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1. INTRODUCTION

The Internet has grown dramatically over the past few years. Document
sources are available everywhere, both within the internal networks of
organizations and on the Internet. This growth represents an incredible
wealth of information. Our goal is to help an end user find documents of
interest across potential sources on the Internet.

There are a number of options for searching over a large and distributed
collection of documents, each with its own strengths and weaknesses.
Solutions fall into two broad categories: single versus distributed search
engines. A single search engine builds a full index of the entire collection,
by scanning all documents. Some systems (e.g., Web search engines)
discard the documents and only retain the index with pointers to the
original documents; other systems warehouse the documents themselves,
providing users with access to both the index and the documents (e.g.,
Dialog, Mead Data). The index may be partitioned by topic or subcollection,
but is managed by a single search engine.

The second option is to index documents through multiple engines, each
run by the organization owning each source of documents. A global search
is managed by a metasearcher that interacts with the individual source
engines. One alternative for metasearching is to send a user query to all
engines and collect the results (e.g., MetaCrawler [Selberg and Etzioni
1995]). The user can then be directed to sites that have matching docu-
ments or to particular documents at those sites.

Another option for the multiple source scenario, one we explore in depth
in this paper, is to obtain from the engines in advance metadata that can
guide queries to sources that have many matching documents. This re-
quires the cooperation of the engines, i.e., they must export metadata
describing their collection. When the metasearcher receives a user query, it
consults its collected metadata and suggests to the user sources to try. This
solution may not be as accurate as submitting the query to all sources,
since the suggestions are only based on collection metadata. However, the
query overhead is much less, since queries are not executed everywhere.
We call the problem of identifying document sources based on exported
metadata the text-source discovery problem.

In this paper we focus on the multiple-engine scenario, and study
solutions to the text-source discovery problem. We call our family of
solutions GlOSS, for Glossary-of-Servers Server. In particular GlOSS meta-
searchers use statistical metadata, e.g., how many times each term occurs
at each source. As we show, these “summaries” are small relative to the
collection, and because they only contain statistics will be much easier for a
source to export. Statistical summaries can be obtained mechanically, and
hence are superior to manually produced summaries that are often out of
date. Similarly, since they summarize the entire collection, they are better
than summaries based on a single field (such as titles). As we will see,
GlOSS works best with a large collection of heterogeneous data sources.
That is, the subject areas covered by the different data sources are very
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distinct from each other. In this case, the statistical summaries used by
GlOSS strongly distinguish each source from the others.

It is important to note that in this paper we do not compare the single
and multiple engine scenarios. First, in many cases one is not given a
choice. For example, the documents may be owned by competing organiza-
tions that do not wish to export their full collections. On the Web, for
instance, growing numbers of documents are only available through search
interfaces, and hence unavailable to the crawlers that feed search engines.
Second, if we do have a choice, the factors to consider are very diverse:
copyright issues regarding the indexing or warehousing of documents, the
cost and scalability (storage, operations) of maintaining a single index, the
frequency at which new documents are indexed, and the accuracy of the
results obtained. Instead, we only consider a multiple-engine scenario, and
study GlOSS solutions to the text-discovery problem. We compare the
“accuracy” of these solutions to what could be obtained by sending a query
to all underlying search engines.

Also note that in this paper we do not study how a user submits queries
to the individual sources. That is, once GlOSS suggests sources, the user
must submit the query there. The user or some translation service must
express the query using the particular syntax and operators used by a
source. Similarly, the user may wish to combine and rank the results
obtained at different sources. These are hard problems that are addressed
in other papers [Chang et al. 1996; Gravano et al. 1997; Gravano and
García-Molina 1997].

In summary, the contributions of this paper are as follows:

—We present a version of GlOSS (vGlOSS) that works with vector-space
search engines [Salton 1989; Salton and McGill 1983]. (These engines
treat both the documents and the queries themselves as weight vectors.)

—We describe a text-source discovery service for Boolean engines, bGlOSS.
These engines, while not as sophisticated, are still widely used.

—We define metrics for evaluating text-source discovery services.

—We experimentally evaluate vGlOSS and bGlOSS, using real document
databases. We note that even though discovery schemes for Internet
sources have been proposed and implemented by others, it is rare to find
an experimental evaluation like ours that carefully compares the various
options.

—We analyze the GlOSS storage requirements, showing that a GlOSS
index is significantly smaller than a full conventional index. We also
discuss ways to further reduce storage needs.

—We briefly describe how GlOSS services can form a hierarchy. In such a
case, services that only index a fraction of the sources can be accessed by
a higher level GlOSS service.
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We start in Sections 2 and 3 by presenting and evaluating our vGlOSS
and bGlOSS services. In Section 4 we discuss storage requirements,
hierarchical discovery schemes, and other issues. Finally, in Section 5 we
briefly survey related techniques, some of which could work in conjunction
with GlOSS.

2. CHOOSING VECTOR-SPACE DATABASES

In this section we present vGlOSS, a text-source discovery service that
deals with vector-space databases and queries [Gravano and García-Molina
1995a].

2.1 Overview of the Vector-Space Retrieval Model

Under the vector-space model, documents and queries are conceptually
represented as vectors [Salton 1989]. If m distinct words are available for
content identification, a document d is represented as a normalized
m-dimensional vector, D 5 ^w1, . . . , wm&, where wj is the “weight” as-
signed to the jth word tj. If tj is not present in d, then wj is 0. For example,
the document with vector D1 5 ^0.5, 0, 0.3, . . . ,& contains the first word
in the vocabulary (say, by alphabetical order) with weight 0.5, does not
contain the second word, and so on.

The weight for a document word indicates how statistically important it
is. One common way to compute D is to first obtain an unnormalized vector
D9 5 ^w91, . . . , w9m&, where each w9 i is the product of a word frequency (tf)
factor and an inverse document frequency (idf) factor. The tf factor is equal
(or proportional) to the frequency of the ith word within the document. The
idf factor corresponds to the content discriminating power of the i-th word:
a word that appears rarely in documents has a high idf, while a word that
occurs in a large number of documents has a low idf. Typically, idf is
computed by log~n/di!, where n is the total number of documents in the
collection, and di is the number of documents with the ith word. (If a word
appears in every document, its discriminating power is 0. If a word appears
in a single document, its discriminating power is as large as possible.) Once
D9 is computed, the normalized vector D is typically obtained by dividing
each w9i term by ÎO

i51
m ~w9i!

2.
Queries in the vector-space model are also represented as normalized

vectors over the word space, Q 5 ^q1, . . . , qm&, where each entry indi-
cates the importance of the word in the search. Often queries are written by
a user in natural language. In this case, qj is typically a function of the
number of times word tj appears in the query string times the idf factor for
the word. The similarity between a query q and a document d, sim~q, d!, is
defined as the inner product of the query vector Q and the document vector
D. That is,
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sim~q, d! 5 Q z D 5 O
j51

m

qj z wj.

Notice that similarity values range between zero and one, inclusive, be-
cause Q and D are normalized.

Ideally, a user would like to find documents with the highest similarity to
some query. It is important to notice that similarity is always relative to
some collection. That is, the same document may be given different vectors
by two different search engines, due to the different idf factors used. Thus,
one engine may judge the document relevant to a query, while the second
one may not.

2.2 Evaluating Databases

Given a query, we would like to rank the available vector-space databases
according to their “usefulness,” or goodness for the query. In this section we
present one possible definition of goodness, with its associated ideal data-
base rank. (The next section explores how vGlOSS tries to rank the
databases as closely as possible to this ideal rank.) The goodness of a
database depends on the number of documents in the database that are
reasonably similar to the given query and on their actual similarity to the
query. The best databases are those with many documents that are highly
similar to the query in hand. However, a database might also have a high
goodness value if it holds a few documents with very high similarity, or
many documents with intermediate similarity to the query.

Our goodness definition is based solely on the answers (i.e., the document
ranks and their scores) that each database produces when presented with
the query in question. This definition does not use the relevance of the
documents to the end user who submitted the query. (The effectiveness of
information retrieval searching is based on subjective relevance assess-
ments [Salton and McGill 1983].) Using relevance would be appropriate for
evaluating the search engines at each database; instead, we are evaluating
how well vGlOSS can predict the answers that the databases return. In
Section 2.6 we discuss our choice further, and analyze some of the possible
alternatives that we could have used.

To define the ideal database rank for a query q, we need to determine
how good each database db is for q. In this section we assume that all
databases use the same algorithms to compute weights and similarities. We
consider that the only documents in db that are useful for q are those with
a similarity to q greater than a user-provided threshold l. Documents with
lower similarity are unlikely to be useful, and therefore we ignore them.
Thus, we define:

Goodness~l, q, db! 5 O
d[Rank~l, q, db!

sim~q, d! (1)

where sim~q, d! is the similarity between query q and document d, and
Rank~l, q, db! 5 $d [ db|sim~q, d! . l%. The ideal rank of databases
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Ideal~l! is then determined by sorting the databases according to their
goodness for the query q.

Example 1. Consider two databases, db1 and db2, a query q, and the
answers that the two databases give when presented with query q:

db1 : ~d1
1, 0.9!, ~d2

1, 0.9!, ~d3
1, 0.1!

db2 : ~d1
2, 0.8!, ~d2

2, 0.4!, ~d3
2, 0.3!, ~d4

2, 0.1!

In the example, db1 returns documents d1
1, d2

1, and d3
1 as its answer to q.

Documents d1
1 and d2

1 are ranked the highest in the answer because they
are the “closest” to query q in database db1 (similarity 0.9). To determine
how good each of these databases is for q, we use Eq. (1). If threshold l is
0.2 (i.e., the user is willing to examine every document with similarity to q
higher than 0.2), the goodness of db1 is Goodness~0.2, q, db1! 5 0.9 1
0.9 5 1.8, because db1 has two documents, d1

1 and d2
1, with similarity

higher than 0.2. Similarly, Goodness~0.2, q, db2! 5 0.8 1 0.4 1 0.3 5
1.5. Therefore, Ideal~0.2! is db1, db2.

The goodness of a database tries to quantify how useful the database is
for the user that issued the query. It does so by examining the document-
query similarities as computed by each local source. As mentioned earlier,
these similarities can depend on the characteristics of the collection that
contains the document and may not be “globally valid.” For example, if a
database db1 specializes in computer science, the word databases might
appear in many of its documents, and its idf factor will be low. The word
databases, on the other hand, may have a high idf factor in a database db2

that is totally unrelated to computer science and contains very few docu-
ments with that word. Consequently, db1 might assign its documents a low
score for a query containing the word databases, while db2 assigns a few
documents a high score for that query. The Goodness definition of Eq. (1)
might then determine that db2 is better than db1, while db1 is the best
database for the query. In Section 2.6 we further discuss this problem,
together with alternative ways of defining Goodness.

2.3 Ranking Databases

vGlOSS ranks databases according to their potential usefulness for a given
query. The goal is to approximate the Ideal~l! database rank as closely as
possible, for which vGlOSS should know the number of documents in each
database with similarity to the query greater than l, and to add their
similarities (Section 2.2). To perform this task, vGlOSS keeps information
about the available databases. One option is for vGlOSS to keep complete
information on each database: for each database db and word t, vGlOSS
would know what documents in db contain t, what weight t has in each of
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them, and so on. Although vGlOSS’s answers would always match the
Ideal~l! ranks (if this information is kept up to date), the storage require-
ments of such an approach would be too high: vGlOSS needs to index many
databases, and keeping so much information on each of them does not
scale. Furthermore, this information might not be available for commercial
databases, for example.

More reasonable solutions keep incomplete yet useful information on the
databases. In this section we explore some options for vGlOSS that require
one or both of the following matrices:

—F 5 ~fij!: fij is the number of documents in database dbi that contain
word tj;

—W 5 ~wij!: wij is the sum of the weight of word tj over all documents in
database dbi.

In other words, for each word tj and each vector-space database dbi,
vGlOSS needs (at most) two numbers. This partial information also proves
useful for estimating database ranks that resemble the ideal one, as we see
in Section 2.5.2. Furthermore, this information is orders of magnitude
smaller than that required by a full-text index of the databases (Section
4.1).

To obtain the fi* and wi* values for database dbi, vGlOSS may have to
periodically run a collector program that extracts this information from the
local indexes and sends it to the vGlOSS server. An alternative architec-
ture uses the STARTS protocol [Gravano et al. 1997] to export summaries
from the source to the server. STARTS is an emerging protocol proposal for
Internet searching coordinated by Stanford, which involved over ten com-
panies and organizations. STARTS specifies that sources should export
content summaries that closely resemble the vGlOSS summaries.

Example 2. Consider a database db and the word computer. Suppose
the following are the documents in db with the word computer in them,
together with the associated weights:

computer : ~d1, 0.8!, ~d2, 0.7!, ~d3, 0.9!, ~d8, 0.9!

That is, document d1 contains the word computer with weight 0.8, docu-
ment d2, with weight 0.7, and so on. Database db does not export all this
information to vGlOSS: it only tells vGlOSS that the word computer
appears in four documents in database db, and that the sum of the weights
with which the word appears in the documents is 0.8 1 0.7 1 0.9 1 0.9
5 3.3.

vGlOSS could compare a query q and a database dbi analogously to how
queries and documents are compared. That is, it could treat dbi as a
“document” with vector D 5 ^wi1, . . . , wim&, normalize the vector, and
then compute sim~q, dbi!. However, we are interested in finding the
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databases that contain useful documents for the queries, not databases
that are “similar” to the given queries. The definitions of the vGlOSS ranks
below reflect this fact.

Also, note that the vectors with which vGlOSS represents each database
can be viewed as cluster centroids [Salton 1989] used in information
retrieval techniques. In these techniques, a cluster centroid is a vector that
represents a collection of documents that are “near” each other according to
some clustering algorithm. When an information retrieval engine processes
a query, it compares the query against the cluster centroids using a
similarity function, and retrieves the documents in the clusters with
matching centroids. Thus, GlOSS can be viewed as one such system, where
each database is considered as a single document cluster represented by a
centroid.

As mentioned above, vGlOSS estimates the number of documents with
similarity to a given query greater than a threshold l, and their added
similarity. Because the information that vGlOSS keeps about each data-
base is incomplete, it has to make assumptions about the distribution of
query keywords and weights across the documents of each database. These
assumptions allow vGlOSS to compute database ranks that approximate
the Ideal~l! rank. The following sections present Max~l! and Sum~l!, two
such database ranks based on different underlying keyword distribution
assumptions. Max~l! assumes that query keywords occur together in the
database documents, while Sum~l! is at the other end of the spectrum, and
assumes that query keywords do not occur together in the database
documents.

2.3.1 High-Correlation Scenario. To derive Max~l!, the first database
rank with which vGlOSS estimates the Ideal~l! database rank in Section
2.2, vGlOSS assumes that if two words appear together in a user query,
then these words will appear in the database documents with the highest
possible correlation:

Assumption 1. If query keywords t1 and t2 appear in fi1 and fi2 docu-
ments in database dbi, respectively, and fi1 # fi2, then every dbi document
that contains t1 also contains t2.

Because this assumption is unrealistic, in Section 2.3.2 we introduce an
alternative assumption that can be regarded as the opposite of Assumption
1. In Section 2.5 we compare experimentally these two computationally
tractable extreme cases, and we analyze the circumstances under which
one outperforms the other.

Example 3. Consider a database dbi and the query q 5 computer sci-
ence department. For simplicity, let t1 5 computer, t2 5 science, and
t3 5 department. Suppose that fi1 5 2, fi2 5 9, and fi3 5 10: there are 2
documents in dbi with the word computer, 9 with the word science, and 10
with the word department. vGlOSS assumes that the 2 documents with the
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word computer also contain the words science and department. Further-
more, all of the 9 2 2 5 7 documents with word science but not with word
computer also contain the word department. Finally, there is exactly 10 2

9 5 1 document with just the word department.

vGlOSS also needs to make assumptions on the weight distribution of the
words across the documents of a database:

Assumption 2. The weight of a word is distributed uniformly over all
documents that contain the word.

Thus, word tj has weight wij / fij in every dbi document that contains tj.
This assumption simplifies the computations that vGlOSS has to make to
rank the databases.

Example 3. (cont.) Suppose that the total weights for the query words in
database dbi are wi1 5 0.45, wi2 5 0.2, and wi3 5 0.9. According to
Assumption 2, each of the two documents that contain word computer will
do so with weight 0.45 / 2 5 0.225, each of the 9 documents that contain
word science will do so with weight 0.2 / 9 5 0.022, and so on.

vGlOSS uses the assumptions above to estimate how many documents in
a database have similarity greater than some threshold l to a given query
and their added similarity. These estimates determine the Max~l! database
rank.

Consider database dbi with its two associated vectors fi* and wi*, and
query q, with its associated vector Q. Suppose that the words in q are t1,
. . . , tn, with fia # fib for all 1 # a # b # n. Assume that fi1 . 0. From
Assumption 1, the fi1 documents in dbi that contain word t1 also contain all
of the other n 2 1 query words. From Assumption 2, the similarity of any
of these fi1 documents to the query q is

sim1 5 O
j51, . . . , n

qj 3
wij

fij

.

Furthermore, these fi1 documents have the highest similarity to q among
the documents in dbi. Therefore, if sim1 # l, then there are no documents
in dbi with similarity greater than threshold l. If, on the other hand,
sim1 . l, then vGlOSS should explore the fi2 2 fi1 documents (Assump-
tion 1) that contain words t2, . . . , tn, but not word t1. Thus, vGlOSS finds
p such that

simp 5 O
j5p, . . . , n

qj 3
wij

fij

. l, but (2)
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simp11 5 O
j5p11, . . . , n

qj 3
wij

fij

# l. (3)

Then the fip documents with (at least) query words tp, . . . , tn have an
estimated similarity to q greater than threshold l (Condition 2), whereas
the documents having only query words tp11, . . . , tn do not.

Using this definition of p and the assumptions above, we give the first
definition for Estimate ~l, q, dbi!, the estimated goodness of database dbi

for query q, that determines the Max~l! database rank:

Estimate~l, q, dbi! 5 O
j51, . . . , p

~fij 2 fi~j21!! 3 simj

5 ~ O
j51, . . . , p

qj 3 wij! 1 fip 3 O
j5p11, . . . , n

qj 3
wij

fij

(4)

where we define fi0 5 0, and simj is the similarity between q and any
document having words tj, . . . , tn, but not words t1, . . . , tj21. There are
fij 2 fi~j21! such documents in dbi. This definition computes the added
similarity of the fip documents estimated to have similarity to q greater
than threshold l (see Conditions 2 and 3 and Assumptions 1 and 2).

Example 3. (cont.) Assume that query q has weight 1 for each of its
three words. According to Assumption 1, the two documents with the word
computer also have the words science and department in them. The similar-
ity of any of these two documents to q is, using Assumption 2, 0.45/ 2 1
0.2/9 1 0.9/10 5 0.337. If our threshold l is 0.2, then all of these
documents are acceptable because their similarity to q is higher than 0.2.
Also, there are 9 2 2 5 7 documents with the words science and depart-
ment but not computer. The similarity of any of these 7 documents to q is
0.2/9 1 0.9/10 5 0.112. Then these documents are not acceptable for
threshold l 5 0.2. There is 10 2 9 5 1 document with only the word
department, but this document’s similarity to q is even lower. Conse-
quently, p 5 1 (see Conditions 2 and 3). Then, according to the Max~0.2!
definition of Estimate, Estimate~0.2, q, dbi! 5 fi1 3 ~q1 3 wi1/fi1 1 q2

3 wi2/fi2 1 q3 3 wi3/fi3! 5 2 3 ~1 3 0.45/ 2 1 1 3 0.2/9 1 1 3 0.9/10!
5 0.674.

2.3.2 Disjoint Scenario. The Max~l! rank that vGlOSS uses to approxi-
mate Ideal~l! assumes that query keywords tend to appear together in
database documents. We now present Sum~l!, a new database rank built
upon the “opposite” assumption, namely that if two words appear together
in a user query, then these words do not appear together in any database
document (if possible).
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Assumption 3. The set of dbi documents with word t1 is disjoint with
the set of dbi documents with word t2, for all t1 and t2, t1 Þ t2 that appear
in query q.

Therefore, the words that appear in a user query are assumed to be
negatively correlated in the database documents. vGlOSS also needs to
make Assumption 2, that is, the assumption that weights are uniformly
distributed.

Consider database dbi with its two associated vectors fi* and wi*, and
query q with its associated vector Q. Suppose that the words in q are t1,
. . . , tn. For any query word tj~1 # j # n!, the fij documents containing tj

do not contain query word tp, for all 1 # p # n, p Þ j (Assumption 3).
Furthermore, the similarity of each of these fij documents to q is exactly
qj 3 wij / fij, if fij . 0 (from Assumption 2).

For rank Sum~l!, we then define Estimate~l, q, dbi!, the estimated
goodness of database dbi for query q, as

Estimate~l, q, dbi! 5 O
j51, . . . , n?~fij.0!∧Sqj3

wij

fij
.lD

fij 3 Sqj 3
wij

fij
D

5 O
j51, . . . , n?~fij.0!∧Sqj3

wij

fij
.lD

qj 3 wij (5)

Example 4. Consider the data of Example 3. According to Assumption 3,
there are 2 documents containing the word computer, and none of the other
query words; 9 documents containing the word science, and none of the
other query words; and 10 documents containing the word department, and
none of the other query words. The documents in the first group have
similarity 0.45 / 2 5 0.225 (from Assumption 2), and thus are acceptable
because our threshold l is 0.2. The documents in the second and third
groups have similarity 0.2 / 9 5 0.022 and 0.9 / 10 5 0.09, respectively,
and so are not acceptable for our threshold. So the only documents close
enough to query q are the two documents that contain the word computer.
Then, according to the Sum~0.2! definition of Estimate, Estimate~0.2, q,
dbi! 5 fi1 3 wi1 / fi1 5 0.45.

In general, the Max~l! estimate for a database and a query is always
greater than or equal to the corresponding Sum~l! estimate. (Sum~l!
makes “pessimistic” assumptions on the distribution of query keywords
across the database documents.) However, in the special case when the
threshold l is zero, the Max~0! and Sum~0! definitions of Estimate (Eqs. (4)
and (5)) become the same:

Estimate~0, q, dbi! 5 O
j51, . . . , n

qj 3 wij
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assuming that if fij 5 0, then wij 5 0. Then, Estimate~0, q, dbi! becomes
the inner product Q z wi*. To compute the Max~0! and Sum~0! ranks,
vGlOSS does not need the matrix F of document frequencies of the words;
it only needs the matrix W of added weights.1 So the storage requirements
for vGlOSS to compute database ranks may be much lower if l 5 0. We pay
special attention to these ranks in our experiments in Section 2.5.2.

2.4 Comparing Database Ranks

In this section we analyze how we can compare vGlOSS’s ranks (Section
2.3) to the ideal one (Section 2.2). In the following section we report
experimental results using the comparison methodology of this section.

Let q be a query, and DB 5 $db1, . . . , dbs% be the set of available
databases. Let G 5 ~dbg1, . . . , dbgs9! be the database rank that vGlOSS
generated for q, using one of the schemes in Section 2.3. We include in G
only those databases with estimated goodness greater than zero: we as-
sume that users ignore databases with zero estimated goodness. Thus, in
general, s9 # s. Finally, let I 5 ~dbi1, . . . , dbis99! be the ideal database
rank. We only include in I those databases with actual goodness greater
than zero. Our goal is to compare G against I, and to quantify how close the
two ranks are.

One way to compare the G and I ranks is by using the Goodness metric
that we used to build I. The database ranks produced by vGlOSS are
incremental “plans” for evaluating a query. In effect, we first contact the
top database in the rank. If we are not satisfied with the answers retrieved,
we contact the second database, and so on. Thus, we consider the top n
databases in rank I and compute in, the accumulated goodness (in rank I)
of the n databases for query q. We then consider the top n databases in
rank G and compute gn, the accumulated goodness of the n databases for q.
The computation of both in and gn implicitly assumes that databases are
disjoint, so that the goodness contribution of a database does not depend on
what databases appear higher in the rank.

Because rank I was generated using the actual goodness metric, the top
n databases in rank I have the maximum accumulated goodness for q that
any subset of n databases of DB can have. Because vGlOSS generated rank
G using only partial information about the databases, in general gn # in.
(If n . s9 (resp., n . s99), we compute gn (in) by taking just the s9 (s99)
databases in G (I).) We then compute

5n 5 5 gn

in

if in . 0

1 otherwise.

1We may need F, though, to compute the weight vector for the queries, depending on the
algorithm.
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So this metric is related to the recall metric used by the information
retrieval community [Salton 1989]: 5n is a measure of how much of the
available goodness in the n best databases (as determined by I) is accumu-
lated in the first n databases in the vGlOSS rank G. In other words, 5n

models what the user who searches the top n databases suggested by
vGlOSS would get, compared to what the user would have gotten by
searching the top n databases in the ideal rank.

Example 5. Consider a query q and five databases dbi, 1 # i # 5.
Table I shows I, the ideal database rank, and G and H, two different
vGlOSS database ranks for q, for some definition of these ranks. For
example, db1 is the top database in the ideal rank, with Goodness~l, q,
db1! 5 0.9. Database db5 does not appear in rank I because Goodness~l,
q, db5! 5 0. vGlOSS correctly predicted this for rank G (Estimate~l, q,
db5! 5 0 for G), and so db5 does not appear in G. However, db5 does
appear in H because Estimate~l, q, db5! 5 0.2 for H. Let us focus on the
G rank: db2 is the top database in G, with Estimate~l, q, db2! 5 0.8. The
real goodness of db2 for q is Goodness~l, q, db2! 5 0.4. From the ranks of
Table I, 51 5 0.4 / 0.9: if we access db2, the top database from the G rank,
we obtain Goodness~l, q, db2! 5 0.4, whereas the best database for q is
db1, with Goodness~l, q, db1! 5 0.9. Similarly, 53 5 ~0.4 1 0.9 1
0.3! / ~0.9 1 0.4 1 0.3! 5 1. In this case, by accessing the top three
databases in the G rank, we access exactly the top three databases in the
ideal rank, and so 53 5 1. However, 54 5 ~0.4 1 0.9 1 0.3! / ~0.9 1
0.4 1 0.3 1 0.2! 5 0.89, since the G rank does not include db4

~Estimate~l, q, db4! 5 0!, which is actually useful for q (Goodness~l, q,
db4! 5 0.2).

Now consider the H rank. H includes all the databases that have
Goodness . 0 in exactly the same order as G. Therefore, the 5n metric for
H coincides with that for G, for all n. However, rank G is in some sense
better than rank H, since it predicted that db5 has zero goodness, as we
mentioned above. H failed to predict this. The 5n metric does not distin-
guish between the two ranks. This is why we introduce the following
metric.

Table I. Ideal and vGlOSS Database Ranks for Example 5

I G H

db Goodness db Estimate db Estimate

db1 0.9 db2 0.8 db2 0.9
db2 0.4 db1 0.6 db1 0.8
db3 0.3 db3 0.3 db3 0.4
db4 0.2 db5 0.2
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As the previous example motivated, we need another metric, 3n, to
distinguish between vGlOSS ranks that include useless databases and
those that do not. Given a vGlOSS rank G for query q, 3n is the fraction of
Topn~G!, the top n databases of G (which have a nozero Estimate for being
in G), that actually have nonzero goodness for query q:

3n 5
?$db [ Topn~G! ? Goodness~l, q, db! . 0%?

?Topn~G!?
.

(Actually, 3n 5 1 if for all db, Estimate~l, q, db! 5 0.) 3n is related to
the precision metric used in the information retrieval community, and
measures the fraction of the first n databases in the vGlOSS rank G with
nonzero goodness. Note that 3n is independent of the ideal database rank
I: it just depends on how many databases that vGlOSS estimated as
potentially useful turned out to actually be useful for the query. A ranking
with higher 3n is better because it leads to fewer fruitless database
searches.

Example 5. (cont.) In the previous example, 34 5 3 / 3 5 1 for G be-
cause all of the databases in G have actual nonzero goodness. However,
34 5 3 / 4 5 0.75 for H: of the four databases in H, only three have
nonzero goodness.

The metrics that we introduced in this section focus on the goodness of
the databases, and do not examine whether the same databases are present
both in the ideal database ranks and in the vGlOSS ranks. In Gravano et
al. [1994a; 1994b] we use different metrics that focus on how well a Boolean
version of GlOSS (Section 3) identifies the actual best databases for a
query.

2.5 Evaluating vGlOSS

In this section we evaluate different vGlOSS ranking algorithms experi-
mentally. We first describe the real user queries and databases that we
used in the experiments. Then, we report results for Max~l! and Sum~l!,
the two vGlOSS ranks of Section 2.3.

2.5.1 Queries and Databases. To evaluate vGlOSS experimentally, we
used real user queries and databases. The queries were profiles that real
users submitted to the SIFT Netnews server developed at Stanford [Yan
and García-Molina 1995]. Users sent profiles in the form of Boolean or
vector-space queries to the SIFT server, which in turn filters Netnews
articles every day and sends those matching the profiles to the correspond-
ing users. We used the 6,800 vector-space profiles active on the server in
December 1994. These queries have an average of 2.75 words each, for a
total of 7,627 unique words.

To evaluate the vGlOSS performance using these 6,800 queries, we used
53 newsgroups as 53 databases: we took a snapshot of the articles that
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were active at the Stanford Computer Science Department Netnews host on
one arbitrary day, and used these articles to populate the 53 databases. We
selected all the newsgroups in the comp.databases , comp.graphics ,
comp.infosystems , comp.security , rec.arts.books , rec.arts.cin-
ema, rec.arts.comics , and rec.arts.theatre hierarchies that had
active documents in them when we took the snapshot.

We indexed the 53 databases and evaluated the 6,800 queries on them,
using the SMART system (version 11.0) developed at Cornell University. To
keep our experiments simple, we chose the same weighting algorithms for
the queries and the documents across all the databases. We indexed the
documents using the SMART ntc formula, which generates document
weight vectors using the cosine-normalized tf z idf product [Salton 1989].
We indexed the queries using the SMART nnn formula, which generates
query weight vectors using the word frequencies in the queries. The
similarity coefficient between a document vector and a query vector is
computed by taking the inner product of the two vectors.

For each query and vGlOSS ranking algorithm, we compared the ideal
rank against the vGlOSS rank using the methodology in Section 2.4. We
evaluated each query at each of the 53 databases to generate its ideal
database rank. For a fixed vGlOSS ranking definition and a query, we
computed the rank of databases that vGlOSS would produce for that query:
we extracted the (partial) information that vGlOSS needs from each of the
53 databases. For each query word, vGlOSS needs the number of docu-
ments in each database that include the word, and the sum of the weight of
the word in each of these documents. To extract all this information, we
queried the 53 databases using each query word individually, which totaled
an extra 18,213 queries. We should stress that this is just the way we
performed the experiments, not the way a vGlOSS server will obtain the
information it needs about each database: in a real system, each database
will periodically scan its indexes, generate the information that vGlOSS
needs, and export it to the vGlOSS server (see Section 2.3).

2.5.2 Experimental Results. In this section we experimentally compare
the vGlOSS database ranks against the ideal ranks in terms of the 5n and
3n metrics. We study which of the Max~l! and Sum~l! database ranks is
better at predicting ideal rank Ideal~l!, and what impact the threshold l
has on the performance of vGlOSS. We also investigate whether keeping
both the F and W matrices of Section 2.3 is really necessary, since vGlOSS
needs only one of these matrices to compute ranks Max~0! and Sum~0!
(Section 2.3.2).

Ideal database rank Ideal~0! considers useful any document with a
nonzero similarity to the query. Ranks Max~0! and Sum~0! are identical to
Ideal~0!, and so they have 5n 5 3n 5 1 for all n. Consequently, if a user
wishes to locate databases where the overall similarity between documents
and the given query is highest and where any document with nonzero
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similarity is interesting, vGlOSS should use the Max~0! (or, identically,
Sum~0!) ranks and get perfect results.

To study the impact of higher rank thresholds, Figures 1 and 2 show
results for the Ideal~0.2! ideal rank. We show 5n and 3n for values of n
ranging from 1 to 15. We do not report data for higher ns because most of
the queries have fewer than 15 useful databases according to Ideal~0.2!,
and hence the results for high values of n are not that significant. Figure 2
shows that rank Sum~0.2! has perfect 3n (3n 5 1) for all n because if a
database db has Estimate~0.2, q, db! . 0 according to the Sum~0.2!
rank, then Goodness~0.2, q, db! . 0 according to Ideal~0.2!. In other
words, rank Sum~0.2! only includes databases that are guaranteed to be
useful. Rank Max~0.2! may include databases not guaranteed to be useful,
yielding higher 5n values (Figure 1), but lower 3n values (Figure 2).

Fig. 1. Parameter 5n as a function of n, the number of databases examined from the ranks
for the Ideal~0.2! ideal database ranking and the different vGlOSS rankings.

Fig. 2. Parameter 3n as a function of n, the number of databases examined from the ranks
for the Ideal~0.2! ideal database ranking and the different vGlOSS rankings.
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To decide whether vGlOSS really needs to keep both matrices F and W
(Section 2.3), we also use ranks Max~0! and Sum~0! to approximate rank
Ideal~0.2!. vGlOSS needs only one of the two matrices to compute these
ranks (Section 2.3.2). Since ranks Max~0! and Sum~0! are always identi-
cal, we just present their data once, labeled Max~0!/Sum~0!. Figure 1
shows that the Max~0! rank has the highest values of 5n. This rank
assumes a threshold l 5 0, and so tends to include more databases than its
counterparts with threshold 0.2. This is also why Max~0! has much lower
3n values (Figure 2) than Max~0.2! and Sum~0.2!: it includes more
databases that have zero goodness according to Ideal~0.2!.

In summary, if users are interested in not missing any useful database
but are willing to search some useless ones, then Max ~0! is the best choice
for vGlOSS, and vGlOSS can do without matrix F. If users wish to avoid
searching useless databases, then Sum~0.2! is the best choice. Unfortu-
nately, Sum~0.2! also has low 5n values, which means it can also miss
some useful sources. As a compromise, a user can have Max~0.2!, which
has much better 3n values than Max~0! and generally better 5n values
than Sum~0.2!. Also, note that in the special case where users are
interested in accessing only one or two databases (n 5 1,2), Max~0.2! is
the best choice for the 5n metric. In this case it is worthwhile for vGlOSS
to keep both matrices F and W.

To show the impact of rank thresholds, Figures 3 and 4 show the 5n and
3n values for different ranks and a fixed n 5 3, and for values of the
threshold l from 0 to 0.4. For larger values of l, most of the queries have no
database with goodness greater than zero. For example, for ideal rank
Ideal~0.6!, each query has on average only 0.29 useful databases. There-
fore, we only show data for threshold 0.4 and lower. At first glance, one
might expect the 5n and 3n performance of Max~0! not to change as
threshold l varies, since the ranking it computes is independent of the

Fig. 3. Parameter 53 as a function of the threshold l for ideal rank Ideal~l!.
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desired l. However, as l increases, the ideal rank Ideal~l! changes, and the
static estimate provided by Max~0! performs worse and worse for 3n. The
Max~l! and Sum~l! ranks do take target l values into account, and hence
do substantially better. Our earlier conclusion still holds: strategy Sum~l!
is best at avoiding useless databases, while Max~0! provides the best 5n

values (at the cost of low 3n values).
In summary, vGlOSS generally predicts the best databases for a given

query fairly well. Actually, the more vGlOSS knows about users’ expecta-
tions, the better vGlOSS can rank the databases for the query. If high
values of both 5n and 3n are of interest, then vGlOSS should produce
ranks based on the high-correlation assumption of Section 2.3.1: rank
Max~l! is the best candidate for rank Ideal~l! with l . 0. If only high
values of 5n are of interest, then vGlOSS can do without matrix F and
produce ranks Max~0! or Sum~0!. If only high values of 3n are of interest,
then vGlOSS should produce ranks based on the disjoint-scenario assump-
tion of Section 2.3.2: rank Sum~l! is the best candidate. For rank Ideal~0!,
ranks Max~0! and Sum~0! give perfect answers.

2.6 Alternative Ideal Ranks

Section 2.2 presents a way of defining the goodness of a database for a
query and the associated ideal database rank. It also shows a problem with
this definition, namely that the document similarities that contribute to a
database’s goodness may not be “globally valid,” since they incorporate
database-dependent idf factors. In this section we explore alternative ideal
database ranks for a query. (Other possibilities are discussed in Gravano
and García-Molina [1995b].) The first new ranks use the number of
relevant documents for the query in each database. However, as we will
discuss, we believe that ranks based on relevance are not appropriate for
evaluating schemes like vGlOSS. Thus, the remaining ranks that we
describe do not depend on end-user relevance judgments.

Fig. 4. Parameter 33 as a function of the threshold l for ideal rank Ideal~l!.
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The first rank, Rel_All, simply orders databases on the basis of the
number of relevant documents they contain for the given query. (See
French et al. [1998] for an experimental evaluation of vGlOSS using this
ideal rank.) By relevant we mean that the user who submits q will judge
these documents to be of interest. To see a problem with this rank, consider
a database db that contains, say, three relevant documents for some query
q. Unfortunately, it turns out that the search engine at db does not include
any of these documents in the answer to q. So the user will not benefit from
these three relevant documents. Thus, we believe it best to evaluate the
ideal goodness of a database by what its search engine might retrieve, not
by what potentially relevant documents it might contain. Notice that a user
might eventually obtain these relevant documents by successively modify-
ing the query. Our model would treat each of these queries separately, and
decide which databases are best for each individual query.

Our second rank, Rel_Rank~l!, improves on Rel_All by considering only
those relevant documents in each database that have a similarity to q
greater than a threshold l, as computed by the individual databases. The
underlying assumption is that users will not examine documents with
lower similarity in answers to queries, since these documents are unlikely
to be useful. This definition does not suffer from the problem of the Rel_All
rank; we simply ignore relevant documents that db does not include in the
answer to q with sufficiently high similarity. However, in general we
believe that end-user relevance is not appropriate for evaluating schemes
like vGlOSS. That is, the best we can hope for any tool like vGlOSS is that
it predict the answers that the databases will give when presented with a
query. If the databases cannot rank the relevant documents high and the
nonrelevant ones low with complete index information, it is asking too
much that vGlOSS derive relevance judgments with only partial informa-
tion. Consequently, database rankings that are not based on document
relevance seem a more useful frame of reference to evaluate the effective-
ness of vGlOSS. Hence, the remaining ranks that we consider do not use
relevance information.

The Global~l! rank is based on considering the contents of all the
databases as a single collection. The documents are then ranked according
to their “global” similarity to query q. We consider only those documents
having similarity to q greater than a threshold l. The Goodness metric
associated with rank Global~l! would add the similarities of the acceptable
documents. The problem with this rank is related to the problem with the
Rel_All rank: a database db may get high goodness values for documents
that do not appear (high) in the answer that the database produces for q.
So db is not as useful to q as predicted by the Goodness metric. To avoid
this problem, the goodness of a database for a query should be based on the
document rank that the database generates for the given query.

The definition of Goodness in Section 2.2 does not rely on relevance
judgments, but is based on document ranks produced by the databases for
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the queries. Thus the definition does not suffer from the problems of the
alternative ranks considered so far in this section. However, as we men-
tioned in Section 2.2, the similarities computed at local databases may
depend on characteristics of the collections, and thus might not be valid
globally. The next definition attempts to compensate for collection-depen-
dent computations.

The next rank, Local~l!, considers only the set of documents in db with
scaled similarity to q greater than a threshold l. We scale the similarities
coming from various databases differently, to compensate for the collection-
dependent way in which these similarities are computed. We should also
base the goodness of each database on its answer to the query, to avoid the
anomalies we mentioned above for the Rel_All and Global ranks. One way
to achieve these two goals is to multiply the similarities computed by
database db by a positive constant scale~q, db!:

Goodness~l, q, db! 5 scale~q, db! 3 O
d[Scaled_Rank~l, q, db!

sim~q, d!

where scale~q, db! is the scaling factor associated with query q and
database db, and Scaled_Rank~l, q, db! 5 $d [ db ? sim~q, d! 3
scale~q, db! . l%.

The problem of how to modify locally computed similarities to compen-
sate for collection-dependent factors has received attention recently in the
context of the collection-fusion problem [Voorhees et al. 1995]. In general,
determining what scaling factor to use to define the Local~l! ideal database
rank is an interesting problem. If we incorporated scaling into the Good-
ness definition, we should modify vGlOSS’s ranks to imitate this scaling.

In summary, none of the database ranking schemes that we have
discussed is perfect, including the ones we used for our experiments. Each
scheme has its limitations, and hence should be used with care.

3. CHOOSING BOOLEAN DATABASES

So far, we have discussed databases supporting the vector-space model of
document retrieval. The Boolean model is more primitive than the vector-
space model, but it is important because many sources still use it to answer
queries. In this model, documents are represented as words with position
information. Queries are expressions composed of words and connectives
such as “and,” “or,” “not,” and proximity operations such as “within k words
of.” The answer to a query is the set of all the documents that satisfy the
Boolean expression. Many other features are available with these systems,
such as thesauri and regular expression matching. In this section, we
present bGlOSS, a version of GlOSS for databases supporting the Boolean
model of document retrieval. (bGlOSS is described in more detail in
Gravano et al. [1994a; 1994b].)

Like vGlOSS, bGlOSS gives a hint of what databases might be useful for
user queries, based on word-frequency information for each database.
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Essentially, the Boolean model, as compared to the vector space model,
impacts the statistics used by bGlOSS and the estimation functions.
Because in the Boolean model there are no document-query similarities
(i.e., a document does or does not satisfy a query), bGlOSS only needs the
F 5 ~fij! matrix of Section 2.3, where fij is the number of documents in dbi

that contain word tj.

Example 6. Consider three databases, A, B, and C, and suppose that
bGlOSS has collected the statistics in Table II. Suppose that bGlOSS
receives a query q 5 retrieval ∧ discovery (this query searches for docu-
ments that contain the words retrieval and discovery). Using the informa-
tion in the table, bGlOSS then estimates the number of matching docu-
ments in each of the databases.

It is easy to see that no documents in C match q because C does not
contain any documents with the word discovery. For the other two data-
bases, bGlOSS has to “guess” the number of matching documents. There
are different estimators that can be used to make this guess. One of the
estimators that we study, Ind (for “independence”), estimates the result
size as follows. Database A contains 100 documents, 40 of which contain
the word retrieval. So the probability that a document in A contains the
word retrieval is 40 / 100. Similarly, the probability that an A document
contains the word discovery is 5 / 100. Under the assumption that words
appear independently in documents, the probability that an A document
has both words is 40 / 100 3 5 / 100. Consequently, we can estimate the
result size of query q in database A as Estimate~q, A! 5 40 / 100 3
5 / 100 3 100 5 2 documents. Similarly, Estimate~q, B! 5 500 / 1000 3
40 / 1000 3 1000 5 20, and Estimate~q, C! 5 10 / 200 3 0 / 200 3 200
5 0. So the best database for q according to Ind is B, followed by database
A. Database C is not included in the database rank, since it cannot have
any matching document. Unfortunately, as in the vector-space case, the
database rank computed by bGlOSS might be wrong. For example, it may
be the case that database B does not contain any matching document for q,
while Ind predicted there would be 20 such documents in B. Furthermore,
if database A did contain matching documents, then Ind would fail to
conclude that database A is more promising than database B.

3.1 Ranking Databases

Consider a Boolean “and” query q we want to evaluate over a set of
databases DB. (We consider other kinds of queries in Gravano et al.

Table II. Portion of Database Frequency Information bGlOSS Keeps for Three Databases

Database A B C
Number of documents 100 1000 200
Number of documents with the word retrieval 40 500 10
Number of documents with the word discovery 5 40 0
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[1994a].) bGlOSS ranks the databases in DB according to their estimated
number of matches for q, and using an estimator. Different estimators are
possible; we studied several of them in Gravano et al. [1994a; 1994b]. In
this article we focus on the Ind (for “independence”) estimator we define
below. For a database dbi, bGlOSS keeps

—?dbi?, the total number of documents in database dbi; and

—fij, the number of documents in dbi that contain tj, for all keyword
field-designation pairs tj. Note that unlike vGlOSS, bGlOSS keeps differ-
ent frequencies for a word appearing in different fields (e.g., author,
title). The reason is that most Boolean sources support fields in their
query language. (For example, a user can ask for documents having
“Ullman” as one of the authors.)

As with vGlOSS, a real implementation of bGlOSS requires that each
database cooperate and periodically export these frequencies to the
bGlOSS server, following some predefined protocol such as STARTS (see
Section 2.3).

Given the frequencies and sizes for a set of databases DB, bGlOSS uses
the Ind estimator to rank the databases in DB. This estimator is built on
the unrealistic assumption that keywords appear in the various documents
of a database following independent and uniform probability distributions.
Under this assumption, given a database dbi, any n keyword field-designa-
tion pairs t1, . . . , tn, and any document d [ dbi, the probability that d
contains all of t1, . . . , tn is

fi1

?dbi?
3 . . . 3

fin

?dbi?
.

So, according to Ind, the estimated number of documents in dbi that will
satisfy the query t1 ∧ . . . ∧ tn is [Salton et al. 1983]:

EstimateInd~t1 ∧ . . . ∧ tn, dbi! 5

P
j51

n

fij

?dbi?
n21

. (6)

As our previous example illustrates, this estimate may be incorrect,
unless one of the frequencies is zero. In such a case, we know for sure that
no document in dbi matches (see Gravano et al. [1994a; 1994b] for a
comparison of Ind against alternative estimators.)

3.2 Evaluating bGlOSS

This section uses the metrics of Section 2.4 to demonstrate that bGlOSS
can select relevant databases effectively from a large set of candidates
[Tomasic et al. 1997]. The key difference from the evaluation in Section 2.4
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is that the goodness of a database db for a Boolean query q is simply the
number of documents in db that match q.

For our bGlOSS experiments, we used the complete set of United States
patents for 1991 as data. Each patent issued is described by an entry that
includes various attributes (e.g., names of the patent owners, issuing date)
as well as a text description of the patent. The total size of the patent data
is 3.4 gigabytes. We divided the patents into 500 databases by first
partitioning them into fifty groups based on date of issue, and then dividing
each of these groups into ten subgroups, based on the high order digit of a
subject-related patent classification code. This partitioning scheme gave
databases that ranged in size by an order of magnitude and were at least
somewhat differentiated by subject. We expect to see both properties in a
real distributed environment. (See Gravano et al. [1994a] for an evaluation
of bGlOSS over a smaller number of independent, preexisting collections.)

For test queries, we used a trace of 8,392 real-user queries issued at
Stanford University to the INSPEC database from 4/12 to 4/25 in 1993.
(INSPEC is a database of physics, electrical engineering, and computer
science bibliographic records.) We only considered correctly formed “and”
queries. We did not consider the so-called “phrase” queries (e.g., titlephrase
knowledge bases). The final set of queries, TRACEINSPEC, has 6,897 queries.
Finally, we eliminated all queries with field designators not applicable to
the patent data. Although INSPEC is not a patent database, it covers a
similar range of technical subjects, so we expected a fair number of hits
against our patent data. Each of the remaining 3,719 queries is a Boolean
conjunction of one or more words, e.g., microwave ∧ interferometer.

To test bGlOSS, we found the exact number of matching documents in
each database for each query and computed the ideal database rank
accordingly. We compared this ranking with the ranking suggested by
bGlOSS by calculating, for various values of n, the 5n metric in Section
2.4.

Table III shows the results of this experiment. Compared to an omni-
scient selector, bGlOSS does a reasonable job of selecting relevant data-
bases, on average finding over seventy percent of the documents that could

Table III. Average 5n Metric for 500 Text Databases
and TRACEINSPEC Queries in Section 3

n 5n

1 0.712
2 0.725
3 0.730
4 0.736
5 0.744
6 0.750
7 0.755
8 0.758
9 0.764

10 0.769
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be found by examining an equal number of databases under ideal circum-
stances, with gradual improvement as the number of databases examined
increases.

4. VARIATIONS AND DISCUSSION

In this section we discuss several issues that impact both vGlOSS and
bGlOSS. In Section 4.1 we study the storage requirements of the GlOSS
scheme, using bGlOSS for concreteness. We then discuss (Section 4.2) how
a GlOSS server would deal with both vector-space and Boolean databases
simultaneously. Finally, in Section 4.3 we study how collections of GlOSS
servers could cooperate, and we show some experimental results, using
vGlOSS for concreteness.

4.1 bGlOSS Storage Requirements

In this section we study the bGlOSS space requirements and compare them
with those in a full index of the databases. Our evaluation is for the six
database scenario shown in Table IV. Although the number of databases is
small, we do have very detailed information about them, and feel that our
storage results are representative. Our storage estimates are approximate,
i.e., should be taken as just an indication of the relative order of magnitude
of the corresponding requirements. An evaluation of vGlOSS space require-
ments would be analogous, but is not covered here.

We start our analysis with the INSPEC database and then consider the
remaining bibliography databases in Table IV. Table V shows information
about the INSPEC database that will be useful for computing the size of
the bGlOSS data. This information was generated from Stanford’s FOLIO
library information retrieval system. The “# of entries” column reports the
number of entries required for each of the INSPEC indexes in the
TRACEINSPEC queries in Section 3.2. For example, there are 311,632
different author last names in INSPEC (field designation “author”), and
each has an associated entry in the INSPEC frequency information. A total
of 1,089,614 entries is required for the INSPEC database. Each of these
entries corresponds to a keyword field-designation pair and its associated
frequency (e.g., ,author Knuth, 47., meaning that there are 47 documents
in INSPEC with Knuth as the author). In contrast, if we were to keep the

Table IV. Six Databases in bGlOSS Experimental Study

Database Number of documents Area

INSPEC 1,416,823 Physics, Elect. Eng., Computer Sc.
COMPENDEX 1,086,289 Engineering
ABI 454,251 Business Periodical Literature
GEOREF 1,748,996 Geology and Geophysics
ERIC 803,022 Educational Materials
PSYCINFO 323,952 Psychology
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complete inverted lists associated with the different indexes we considered,
130,340,123 postings would have to be stored in the full index.

Each posting of a full index typically contains a field designation and a
document identifier. If we dedicate one byte for the field designation and
three bytes for the document identifier, we end up with four bytes per
posting. We assume that, after compression, two bytes suffice per posting
(compression of 50% is typical for inverted lists).

Each of the frequencies kept by bGlOSS typically contains a field desig-
nation, a database identifier, and the frequency itself. Regarding the size of
the frequencies themselves, only 1417 keyword field-designation pairs in
INSPEC have more than 216 documents containing them. So in the vast
majority of cases, two bytes suffice to store these frequencies, according to
the INSPEC data we have available. We dedicate two bytes per frequency.
So using one byte for the field designation and two bytes for the database
identifier, we end up with five bytes per frequency. Again, after compres-
sion, we assume that 2.5 bytes are required per frequency. Using the data
from Table V and our estimates for the size of each posting and frequency
information entry, we obtain the index sizes shown in Table VI (“Index”
row).

The vocabulary for INSPEC,2 including only those indexes that appear in
TRACEINSPEC queries, consists of 819,437 words. If we dedicate four bytes
to store each keyword [Gravano et al. 1993], around 4 3 819,437 bytes, or

2Field designators are stored with each posting and frequency, as described above.

Table V. bGlOSS Summaries vs. Full Text Index for INSPEC Database

Field Designator Full Index bGlOSS (threshold50)
# of postings # of entries

Author 4108027 311632
Title 10292321 171537
Publication 6794557 18411
Abstract 74477422 487247
Thesaurus 11382655 3695
Conference 7246145 11934
Organization 9374199 62051
Class 4211136 2962
Numbers (ISBN, . . . ) 2445828 12637
Report Numbers 7833 7508
Totals 130,340,123 1,089,614

Table VI. Storage Estimates for bGlOSS and a Full Text Index for the INSPEC Database

Size of Full Index bGlOSS/threshold50

Vocabulary 3.13 MBytes 3.13 MBytes
Index 248.60 MBytes 2.60 MBytes
Total 251.73 MBytes 5.73 MBytes
% of Full Index 100 2.28
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3.13 MBytes, are needed to store the INSPEC vocabulary. This statistic is
shown in the “Vocabulary” row of Table VI.

After adding the vocabulary and index sizes (“Total” row of Table VI), the
size of the frequency information that bGlOSS needs is only around 2.28%
the size of the corresponding full index for the INSPEC database.

So far we have focused on the space requirements of only a single
database, namely INSPEC. We base the space requirement estimates for
the six databases on the figures for the INSPEC database, for which we
have reliable index information. To do this, we multiply the different
values we calculated for INSPEC by a growth factor G (see Table IV):

G 5
O

db[DB
?db?

?INSPEC?
' 4.12

where DB 5 {INSPEC, COMPENDEX, ABI, GEOREF, ERIC, PSYCINFO}.
Therefore, the number of postings required by a full index of the six
databases is estimated as G 3 INSPEC number of postings 5
537,001,307 postings, or around 1024.25 MBytes. The number of fre-
quencies required by bGlOSS for the six databases is estimated as G 3
INSPEC number of frequencies 5 4,489,210 frequencies, or around 10.70
MBytes (see the “Index” row in Table VII).

The space occupied by the index keywords of the six databases is
proportional to the size of their merged vocabularies. Using index informa-
tion from Stanford’s FOLIO system, we can determine that the size of the
merged vocabulary of the six databases is approximately 90% of the sum of
the six individual vocabulary sizes. We estimate the size of the merged
vocabulary for the six databases as G 3 0.90 3 INSPEC vocabulary size
5 3,038,472 words, or around 11.59 MBytes (see the “Vocabulary” row of
Table VII).

Table VII summarizes the storage estimates for bGlOSS and for a full
index. Note that the bGlOSS frequency information is only 2.15% the size
of the full index. This percentage is even lower than the corresponding
figure we obtained above for the INSPEC database only (2.28%). The
reason for this is that the merged vocabulary size is only 90% of the sum of
the individual vocabulary sizes. Although the 10% reduction “benefits”
both bGlOSS and the full index case, the impact on bGlOSS is higher, since
the vocabulary size is a much larger fraction of the total storage needed by
bGlOSS than for the full index.

We obtained the numbers in Table VII using some very rough estimates
and approximations, so they should be taken cautiously. However, we think
they are useful in illustrating the low space requirements of bGlOSS,
which are two orders of magnitude lower than those for a full-text index of
the databases. This is an important property, since bGlOSS should scale to
large numbers of databases. Furthermore, this drastic space reduction
makes the bGlOSS indexes less expensive to update and maintain, as well
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as decreasing the communication cost (for statistics) between the bGlOSS
server and the distributed collections. Note, however, that the overall
response time for a user query might be slower using bGlOSS than
maintaining a centralized full-text index of the collections. In effect, after
obtaining an answer from bGlOSS, the suggested databases need to be
contacted to obtain the documents that match the query. In contrast, a
full-text index of the databases would produce a document set directly.

Pruning bGlOSS Summaries. The statistical information kept by both
bGlOSS and vGlOSS can be “compressed” for additional space savings in a
variety of ways. Here we illustrate one possible technique, again using
bGlOSS for concreteness. The technique is based on a frequency threshold.
If a database dbi has no more than threshold documents with a given
keyword-field pair tj, then bGlOSS will not keep this information. bGlOSS
will assume that fij is zero whenever this data is needed.

As a result of introducing threshold, the estimator may now conclude
that some database dbi does not contain any documents that match a query
of the form t1 ∧ . . . ∧ tn if fij is missing, for some j, while in fact dbi does
contain documents that match the query. This situation was not possible
before: if fij was missing from the information set of the estimator, then
fij 5 0, and so there could be no documents in dbi satisfying such a query.

Introducing thresholds reduces the estimator’s storage costs. Table VIII
reports the number of entries that would be left, for different field designa-
tors, in the frequency information for the INSPEC database. Some field
designators (e.g., “thesaurus”) are not affected much by pruning the small-
est entries, whereas space requirements for some others (e.g., “author,”
“title,” and “abstract”) are drastically reduced . Adding all the indexes, the
number of entries in the INSPEC frequency information kept by bGlOSS
decreases very fast as threshold increases: for threshold51, for instance,
508,978 entries, or 46.71% of the original number of entries, are elimi-
nated. In Gravano et al. [1994a] we report experimental results that show
that the performance of bGlOSS is only slightly sensitive to small increases
in threshold. Therefore, the size of bGlOSS frequency information can be
reduced substantially beyond the already small size estimates in Table VII.

4.2 GlOSS Over Both Vector-Space and Boolean Databases

It is possible for a single GlOSS server to keep statistics on both Boolean
and vector-space sources. For Boolean sources, it collects the statistics that

Table VII. Storage Estimates for bGlOSS and a Full Index for the Six Databases

Size of Full index bGlOSS/threshold50

Vocabulary 11.59 MBytes 11.59 MBytes
Index 1024.25 MBytes 10.70 MBytes
Total 1035.84 MBytes 22.29 MBytes
% of Full index 100 2.15
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bGlOSS needs, while for vector-space sources, it keeps vGlOSS informa-
tion. This combined GlOSS server could easily treat user queries sepa-
rately. That is, a Boolean query could be processed against the information
on Boolean sources, while vector-space queries could be directed to the
remaining statistics.

It would, of course, be better for GlOSS to try to suggest sources,
regardless of the query type. The user could then be warned that a good
source used a query model different from the one the query was posed in
(since the user would have to reformulate the query for that source).
Processing queries in this integrated fashion introduces two challenging
problems. We mention these problems and briefly sketch possible solutions:

—Query specification: Vector-space queries are usually just lists of words,
while Boolean queries are structured through connectives like “and,” “or,”
and “not.” So GlOSS must somehow translate a query from one form into
the other. For example, if GlOSS receives a vector-space query q (a list of
words), it can then choose to interpret q as the Boolean “and” for the
Boolean sources. For a Boolean query with only “and” and “or” operators,
it may remove all operators and consider the plain words as the vector-
space query. The “not” Boolean operator complicates the translation
further. A possibility is for GlOSS to eliminate the negated terms from
the query for an initial goodness estimate. GlOSS can then use the
negated terms to adjust the initial estimates, so that a database contain-
ing a negated term many times might see its goodness estimate for the
query decreased. These mappings are clearly not precise, but could still
give the user reasonable database suggestions.

—Database ranking: Both vGlOSS and bGlOSS rank databases for a query
q based on the numeric goodness of the databases for q. Therefore, to
rank both vector-space and Boolean sources together, a simple solution is
for GlOSS to simply “normalize” the vGlOSS and bGlOSS goodness

Table VIII. Number of Entries Left for Different Thresholds and Field Designators in
INSPEC Database

Field Designator threshold

0 1 2 3 4 5

Author 311632 194769 150968 125220 107432 94248
Title 171537 85448 62759 51664 44687 40007
Publication 18411 11666 10042 9281 8832 8535
Abstract 487247 227526 163644 133323 115237 102761
Thesaurus 3695 3682 3666 3653 3641 3637
Conference 11934 10138 9887 9789 9702 9653
Organization 62051 34153 26518 22612 20121 18382
Class 2962 2953 2946 2937 2931 2926
Numbers (ISBN, . . . ) 12637 10199 10067 9946 9865 9779
Report Numbers 7508 102 37 22 14 12
Totals 1089614 580636 440534 368447 322462 289940
% 100 53.29 40.43 33.81 29.59 26.61
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scores so their relative magnitudes are comparable, and then compute
the database ranks in the usual way. Alternatively, GlOSS could produce
two different database ranks: one including the vector-space databases
and the other including the Boolean databases.

4.3 Decentralizing GlOSS

In this section we show how we can build a more distributed version of
GlOSS using essentially the same methodology that we developed in
the previous sections. Suppose that we have a number of GlOSS servers
G1, . . . , Gs, indexing each a set of databases as we described in the
previous sections. (Each server can index the databases at one university or
company, for example.) For simplicity, assume all servers are of the same
type, either bGlOSS or vGlOSS. We now build a higher-level GlOSS server,
hGlOSS, that summarizes the contents of the GlOSS servers in much the
same way as the GlOSS servers summarize the contents of the underlying
databases.3 A user first queries the hGlOSS server, obtaining a rank of the
GlOSS servers according to how likely they are to have indexed useful
databases. Then the user visits the suggested GlOSS servers, submitting
the query there to obtain suggested databases to visit.

Although the hGlOSS server is still a single entry point for users to
search for documents, the size of this server is so small that it is inexpen-
sive to massively replicate it, distributing the access load among the
replicas. In this way organizations are able to manage their own “tradi-
tional” GlOSS servers, and let replicas of a logically unique higher-level
GlOSS, hGlOSS, concisely summarize the contents of their GlOSS servers.

The key point is that hGlOSS can treat the information about a database
at a traditional GlOSS server in the same way as traditional GlOSS
servers treat information about a document at the underlying databases.
The “documents” for hGlOSS are the database summaries at the GlOSS
servers.

To keep the size of the hGlOSS server small, the information the hGlOSS
server keeps about a GlOSS server Gr is limited. For brevity, we now focus
our discussion on the vGlOSS version of GlOSS, but we can proceed
analogously for bGlOSS. hGlOSS keeps one or both of the following
matrices (see Section 2.3):

—H 5 ~hrj!: hrj is the number of databases in vGlOSS Gr that contain
word tj

—D 5 ~drj!: drj is the sum of the number of documents that contain word tj

in each database in vGlOSS Gr

In other words, for each word tj and each vGlOSS server Gr, hGlOSS needs
(at most) two numbers, in much the same way as vGlOSS servers summa-

3Although our discussion focuses on a 2-level hierarchy of servers, we can use the same
principles to construct deeper hierarchies.
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rize the contents of the document databases (Section 2.3). (An alternative is
for hGlOSS to (also) maintain a matrix S 5 ~srj!, where srj is the sum of
the weight of word tj over all documents in databases in vGlOSS Gr.)

Example 7. Consider a vGlOSS server Gr and the word computer.
Suppose that the following are the databases in Gr having documents with
the word computer in them, together with their corresponding vGlOSS
weights and frequencies:

computer : ~db1, 5, 3.4!, ~db2, 2, 1.8!, ~db3, 1, 0.3!

That is, database db1 has five documents with the word computer in them,
and their added weight is 3.4 for that word; database db2 has two
documents with the word computer in them, and so on. hGlOSS only knows
that the word computer appears in three databases in Gr, and that the sum
of the number of documents for the word and the databases is 5 1 2 1 1
5 8. hGlOSS does not know the identities of these databases, or the
individual document counts associated with the word and each database.

We now use the same vGlOSS methodology: given a query q, we define
the goodness of each vGlOSS server Gr for the query: for example, we can
take the database rank that Gr produces for q, together with the goodness
estimate for each of these databases according to Gr, and define the
goodness of Gr for q as a function of this rank. This computation is
analogous to how we computed the goodness of the databases in Section 2.2.

Next, we define how hGlOSS estimates goodness, given only partial
information about each vGlOSS server. hGlOSS determines the Estimate
for a vGlOSS server Gr using the vectors hr* and dr* for Gr, analogous to
how vGlOSS servers determine the Estimate for a database dbi using the
fi* and wi* vectors. After defining the Estimate for each vGlOSS server,
hGlOSS ranks the vGlOSS servers so that users can access the most
promising servers first, i.e., those most likely to index useful databases.

To illustrate hGlOSS’s potential, we briefly describe one experiment. For
this, we divide the 53 databases of Section 2.5 into 5 randomly-chosen
groups of around 10 databases each. Each of these groups corresponds to a
different vGlOSS server.

We assume that the vGlOSS servers approximate ideal rank Ideal~0!
with the Max~0! database rank. Next, we define the goodness of a vGlOSS
server Gr for a query q as the number of databases indexed by Gr with a
goodness Estimate for q greater than zero. This definition determines the
ideal rank of vGlOSS servers. To approximate this ideal rank, hGlOSS
periodically receives the H matrix defined above from the underlying
vGlOSS servers. For query q with words t1, . . . , tn and vGlOSS server Gr,
hr1, . . . , hrn are the database counts for Gr associated with the query
words. (Word t1 appears in hr1 databases in vGlOSS server Gr, and so on.)
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Assume that hr1 # . . . # hrn. Then, hGlOSS estimates the goodness of Gr

for q as hrn. In other words, hGlOSS estimates that there are hrn databases
in Gr that have a nonzero goodness estimate for q.

Table IX shows the different values of the (adapted) 5n and 3n metrics
for the 6,800 queries of Section 2.5. Note that 3n 5 1 for all n, because
every time hGlOSS chooses a vGlOSS server, using the ranking described
above, the server actually has databases with nonzero estimates. From the
high values for 5n it follows that hGlOSS is extremely good at ranking
“useful” vGlOSS servers.

Our single experiment used a particular ideal ranking and evaluation
strategy. We can also use other rankings and strategies adapted to the
hGlOSS level, and tuned to the actual user requirements. The hGlOSS
server is very small in size and easily replicated, thus eliminating the
potential bottleneck of the centralized GlOSS architecture.

5. RELATED WORK

Many solutions were presented recently for the text-source discovery prob-
lem, or, more generally, for the resource-discovery problem: the text-source
discovery problem is a subcase of the resource-discovery problem, since the
latter generally deals with a larger variety of information types [Obraczka
et al. 1993; Schwartz et al. 1992].

One solution for the text-source discovery problem is to let the database
selection be driven by the user. The user will then be aware of, and an
active participant in, this selection process. Different systems follow differ-
ent approaches: one approach is to let users “browse” through information
about the different resources. A typical example of this paradigm is Yahoo!
(http://www.yahoo.com ). The Prospero File System is another example:
Neuman [1992] lets users organize information in the Internet through the
definition (and sharing) of customized views of the different objects and
services.

A different approach is to keep a database of “metainformation” about
the available databases and have users query this database to obtain the
set of searchable databases. For example, WAIS [Kahle and Medlar 1991]
provides a “directory of servers.” This “master” database contains a set of
documents, each describing (in English) the contents of a database on the
network. The users first query the master database, and once they have
identified potential databases, direct their queries to these databases. One

Table IX. 5n and 3n Metrics for hGlOSS and Our Sample Experiment

n 5n 3n

1 0.985 1
2 0.991 1
3 0.994 1
4 0.998 1
5 1 1
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disadvantage is that the master database documents have to be written by
hand to cover the relevant topics, and have to be manually kept up to date
as the underlying database changes. However, freeWAIS [Fullton et al.
1993] automatically adds the most frequently occurring words in an infor-
mation server to the associated description in the directories of servers.
Another drawback is that, in general, databases containing relevant docu-
ments might be missed if they are not chosen during the database-selection
phase. Duda and Sheldon [1994] show sample queries for which very few
existing relevant servers are found by querying the WAIS directory of
servers (e.g., only 6 out of 223 relevant WAIS servers).

Schwartz [1990] follows a probabilistic approach to the resource-discov-
ery problem, and presents a resource-discovery protocol that consists of two
phases: a dissemination phase, during which information about the con-
tents of the databases is replicated at randomly chosen sites, and a search
phase, where several randomly chosen sites are searched in parallel. Sites
are also organized into “specialization subgraphs.” If one node of such a
graph is reached during the search process, the search proceeds “nonran-
domly” in this subgraph if it corresponds to a specialization relevant to the
query being executed; see also Schwartz [1993].

In Indie (shorthand for “Distributed Indexing”) [Danzig et al. 1992],
information is indexed by “Indie brokers,” each of which has associated,
among other administrative data, a Boolean query (called a “generator
rule”). Each broker indexes (not necessarily local) documents that satisfy
its generator rule. Whenever a document is added to an information source,
the brokers whose generator rules match the new document are sent a
descriptor of the new document. The generator objects associated with the
brokers are gathered by a “directory of servers,” which is queried initially
by the users to obtain a list of the brokers whose generator rules match the
given query; see also Danzig et al. [1991]. Barbará and Clifton [1992],
Ordille and Miller [1992], and Simpson and Alonso [1989] are other
examples of this approach, in which users query “metainformation” data-
bases.

A “content-based routing” system is used in Sheldon et al. [1994] to
address the resource-discovery problem. The “content routing system”
keeps a “content label” for each information server (or, more generally,
collection of objects) with attributes that describe the contents of the
collection. Users assign values to the content-label attributes in their
queries until a sufficiently small set of information servers is selected.
Users can also browse the possible values of each content-label attribute.

The WHOIS11 directory service (http://www.ucdavis.edu/whois-
plus ) organizes the WHOIS11 servers into a distributed “directory mesh”
that can be searched: each server automatically generates a “centroid,”
listing the words it contains (for different attributes). Centroids are gath-
ered by index servers that in turn must generate a centroid describing their
contents. The index server centroids may be passed to other index servers,
and so on. A query presented to an index server is forwarded to the (index)
servers whose centroids match the query.
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In Flater and Yesha [1993], every site keeps statistics about the type of
information it receives along each link connecting to other sites. When a
query arrives in a site, it is forwarded through the most promising link
according to these statistics. Morris et al. [1993], Zahir and Chang [1992],
and Morris et al. [1992] follow an expert-systems approach to solve the
related problem of selecting online business databases.

A complementary approach to GlOSS is taken by Chamis [1988]. Briefly,
the approach is to expand a user query with thesaurus terms. The ex-
panded query is compared with a set of databases, and the query terms
with exact matches, thesauri matches, and “associative” matches are
counted for each database. Each database is then ranked as a function of
these counts. We believe that this approach is complementary in its
emphasis on thesauri to expand the meaning of a user query.

Callan et al. [1995] has applied inference networks (from information
retrieval) to the text-source discovery problem. This approach summarizes
databases using document-frequency information for each term (the same
type of information that GlOSS keeps about databases), together with the
“inverse collection frequency” of the different terms. An inference network
then uses this information to rank the databases for a given query.

The Harvest system [Bowman et al. 1994] provide a flexible architecture
for accessing information on the Internet. “Gatherers” collect information
about data sources and pass it to “brokers.” The Harvest Server Registry is
a special broker that keeps information about all other brokers, among
other things. For flexibility, Harvest leaves the broker specification open,
and many alternative designs are possible.

An interesting alternative approach is the Pharos system [Dolin et al.
1996], which combines browsing and searching for resource discovery. This
system keeps information on the number of objects that each source has for
each category of a subject hierarchy like the Library of Congress’s LC
Classification System.

6. CONCLUSIONS

We have shown how to construct source-discovery servers for vector-space
and Boolean text databases and for hierarchies of source-discovery servers.
Based on compact collected statistics, these servers can provide very good
hints for finding the relevant databases, or finding relevant lower-level
servers with more information for a given query. An important feature of
our approach is that the same machinery can be used for both lower-level
and higher-level servers. Our experimental results show that bGlOSS,
vGlOSS, and hGlOSS are quite promising, and could provide useful ser-
vices in large, distributed information systems. The cost of storing GlOSS
is relatively low: for our case study, the size of the GlOSS index is about 2%
of the size of a full index. A small index means it is easier to replicate the
discovery service, for improved load balancing and availability.

Our approach to solving the text-source discovery problem could also deal
with information servers that charge for their use. Since we are selecting
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what databases to search according to a quantitative measure of their
“goodness” for a query, we could easily incorporate this cost factor so that,
for example, given two equally promising databases, a higher value would
be assigned to the less expensive of the two.

A bGlOSS server has been implemented and is available for testing. This
server keeps information on 401 collections of computer science technical
reports, part of the NCSTRL project (http://www.ncstrl.org ). The
bGlOSS server is available on the World-Wide Web at http://
gloss.stanford.edu .
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