����f(bn) vold

v(bn)
� f(bp)

vold

v(bp)

����| {z }
jest(H;rold)�est(H0;rold)j

+

+

����f(b1)� f(bn)
v(b1)

v(bn)

����| {z }
jest(H;b1)�est(H0;b1)j

+

����f(b2)� f(bn)
v(b2)

v(bn)

����| {z }
jest(H;b2)�est(H0;b2)j

where H 0 is the histogram that results from merging b1 and
b2 in H, and rold is the portion of the old bucket bp covered
by the new bucket bn. The remaining points p in the his-
togram domain are such that est(H;p) = est(H 0; p), so they
do not contribute to the merge penalty.

Putting all pieces together, we are now ready to re�ne the
STHoles construction algorithm from the beginning of this
section as follows:

BuildAndRe�ne (H: STHoles, D:Data Set,

W: Workload)

Initialize H with no buckets (empty histogram)
// Or use an existing histogram if available

for each query q 2 W do
if q is not contained in H, expand H's root

bucket so that it contains q.
Count, for all buckets bi, the number of

tuples in q \ bi, Tbi
for each bucket bi such that q \ bi 6= ; do

// approximate shape if necessary
(ci; Tci) = Shrink (bi; q; Tbi)
if (est(H, ci)6= Tci) then

DrillHole(bi, ci, Tci)
end for
while H has too many buckets, merge the pair

of buckets in H with the lowest penalty
end for

5. EXPERIMENTAL SETTING
This section de�nes the data sets, histograms, and work-

loads used for the experiments of Section 6.

5.1 Data Sets
We use both synthetic and real data sets for the experi-

ments. The real data sets we consider [2] are: Census2D and
Census3D (two- and three-dimensional projections of a frag-
ment of US Census Bureau data) consisting of 210,138 tu-
ples, and Cover4D (four-dimensional projection of the Cov-
Type database, used for predicting forest cover types from
cartographic variables), consisting of 545,424 tuples. We
also generated synthetic data sets for our experiments fol-
lowing di�erent data distributions, as described below.
Gauss: The Gauss synthetic distributions [23] consist of

a predetermined number of overlapping multidimensional

gaussian bells. The parameters for these data sets are: the
number of gaussian bells p, the standard deviation of each
peak �, and a zip�an parameter z that regulates the total
number of tuples contained in each gaussian bell.
Array: These data sets were used in [1]. Each dimension

has v distinct values, and the value sets of each dimension
are generated independently. Frequencies are generated ac-
cording to a zip�an distribution and assigned to randomly
chosen cells in the joint frequency distribution matrix. The
parameters for this data set are the number of distinct at-
tributes by dimension v, and the zip�an value for the fre-
quencies z. When all the data points are equidistant, this
data set can be seen as an instance of the Gauss data set
with � = 0 and p = vd.
The default values for the synthetic data set parameters

are summarized in Table 1.

Data Set Attribute Value

d: Dimensionality 2
All N : Cardinality 500,000

R: Data domain [0 : : : 1000)d

z: Skew 1
Gauss p: Number of peaks 100

�: Peaks' standard deviation 25
Array v: Distinct attribute values 100

Table 1: Default values for the synthetic data sets.

5.2 Histograms
We compare our STHoles histograms against the following

multidimensional histograms: EquiDepth [14], MHist based
on MaxDi�(v,a) [21], STGrid [1] and GenHist [7], using the
values of parameters that the respective authors considered
the best. (See Section 2 for a summary of these techniques.)
All experiments allocate the same amount of memory for
all histograms techniques, which however translates to dif-
ferent numbers of buckets for each. Consider the space re-
quirements for B d-dimensional buckets. Both EquiDepth
and MHist histograms require 2 � d �B values for the bucket
boundaries plus B frequency values. STGrid histograms
need B values for frequencies plus around d

p
B values for

the unidimensional rulers [1]. GenHist histograms require
2 � B values for bucket positions plus B frequency values.
Finally, STHoles histograms use 2 � d � B values for bucket
boundaries, B values for frequencies, and 2 � B pointers for
maintaining the tree structure, since each bucket needs to
point to its \�rst" child plus a sibling 6. By default, the
available memory for a histogram is �xed to 1,000 bytes.

5.3 Workloads
We use a slightly modi�ed version of the framework given

in [18] to generate probabilistic models for range queries.
Given a data set, a range query model is de�ned as a pair
hC;R[v]i, where C is the distribution of the query centers,
R is a function that constrains the query boundaries, and
v is a constant value for R. To obtain a workload given a
query model, we �rst generate the query centers using C and
then expand their boundaries so they follow R[v]. For our
experiments, we consider the following center distributions,
which are considered representative of user behavior [18]:

6Note that this analysis does not account for the temporary
space needed for merge-penalty bookkeeping [3], which is
only kept during histogram re�nement.

- Data: The query centers follow the data distribution.

- Uniform: The query centers are uniformly distributed
in the data domain.

- Gauss: The query centers follow a Gauss distribution
independent of the data distribution.

The range constraints we used for our experiments are:

- V[cv]: The range queries are hyper-rectangles included
in a hypercube of volume cv, and model the cases in
which the user speci�es the query values in terms of a
window area.

- T[ct]: The range queries are hyper-rectangles that
cover a region with ct tuples, and model the situa-
tions in which the user has knowledge about the data
distribution and issues queries with the intention of
retrieving a given number of tuples.

Parameters cv and ct are speci�ed as a percentage of the
total volume and number of tuples of the data distribution,
respectively.
By combining these parameters we obtain six di�erent

probabilistic models for query workloads. By default, we
use 1% for both cv and ct. As an example, the query model
hData; T [1%]i results in queries with centers that follow the
data distribution and contain 1% of the tuples in the data
set. Similarly, the query model hGauss; V [1%]i corresponds
to queries with centers that follow a multi-gaussian distri-
bution and have an average volume of around 1% of the
data domain. Figure 11 shows two sample workloads of 50
queries each for the Census2D data set.

(a) Census2D (b) hData; T [1%]i (c) hGauss; V [1%]i
data set. workload. workload.

Figure 11: Two workloads for the Census2D data set.

5.4 Metrics
To compare our new technique against existing ones, we

�rst construct a training workload that consists of 1,000
queries and use it to tune the STHoles and STGrid his-
tograms. Then, we generate a validation workload from the
same distribution as the training workload that also consists
of 1,000 queries, and calculate the average absolute error for
all the histograms. Given a data set D, a histogram H,
and a validation workload W , the average absolute error
E(D;H;W) is calculated as follows:

E(D;H;W) =
1

jW j
X
q2W

��est(H;q)� act(D; q)
��

where est(H;q) is the estimate of the number of tuples in
the result of q, using histogram H for the estimation, and
act(D; q) is the actual number of D tuples in the result of q.
We choose average absolute errors as the accuracy met-

ric, since relative errors tend to be less robust when the

actual number of tuples for some queries is zero or near
zero. In general, however, absolute errors greatly vary across
data sets, making it diÆcult to report results for di�erent
data sets. Therefore, for each experiment, we normalize
the average absolute error by dividing it by Eunif (D;W) =
1

jW j

P
q2W

��estunif (D;q) � act(D;q)
��, where estunif (D; q)

is the result size estimate obtained by assuming uniformity,
i.e., in the case where no histograms are available. We refer
to the resulting metric as Normalized Absolute Error.

6. EXPERIMENTAL EVALUATION
In Section 6.1 we evaluate the performance of STHoles

histograms against that of existing techniques. Section 6.2
shows some additional experiments that explore speci�c as-
pects of STHoles histograms.

6.1 Comparison of STHoles and Other His-
togram Techniques

Accuracy of Histograms.Figure 12 shows normalized ab-
solute errors for di�erent histograms, data sets and work-
loads. We can see from the �gures that the techniques that
are based on truly multidimensional analysis of the data,
i.e., STHoles and GenHist, result in better accuracy than
the others. In particular, STHoles histograms give better
results than EquiDepth, MHist and STGrid in virtually all
cases. On the other hand, STHoles and GenHist are com-
parable in accuracy, and although STHoles histograms do
not directly inspect the data distributions, in many cases
they outperform GenHist histograms. The only dataset
in which GenHist results in signi�cantly better accuracy
than STHoles is Cover4D (see Figure 12). For this high-
dimensional data set, the ability to capture interesting data
patterns based only on workload information is diminished.
However, it is important to note that, even for high dimen-
sions, STHoles histograms still produce better results than
do MHist, EquiDepth, and STGrid histograms. GenHist
has a high error rate of 75% for the Array data set with
the hData; T [1%]i workload. This may be due to the choice
of histogram construction parameter values in [7], which is
independent of the underlying data set. In general, note
that STHoles, GenHist and, to a limited extent, EquiDepth
histograms are \robust" across di�erent data sets and work-
loads, in the sense that they consistently produce reasonable
results. In contrast, STGrid and MHist become too inaccu-
rate for some combinations of data sets and workloads.

Robustness across Workloads.Figure 13(a-f) shows the
normalized absolute error for di�erent data sets and for vary-
ing selectivity s for workloads hData; V [s]i and hData; T [s]i,
respectively. We can see that in almost all cases STHoles
histograms outperform traditional techniques. Even in the
few cases that STHoles histograms are not the most accu-
rate, they are a close second, with only one exception. Our
technique is not too accurate in Figure 13(d) for tuple selec-
tivity ct = 0:1% (and neither are MHist and STGrid). This
is mainly because in the Gauss data set the hData; T [0:1%]i
workload consists of many small and disjoint queries. This
workload is inevitably bad for any histogram re�nement
technique like STHoles that bases all decisions on query
feedback, without examining the actual data sets at any
time. If such workloads are expected, we can start the con-

0%

20%

40%

60%

80%

100%

Array Gauss Census2D Census3D Cover4D

N
or

m
al

iz
ed

A
bs

ol
ut

e
E

rr
or

STHoles GenHist STGrid Equi-Depth MHist

0%

20%

40%

60%

80%

100%

Array Gauss Census2D Census3D Cover4D

N
or

m
al

iz
ed

A
bs

ol
ut

e
E

rr
or

STHoles GenHist STGrid Equi-Depth MHist

0%

20%

40%

60%

80%

100%

Array Gauss Census2D Census3D Cover4D

N
or

m
al

iz
ed

A
bs

ol
ut

e
E

rr
or

STHoles GenHist STGrid Equi-Depth MHist

(a) hData; V [1%]i. (b) hUniform; V [1%]i. (c) hGauss; V [1%]i.

0%

20%

40%

60%

80%

100%

Array Gauss Census2D Census3D Cover4D

N
or

m
al

iz
ed

A
bs

ol
ut

e
E

rr
or

STHoles GenHist STGrid Equi-Depth MHist

0%

20%

40%

60%

80%

100%

Array Gauss Census2D Census3D Cover4D

N
or

m
al

iz
ed

A
bs

ol
ut

e
E

rr
or

STHoles GenHist STGrid Equi-Depth MHist

0%

20%

40%

60%

80%

100%

Array Gauss Census2D Census3D Cover4D

N
or

m
al

iz
ed

A
bs

ol
ut

e
E

rr
or

STHoles GenHist STGrid Equi-Depth MHist

(d) hData; T [1%]i. (e) hUniform; T [1%]i. (f) hGauss; T [1%]i.
Figure 12: Normalized absolute error for di�erent histograms, data sets and validation workloads.

struction of the STHoles histograms (Section 4.2) with a
more informed representation of the data set. In particu-
lar, we can use an existing histogram (e.g., EquiDepth) as
the starting point for our technique in the algorithm of Sec-
tion 4.2. We implemented and tested the accuracy of the
histograms that result from starting with an EquiDepth his-
togram and turning it into an STHoles histogram through
workload re�nement. The results are highly accurate for
a variety of data sets and workloads. In particular, for
the Gauss data set and hData; T [0:1%]i workload in Fig-
ure 13(d), this alternative version of STHoles results in 42%
of normalized absolute error, i.e., comparable with GenHist,
the most accurate histogram for that particular con�gura-
tion.
We also varied data set skew and dimensionality for the

synthetic data sets. The results we obtained are similar to
those we have presented so far, but we do not report those
�gures due to space constraints. We refer the reader to the
full version of the paper [3] for more details. In conclu-
sion, although for some particular con�gurations STHoles
histograms are slightly outperformed by others (notably in
one data point of Figure 13(d)), in general STHoles is a sta-
ble technique across di�erent workloads and data sets, and
in many cases results in signi�cantly lower estimation errors
than multidimensional histograms that inspect the data sets.

Effect of Varying the Available Storage.Figure 14 shows
the normalized absolute error for the Census2D, Gauss, and
Array databases for varying histogram size. The errors are
presented for histograms using from 500 to 2,000 bytes of
memory. STHoles histograms scale comparably to tradi-
tional histograms for the whole range of available memory.

6.2 ExperimentsSpecific to HistogramRefine-
ment

Convergence.Our techniques for building STHoles his-
tograms keep adjusting the histograms as queries are eval-

uated. We now study how the quality of the STHoles his-
tograms varies with the number of observed queries. To do
so, we train the STHoles histogram 50 queries at a time,
and after each step we calculate the normalized absolute er-
ror using the complete validation workload. Figure 15 shows
the results for di�erent data sets and workloads. We can see
that STHoles histograms converge fairly quickly, and gener-
ally need only around 150-200 queries to get stable results.

Effect of Updates.Data sets are rarely static, and the data
distribution might change over time. We now evaluate how
well our new techniques adapts to changing data distribu-
tions. For this, we start with the Array and Gauss data sets,
and progressively \morph" one into the other using random
tuple swaps. Each column of four points in Figure 16 repre-
sents a di�erent experiment where we vary the percentage of
tuples that are swapped between the two data sets. For in-
stance, in Figure 16(a) we start with the Array data set. We
build the static GenHist, MHist and EquiDepth histograms
using this data set, and train the STHoles and STGrid his-
tograms using the �rst half of a hData; V [1%]i workload.
Then, we randomly select a percentage of tuples from the
original Array data set and interchange them with randomly
selected tuples from the Gauss data set. After that, we
�nish the training of the STHoles and STGrid histograms
using the remaining half of the workload. Finally, we test
all histograms using a validation hData; V [1%]i workload.
Analogously, Figure 16(b) shows the results when starting
with a Gauss data set and changing it to an Array data set.
Not surprisingly, we can see that the static histograms be-

come really inaccurate when the underlying data distribu-
tion changes. In some cases the results are even worse than
when assuming uniformity and independence, which high-
lights that periodically rebuilding such multidimensional his-
tograms is essential (we include in the plots these static his-
tograms just to quantify this behavior). In contrast, both
STGrid and STHoles adapt gracefully to changes in the data
distribution. For STHoles histograms we observe almost no

0%

20%

40%

60%

80%

0.10% 1% 10%
Spatial selectivity cv

N
or

m
al

iz
ed

A
bs

ol
ut

e
E

rr
or

STHoles GenHist STGrid Equi-Depth MHist

0%

5%

10%

15%

20%

25%

0.10% 1% 10%
Spatial selectivity cv

N
or

m
al

iz
ed

A
bs

ol
ut

e
E

rr
or

STHoles GenHist STGrid Equi-Depth MHist

0%

10%

20%

30%

40%

50%

0.10% 1% 10%
Spatial selectivity cv

N
or

m
al

iz
ed

A
bs

ol
ut

e
E

rr
or

STHoles GenHist STGrid Equi-Depth MHist

(a) Gauss data set. (b) Array data set. (c) Census2D data set.

0%

20%

40%

60%

80%

100%

0.10% 1% 10%

Tuple selectivity ct

N
or

m
al

iz
ed

A
bs

ol
ut

e
E

rr
or

STHoles GenHist STGrid Equi-Depth MHist

0%

25%

50%

75%

100%

0.10% 1% 10%
Tuple selectivity ct

N
or

m
al

iz
ed

A
bs

ol
ut

e
E

rr
or

STHoles GenHist STGrid Equi-Depth MHist

0%

25%

50%

75%

100%

0.10% 1% 10%
Tuple selectivity ct

N
or

m
al

iz
ed

A
bs

ol
ut

e
E

rr
or

STHoles GenHist STGrid Equi-Depth MHist

(d) Gauss data set. (e) Array data set. (f) Census2D data set.

Figure 13: Normalized absolute error using hData; T [ct]i for varying spatial (cv) and tuple (ct) selectivity.

0%

20%

40%

60%

80%

500 1000 1500 2000
Bytes

N
or

m
al

iz
ed

A
bs

ol
ut

e
E

rr
or

STHoles GenHist STGrid Equi-Depth MHist

0%

10%

20%

30%

500 1000 1500 2000
Bytes

N
or

m
al

iz
ed

A
bs

ol
ut

e
E

rr
or

STHoles GenHist STGrid Equi-Depth MHist

0%

10%

20%

30%

40%

50%

500 1000 1500 2000
Bytes

N
or

m
al

iz
ed

A
bs

ol
ut

e
E

rr
or

STHoles GenHist STGrid Equi-Depth MHist

(a) Gauss data set. (b) Array data set. (c) Census2D data set.

Figure 14: Normalized absolute error for varying histogram sizes.

degradation even when changing the data set completely.
That is not the case for STGrid histograms. For instance,
in Figure 16(b) we can see that STHoles keeps the error rate
below 17% at all times, while STGrid results in over 67% of
normalized absolute error for 100% tuple interchanges.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a new histogram construction

technique, STHoles, that exploits query workload and does
not require examining the data sets. STHoles histograms al-
low buckets to be nested, and are tuned to the speci�c query
workload received by the database system. Hence, buckets
are allocated where needed the most as indicated by the
workload, which leads to accurate query selectivity estima-
tions. We established the robustness of the new histograms
through extensive experimentation using a variety of syn-
thetic and real-world data sets, as well as a variety of query
workloads. We also experimentally compared STHoles his-
tograms against existing multidimensional histogram tech-
niques. We showed that, in many cases, STHoles results
in more accurate selectivity estimations for the expected
workload than those for GenHist histograms, a technique
that requires at least 5 to 10 scans over the whole data
set during histogram construction and that generally domi-

nates the other existing multidimensional histograms in ac-
curacy. Finally, we established that the overhead of our
technique is acceptable through an implementation over Mi-
crosoft's SQL-Server 2000 (see [3] for a detailed discussion).
As future work, we plan to extend the estimation techniques
to complex queries involving joins in addition to selection
conditions. For such queries, these estimations might in-
volve several STHoles histograms. This extension will en-
able seamless integration of STHoles histograms into com-
mercial database management systems.

8. REFERENCES
[1] A. Aboulnaga and S. Chaudhuri. Self-tuning histograms:

Building histograms without looking at data. In
Proceedings of the 1999 ACM International Conference on
Management of Data (SIGMOD'99), 1999.

[2] C. Blake and C. Merz. UCI repository of machine learning
databases, 1998.

[3] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A
multidimensional workload-aware histogram. Technical
Report MSR-TR-2001-36, Microsoft Research, 2001.
Accessible at ftp://ftp.research.microsoft.com/pub/-
tr/tr-2001-36.pdf.

[4] C.-M. Chen and N. Roussopoulos. Adaptive selectivity
estimation using query feedback. In Proceedings of the 1994
ACM SIGMOD International Conference on Management

0%

20%

40%

60%

80%

100%

0 25 50 75 100 125 150 175 200 225 250
of queries

N
or

m
al

iz
ed

A
bs

ol
ut

e
E

rr
or

Gauss Array Census2D Census3D Cover4D

0%

30%

60%

90%

120%

150%

0 25 50 75 100 125 150 175 200 225 250
of queries

N
or

m
al

iz
ed

A
bs

ol
ut

e
E

rr
or

Gauss Array Census2D Census3D Cover4D

(a) hData; V [1%]i workload. (b) hUniform; V [1%]i workload.
Figure 15: Normalized absolute error at di�erent points of the online training.

0%

30%

60%

90%

120%

10% 25% 50% 75% 100%
Percentage of swaps

N
or

m
al

iz
ed

A
bs

ol
ut

e
E

rr
or

STHoles GenHist STGrid Equi-Depth MHist

0%

30%

60%

90%

120%

150%

10% 25% 50% 75% 100%
Percentage of swaps

N
or

m
al

iz
ed

A
bs

ol
ut

e
E

rr
or

STHoles GenHist STGrid Equi-Depth MHist

(a) Array! Gauss. (b) Gauss! Array.

Figure 16: Normalized absolute error after updates.

of Data, 1994.
[5] D. Donjerkovic, Y. Ioannidis, and R. Ramakrishnan.

Dynamic histograms: Capturing evolving data sets. In
Proceedings of the 16th International Conference on Data
Engineering, 2000.

[6] P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental
maintenance of approximate histograms. In VLDB'97,
Proceedings of 23rd International Conference on Very
Large Data Bases, 1997.

[7] D. Gunopulos, G. Kollios, V. J. Tsotras, and
C. Domeniconi. Approximating multi-dimensional
aggregate range queries over real attributes. In Proceedings
of the 2000 ACM International Conference on
Management of Data (SIGMOD'00), 2000.

[8] Y. Ioannidis. Query optimization. In Handbook for
Computer Science. CRC Press, 1997.

[9] Y. E. Ioannidis and V. Poosala. Balancing histogram
optimality and practicality for query result size estimation.
In Proceedings of the 1995 ACM International Conference
on Management of Data (SIGMOD'95), 1995.

[10] Y. E. Ioannidis and V. Poosala. Histogram-based
approximation of set-valued query-answers. In VLDB'99,
Proceedings of 25th International Conference on Very
Large Data Bases, September 7-10, 1999, Edinburgh,
Scotland, UK, 1999.

[11] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala,
K. C. Sevcik, and T. Suel. Optimal histograms with quality
guarantees. In Proceedings of the Twenty-fourth
International Conference on Very Large Databases
(VLDB'98), 1998.

[12] J.-H. Lee, D.-H. Kim, and C.-W. Chung. Multi-dimensional
selectivity estimation using compressed histogram
information. In Proceedings of the 1999 ACM International
Conference on Management of Data (SIGMOD'99), 1999.

[13] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based
histograms for selectivity estimation. In Proceedings of the
1998 ACM International Conference on Management of
Data (SIGMOD'98), 1998.

[14] M. Muralikrishna and D. J. DeWitt. Equi-depth histograms
for estimating selectivity factors for multi-dimensional
queries. In Proceedings of the 1988 ACM International
Conference on Management of Data (SIGMOD'88), 1988.

[15] M. Muralikrishna and D. J. DeWitt. Equi-depth histograms
for estimating selectivity factors for multidimensional
queries. In Proceedings of the 1988 ACM International
Conference on Management of Data (SIGMOD'88), 1988.

[16] S. Muthukrishnan, V. Poosala, and T. Suel. On rectangular
partitionings in two dimensions: Algorithms, complexity,
and applications. In Database Theory - ICDT '99, 7th
International Conference, 1999.

[17] F. Olken and D. Rotem. Random sampling from database
�les: A survey. In Statistical and Scienti�c Database
Management, 5th International Conference SSDBM, 1990.

[18] B.-U. Pagel, H.-W. Six, H. Toben, and P. Widmayer.
Towards an analysis of range query performance in spatial
data structures. In Proceedings of the Twelfth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, 1993.

[19] G. Piatetsky-Shapiro and C. Connell. Accurate estimation
of the number of tuples satisfying a condition. In
Proceedings of the 1984 ACM International Conference on
Management of Data (SIGMOD'84), 1984.

[20] V. Poosala and V. Ganti. Fast approximate answers to
aggregate queries on a data cube. In 11th International
Conference on Scienti�c and Statistical Database
Management, Proceedings, Cleveland, Ohio, USA, 28-30
July, 1999, 1999.

[21] V. Poosala and Y. E. Ioannidis. Selectivity estimation
without the attribute value independence assumption. In
Proceedings of the Twenty-third International Conference
on Very Large Databases (VLDB'97), 1997.

[22] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita.
Improved histograms for selectivity estimation of range
predicates. In Proceedings of the 1996 ACM International
Conference on Management of Data (SIGMOD'96), June
1996.

[23] S. A. William, H. Press, B. P. Flannery, and W. T.
Vetterling. Numerical recipes in C: The art of scienti�c
computing. Cambridge University Press, 1993.

