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Comparison of :Four Approaches to Automatic 
Language Identification of Telephone Speech 

IMarc A. Zissman, Member, IEEE 

Abstruct- We have compared the performance of four 
approaches for automatic language identification of speech 
utterances: Gaussian mixture model (GMM) classification; 
single-language phone recognition followed by language- 
dependent, interpolated n-gram language modeling (PRLM); 
parallel PRLM, which uses multiple single-language phone 
recognizers, each trained in a different language; and language- 
dependent parallel phone recognition (PPR). These approaches, 
which span a wide range of training requirements and levels 
of recognition complexity, were evaluated with the Oregon 
Graduate Institute Multi-Language Telephone Speech Corpus. 
Systems containing phone recognizers performed better than the 
simpler GMM classifier. The top-performing system was parallel 
PRLM, which exhibited an error rate of 2% for 45-s utterances 
and 5% for 10-s utterances in two-language, closed-set, forced- 
choice classification. The error rate for 11-language, closed-set, 
forced-choice classification was 11 % for 45-s utterances and 
21% for 10-s utterances. 

I. INTRODUCTION 

VER the past three decades, significant effort has been 0 focused on the automatic extraction of information from 
speech signals. Many techniques reported previously in this 
journal and its predecessors have been aimed at obtaining 
either a transcription of the speech signal or an identification 
of the speaker’s identity and gender. For thie most part, the 
task of determining the language in which the speech was 
spoken has received far less attention. It is the purpose of this 
paper to report on the research, development, and evaluation 
of automatic language-identification systems at MIT Lincoln 
Laboratory. Where possible, comparisons ,and contrasts to 
languagsID systems studied at other sites will be drawn. 

Language-ID applications fall into two main categories: 
pre-processing for machine understanding systems and pre- 
processing for human listeners. As suggesteld by Hazen and 
Zue, consider the hotel lobby or international airport of the 
future, in which one might find a multi-lingual voice-controlled 
travel information retrieval system [l]. If the system has no 
mode of input other than speech, then it must be capable 
of determining the language of the speech commands either 
while it is recognizing the commands or before recognizing 
the commands. To determine the language diuring recognition 
would require running many speech recognizers in parallel, 
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one for each language. As one might wish to support tens 
or even hundreds of input languages, the cost of the required 
real-time hardware might prove prohibitive. Alternatively, a 
language-ID system could be run in advance of the speech 
recognizer. In this case, the language-ID system would quickly 
output a list containing the most likely languages of the speech 
commands, after which the few, most appropriate, language- 
dependent speech recognition models could be loaded and run 
on the available hardware. A final language-ID determination 
would only be made once speech recognition was complete. 

Alternatively, language ID might be used to route an in- 
coming telephone call to a human switchboard operator fluent 
in the corresponding language. Such scenarios are already 
occurring today: for example, AT&T offers the Language 
Line interpreter service to, among others, police departments 
handling emergency calls. When a caller to Language Line 
does not speak any English, a human operator must attempt 
to route the call to an appropriate interpreter. Much of the 
process is trial and error (for example, recordings of greetings 
in various languages may be used) and can require connections 
to several human interpreters before the appropriate person is 
found. As recently reported by Muthusamy [2], when callers to 
Language Line do not speak any English, the delay in finding 
a suitable interpreter can be on the order of minutes, which 
could prove devastating in an emergency situation. Thus, a 
language-ID system that could quickly determine the most 
likely languages of the incoming speech might cut the time 
required to find an appropriate interpreter by one or two orders 
of magnitude. 

Although research and development of automatic language- 
identification systems has been in progress for the past twenty 
years, publications have been sparse. Therefore, Section 11 
begins with a brief discussion of previous work. The back- 
ground discussion does not provide a quantitative report on 
the performance of each of these systems as, until recently, 
a standard multi-language evaluation corpus that could allow 
a fair comparison among the systems did not exist. Section 
I11 remarks on some cues that humans and machines use 
for identifying languages. By reviewing some of the key 
elements that distinguish one language from another, it serves 
to motivate the development of specific automatic algorithms. 
Section IV describes each of the four language-ID approaches 
that were the main focus of this work: Gaussian mixture 
modeling (GMM) [3]-[5], single-language phone recognition 
followed by language-dependent language modeling (PRLM) 
[6]-[SI, parallel PRLM 171, and language-dependent parallel 
phone recognition (PPR) [9], [ 101. Because these approaches 
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have differing levels of computational complexity and training 
data requirements, our goal was to study performance while 
considering the ease with which the systems may be trained 
and run. Section V reviews the organization of the Oregon 
Graduate Institute Multi-Language Telephone Speech (OGI- 
TS) Corpus [l l] ,  which has become a standard corpus for 
evaluating language-ID systems. We used the OGI-TS corpus 
to evaluate our four systems. At the start of our work, the 
corpus comprised speech from approximately 90 speakers in 
each of ten languages, though both the numbers of speakers 
and languages have grown with time. Section VI reports 
language-ID performance of the four systems we tested on 
the QGI-TS corpus, and Section VII details results of some 
additional work that sought to improve the best system. 
Finally, Section VI11 discusses the implications of this work 
and suggests future research directions. 

11. BACKGROUND 

Research in automatic language identification from speech 
has a history extending back at least twenty years. Until 
recently, it was difficult to compare the performance of these 
systems, as few of the algorithms had been evaluated on com- 
mon corpora. Thus, what follows is a brief description of some 
representative systems without much indication of quantitative 
performance. The reader is also referred to Muthusamy’s 
recent review of language-ID systems [2]. 

Most language-ID systems operate in two phases: training 
and recognition. During the training phase, the typical system 
is presented with examples of speech from a variety of 
languages. Some systems require only the digitized speech 
utterances and the corresponding true identities of the lan- 
guages being spoken. More complicated language-ID systems 
may require either: 

0 a phonetic transcription (sequence of symbols represent- 
ing the sounds spoken), or 
an orthographic transcription (the text of the words spo- 
ken) along with a pronunciation dictionary (mapping of 
each word to a prototypical pronunciation) 

for each training utterance. Producing these transcriptions and 
dictionaries is an expensive and time-consuming process that 
usually requires a skilled linguist fluent in the language of 
interest. For each language, the training speech is analyzed and 
one or more models are produced. These models are intended 
to represent some set of language-dependent, fundamental 
characteristics of the training speech that can then be used 
dwing the second phase of language ID: recognition. During 
recognition, a new utterance is compared to each of the 
language-dependent models. In most systems, the likelihood 
that the new utterance was spoken in the same language as 
the speech used to train each model is computed, and the 
maximum-likelihood model is found. The language of the 
speech that was used to train the maximum-likelihood model 
is hypothesized as the language of the utterance. 

The earliest automatic language-ID systems used the fol- 
lowing procedure: examine training speech (either manually or 
automatically), extract and store a set of prototypical spectra 
(each computed from about 10 ms of the training speech) 

for each language, analyze and compare test speech to the 
sets of prototypical spectra, and classify the test speech based 
on the results of the comparison. For example, in systems 
proposed by Leonard and Doddington [12]-[ 151, spectral 
feature vectors extracted from training messages were scanned 
by the researchers for regions of stability and regions of 
very rapid change. Such regions, thought to be indicative 
of a specific language, were used as exemplars for template 
matching on the test data. After this initial work, researchers 
have tended to focus on automatic spectral feature extraction, 
unsupervised training, and maximum-likelihood recognition. 
Cimarusti [16] ran a polynomial classifier on 100-element 
LPC-derived feature vectors. Foil [17] examined both formant 
and prosodic feature vectors, finding that formant features 
were generally superior. His formant-vector-based language- 
ID system used k-means training and vector quantization 
classification. Goodman [ 181 extended Foil’s work by refining 
the formant feature vector and classification distance met- 
ric. Ives [19] constructed a rule-based language-ID system. 
Classification was performed using thresholds on pitch and 
formant frequency variance, power density centroids, etc. 
Sugiyama [20] performed vector quantization classification on 
LPC features. He explored the difference between using one 
VQ codebook per language versus one common VQ codebook. 
In the latter case, languages were classified according to their 
VQ histogram patterns. Riek [3],  Nakagawa [4], and Zissman 
[5] applied Gaussian mixture classifiers to language identifi- 
cation. Gaussian mixture classification is, in some sense, a 
generalization of exemplar extraction and matching, and is 
described more fully in Section IV. 

In an effort to move beyond low-level spectral analy- 
sis, Muthusamy [21] built a neural-net-based, multi-language 
segmentation system capable of partitioning a speech signal 
into sequences of seven broad phonetic categories. For each 
utterance, the class sequences were converted to 194 features 
used to identify language. 

Whereas the language-identification systems described 
above perform primarily static classification, in that the feature 
vectors are assumed to be independent of each other and no 
use of feature vector sequences is made, other systems have 
used hidden Markov models (HMMs) to model sequential 
characteristics of speech production. HMM-based language 
identification was first proposed by House and Neuburg [22]. 
They created a discrete-observation, ergodic HMM that took 
sequences of speech symbols as input and produced a source 
language hypothesis as output. Training and test symbol 
sequences were derived from published phonetic transcriptions 
of text. Riek [31, Nakagawa [4], Zissman [5],  and Savic [23], 
all applied HMMs to feature vectors derived automatically 
from the speech signal. In these systems, HMM training was 
performed on unlabeled training speech. Riek and Zissman 
found that HMM systems trained in this unsupervised manner 
did not perform as well as some of the static classifiers that 
had been testing. Nakagawa, however, eventually obtained 
better performance for his HMM approach than his static 
approaches [24]. In related research, Li and Edwards [25] 
segmented incoming speech into six broad acoustic-phonetic 
classes. Finite-state models were used to model transition 
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probabilities as a function of language. Li has also developed 
a new language-ID system based on the examination and 
coding of spectral syllabic features [26]. 

Recently, language-ID systems that are trained using multi- 
language, phonetically labeled corpora have been proposed. 
Lamel and Gauvain have found that likelihood scores ema- 
nating from language-dependent phone’ recognizers are very 
capable of discriminating between English and French read 
speech [28], as did Muthusamy on English versus Japanese 
spontaneous, telephone-speech [ 101. This type of system will 
be covered in Section IV. Andersen [29] and Berkling [30] 
have explored the possibility of finding and using only those 
phones that best discriminate between language pairs. While 
initially these systems were cogstrained to operate only when 
phonetically transcribed training speech was available, Tucker 
[8] and Lamel [3 11 have utilized single-language phone rec- 
ognizers to label multi-lingual training speeclh corpora, which 
have then been used to train language-dependent phone rec- 
ognizers for language ID. Kadambe 1321 has :studied the effect 
of applying a lexical access module after phone recognition, 
in some sense spotting words in the phone sequences. 

A related approach has been to use a single-language 
phone recognizer as a front-end to a system that uses 
phonotactic scores to perform language ID. Phonotactics 
are the language-dependent set of constraints specify- 
ing which phoneslphonemes are allowed to follow other 
phoneslphonemes. For example, the Germim word “spiel” 
which is pronounced /SH P IY L/ and might be spelled in 
English as “shpeel” begins with a consonant cluster / S H  P/ 
that is rare in English.2 This approach is reminiscent of the 
work of D’Amore [33], [34], Schmitt [35], and Damashek [36], 
who have used n-gram analysis of text documents to perform 
language and topic identification and clustering. Albina [37] 
extended the same technique to clustering speech utterances by 
topic. By “tokenizing” the speech message, i.e., converting the 
input waveform to a sequence of phone symbols, the statistics 
of the resulting symbol sequences can be used to perform 
either language or topic identification. Hazen [6], Zissman 
[7], and Tucker [8] have each developed such language-ID 
systems by using single-language front-end phone recognizers. 
Zissman [7] and Yan [38] have extended this work to system 
using multiple, single-language front-ends, for which there 
need not be a front-end in each language to be identified. 
Meanwhile, Hazen [39] has pursued a single multi-language 
front-end phone recognizer. Examples of some of these types 
of systems will be explored more fully below. 

Prosodic features, such as duration, pitch, and stress have 
also been used to distinguish automatically one language from 
another. For example, Hutchins [40] has been successful in 

The term “phone” is used to identify the realization of acoustic-phonetic 
units or segments, whereas a “phoneme” i s  an underlying mental representa- 
tion of a phonological unit in a language [27]. Because most of the recognizers 
described in this paper are trained on phonetically labeled speech, i.e., the 
labels describe what was actually said, rather than phonemically labeled 
speech, in which the labels are found by dictionary lookup, the term “phone 
recognizer” will be used instead of “phoneme recognizer.” Admittedly, this 
choice is somewhat arbitrary. 

’This cluster can occur in English only if one word ends in / S H /  and the 
next begins with /P/, or in a compound word like “flashpoint.” 

applying prosodic features to two-language LID (e.g., English 
versus Spanish, English versus Japanese, etc.), and Itahashi 
[41] has applied such features to six-way language ID. 

Finally, within the past year, efforts at a number of sites 
have focused on the use of continuous speech recognition 
systems for language ID (e.g., [42]). During training, one 
speech recognizer per language is created. During testing, 
each of these recognizers is run in parallel, and the one 
yielding output with highest likelihood is selected as the 
winning recognizer-the language used to train that recognizer 
is the hypothesized language of the utterance. Such systems 
promise high-quality language identification because they use 
higher-level knowledge (words and word sequences) rather 
than lower-level knowledge (phones and phone sequences) 
to make the language-ID decision. Furthermore, one obtains 
a transcription of the utterance as a byproduct of language 
ID. On the other hand, continuous speech recognition systems 
require many hours of labeled training data in each language 
and also are the most computationally complex of the algo- 
rithms proposed. In a somewhat similar vein, Ramesh [43] 
has proposed text-dependent language ID via word spotting 
for situations in which the speaker’s vocabulary is likely to 
be constrained. 

111. LANGUAGE-ID CUES 

There are a variety of cues that humans and machines can 
use to distinguish one language from another. The reader is 
referred to the linguistics literature (e.g., [27], [44], [45]) for 
in depth discussions of how specific languages differ from one 
another, and to Muthusamy [46], who has measured how well 
humans can perform language ID. We know that the following 
characteristics differ from language to language: 

Phonelphoneme sets are different from one 
language to another, even though many languages share 
a common subset of phoneslphonemes. Phonelphoneme 
frequencies may also differ, i.e., a phone may occur in two 
languages, but it may be more frequent in one language 
than the other. Phonotactics, i.e., the rules governing 
the sequences of allowable phoneslphonemes, can be 
different, as can be the prosodics. 

The word roots and lexicons are usually 
different. Each language has its own vocabulary, and its 
own manner of forming words. 

The sentence patterns are different. Even when 
two languages share a word, e.g., the word “bin” in 
English and German, the sets of words that may precede 
and follow the word will be different. 
Prosody. Duration, pitch, and stress differ from one 
language to another. 

At present, all automatic language-ID systems of which the 
author is aware take advantage of one or more of these sets of 
language traits in discriminating one language from another. 

Phonology. 

Morphology. 

Syntax. 

IV. ALGORITHMS 

The algorithms described above have varying levels of 
computational complexity and different requirements for the 
training data. Our primary goal in this work was to evaluate 
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Fig. 1. 
cepstral and delta-cepstral feature vectors are created. Silence is removed automatically. RASTA is applied to help remove telephone channel effects. 

Acoustic preprocessing used to convert telephone speech into feature vectors. Digitized speech is passed through a mel-scale filter bank from which 

a few of these techniques in a consistent manner to com- 
pare their language-ID capabilities. We tested four language- 
ID algorithms: Gaussian mixture modeling, single-language 
phone recognition followed by language modeling, parallel 
phone recognition followed by language modeling, and parallel 
phone recognition. Each of these systems is described in this 
section. The descriptions are preceded by a discussion of the 
conversion of speech to feature vectors, which is a process 
common to all four algorithms. 

A. Converting Telephone Speech into Feature Vectors 

In the four systems we examined, training and recognition 
are preceded by feature extraction, i.e., the speech waveforms 
are converted from their digital waveform representations 
(usually 16-bit linear or 8-bit p-law encodings) to one or more 
streams of feature vectors. Fig. 1 shows a block diagram of 
the pseudo filter-bank. The acoustic preprocessor produces one 
mel-cepstral observation vector every 10 ms using a 20 ms 
window. This type of front-end was studied by Davis and 
Mermelstein [47], and the version used at Lincoln Laboratory 
for speech recognition, speaker ID, and language ID was 
implemented by Paul [48]. For language ID, only the lowest 
13 coefficients of the mel-cepstrum are calculated (CO through 
C I ~ ) ,  thereby retaining information relating to the speaker’s 
vocal tract shape while largely ignoring the excitation signal. 
The lowest cepstral coefficient (CO) is ignored, because it 
contains only overall energy level information. The next 
twelve coefficients (cl through clz) form the cepstral feature 
vector. Because the mel-cepst” is a relatively orthogonal 
feature set, in that its coefficients tend not to be linearly related, 
it has been used widely for many types of digital speech 
processing. 

In an effort to model cepstral transition information, differ- 
ence cepstra are also computed and modeled. This vector of 
cepstral differences, or “delta” cepstral vector, (ACO through 
A c l ~ )  is computed every frame as 

Ac;(t) = C i ( t  + 1) - C i ( t  - 1). (1) 

Note that Ac0 is included as part of the delta-cepstral vector, 
thus making 13 coefficients altogether. For historical reasons 
relating to our use of tied mixture GMM systems, we process 
this vector as a separate, independent stream of observations, 

though it could be appended to the cepstral vector to obtain 
a 25-D composite vector. 

When training or test speech messages comprise active 
speech segments separated by long regions of silence, we have 
found it desirable to train or test only on the active speech 
regions because the nonspeech regions typically contain no 
language-specific information. The speech activity detector we 
use was developed by Reynolds for pre-processing speech in 
his speaker-ID system [49]. To separate speech from silence, it 
relies on a time-varying estimate of the instantaneous signal- 
to-noise ratio ( S N R ) .  

Recognizing that the cepstral feature vectors can be in- 
fluenced by the frequency response of the communications 
channel and in light of the possibility that each individual 
message is collected over a channel that is different from all 
other channels, we apply RASTA to remove slowly varying, 
linear channel effects from the raw feature vectors [50]. 
In this process, each feature vector’s individual elements, 
considered to be separate streams of data, are passed through 
identical filters that remove near-DC components along with 
some higher frequency components. For each vector index i, 
the RASTA filtered coefficient, ci, is related to the original 
coefficient, cz as follows: 

c i ( t )  = h(t)  * C Z ( t )  (2) 

where * denotes the convolution operation, and t is the time 
index measured in frames. We use the standard RASTA IIR 
filter 

In some initial LID experiments using the GMM system, 
RASTA’S impact on language-ID performance was found to be 
almost identical to that of long-term cepstral mean subtraction, 
but with the computational advantage of requiring only a single 
pass over the input data. Additionally, RASTA is capable of 
tracking changes in channel characteristics with time. RASTA 
may be performed equivalently in either the log mel-filter 
domain or the cepstral domain; we applied it to the log mel- 
filter coefficients. 
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Fig. 2. 
front end are analyzed, and a language is hypothesized. 

PRLM block diagram. A single-language phone recognition front end is used to tokenize the input speech. The phone sequences output by the 

B. Algorithm 1: Gaussian Mixture Model 
(GMM) ClassiJcation 

A GMM language-ID system served as thie simplest algo- 
rithm for this study. As will be shown below, GMM language 
ID is motivated by the observation that different languages 
have different sounds and sound frequencies. It has been 
applied to language ID at several sites [3]-[5]. 

Under the GMM assumption, each feature vector i?t at 
frame time t is assumed to be drawn randomly according to 
a probability density that is a weighted sum of multi-variate 
Gaussian densities: 

N 

(4) 
k=l  

where X is the set of model parameters 

= { P k ,  P k ,  E,} ( 5 )  

k is the mixture index (1 5 k 5 N ) ,  the p k ' s  are the mixture 
weights constrained such that C?='=,pk = 1, and the b k ' s  are 
the multi-variate Gaussian densities defined by the means i& 
and variances C k .  

For each language 1, two GMMs are created: one for the 
cepstral feature vectors, {&}, and one for the delta-cepstral 
feature vectors, {Gt},  as follows: 

From training speech spoken in language I, two inde- 
pendent feature vector streams are extracted: centisecond 
mel-scale cepstra (c1 through c12) and delta-cepstra (ACO 
through &la), as described in Section IV-A. 
A modified version of the Linde, Buzo, and Gray al- 
gorithm [51] is used to cluster each stream of feature 
vectors, producing 40 cluster centers for each stream (i.e., 
N = 40). 
By using the cluster centers as initial estimates for f i k ,  

multiple iterations of the estimate-maxirnize (E-M) algo- 
rithm are run, producing, for each stream, a more likely 
set of PL-, P k ,  & (521, Wl. 

During recognition, an unknown speech utterance is clas- 
sified by first converting the digitized waveform to feature 
vectors and then by calculating the log likelihood that the 
language 1 model produced the unknown speech utterance. 
The log likelihood, C, is defined as 

L({.'t, $t}lAF, A?") = 
T 

[log P(3tlAP) + 1% P(y ' t lF71  (6) 
t=l  

where X F  and Xpc are the cepstral and delta-cepstral GMM, 
respectively, for language 1, and T is the duration of the 
utterance. Implicit in this equation are the assiumptions that the 

observations {&} are statistically independent of each other, 
the observations {&} are statistically independent of each 
other, and the two streams are jointly statistically independent 
of each other. The maximum-likelihood classifier hypothesizes 
i as the language of the unknown utterance, where 

(7) 

The GMM system is very simple to train, because it requires 
neither an orthographic nor phonetic labeling of the training 
speech. GMM maximum-likelihood recognition is also very 
simple: a C implementation of a two language classifier can 
be run easily in real-time on a Sun SPARCstation-10. 

C. Algorithm 2: Phone Recognition Followed 
by Language Modeling (PRLM) 

The second language-ID approach we tested comprises 
a single-language phone recognizer followed by an n-gram 
analyzer, as shown in Fig. 2 [6]-[8]. In this system, training 
messages in each language 1 are tokenized by a single-language 
phone recognizer, the resulting symbol sequence associated 
with each of the training messages is analyzed, and an n- 
gram probability distribution language model is estimated for 
each language 1. Note that the n-gram probability distributions 
are trained from the output of the single-language phone 
recognizer, not from human-supplied orthographic or phonetic 
labels. During recognition, a test message is tokenized and the 
likelihood that its symbol sequence was produced in each of 
the languages is calculated. The n-gram model that results in 
the highest likelihood is identified, and the language of that 
model is selected as the language of the message. 

PRLM is motivated by a desire to use speech sequence 
information in the language-ID process, thereby exploiting a 
larger range of phonology differences between languages than 
is possible with GMM. We view it as a compromise between: 

modeling the sequence information using hidden Markov 
models (HMM's) trained from unlabeled speech (such 
systems have performed no better than static classification 
[4], [5], though Nakagawa has had some success more 
recently [24]), and 

* employing language-dependent phone recognizers trained 
from orthographically or phonetically labeled speech 
(such systems, which are the subject of Section IV-E, 

language of interest is often not available). 
can be difficult to implement, as labeled speech in every 

1) The Front-End: Single-Language Phone Recognition: 
Though PRLM systems can employ a single-language phone 
recognizer trained from speech in any language, we focused 
initially on English front-ends, because labeled English speech 
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corpora were the most readily a~ailable.~ The phone recog- 
nizer, implemented using the hidden Markov model toolkit 
(HTK) [54], is a network of context-independent phones 
(“monophones”), in which each phone model contains three 
emitting states. The output vector probability densities are 
modeled as GMMs with six underlying Gaussian densities 
per state per stream. The observation streams are the same 
cepstral and delta-cepstral vectors used in the GMM system. 
Phone recognition is performed via a Viterbi search using a 
fully connected null-grammar network of monophones. Phone 

, recognition, which dominates PRLM processing time, takes 
about 1 . 5 ~  real-time on a Sun SPARCstation-10 (i.e., a 10 s 
utterance takes about 15 s to process). 

2 )  The Back-End: N-gram Language Modeling: Using the 
English phone recognizer as a front-end, a language model can 
be trained for each language 1 by running training speech for 
language 1 into the phone recognizer and computing a model 
for the statistics of the phones and phone sequences that are 
output by the recognizer. We count the occurrences of n-grams: 
subsequences of n symbols (phones, in this case). Training is 
performed by accumulating a set of n-gram histograms, one per 
language, under the assumption that different languages will 
have different n-gram histograms. We then use interpolated 
n-gram language models [55] to approximate the n-gram 
distribution as the weighted sum of the probabilities of the 
n-gram, the (n - 1)-gram, etc. An example for a bigram model 
(i.e., n = 2 )  is 

P(wtIWt-1) = azP(wtlwt-1) + a l P ( w t )  + aopo. (8) 

where wt-l and wt are consecutive symbols observed in the 
phone stream. The P’s are ratios of counts observed in the 
training data, e.g.: 

(9) 

where C(wt-l, wt) is the number of times symbol wt-l is 
followed by wt, and C(wt-l) is the number of occurrences 
of symbol wt-l. Po is the reciprocal of the number of symbol 
types. The a’s can be estimated iteratively using the E-M 
algorithm so as to minimize perplexity, or they can be set by 
hand. During recognition, the test utterances are first passed 
through the front-end phone recognizer, producing a phone 
sequence, W = {WO, w1, w2, . . .}. The log likelihood, L, that 
the interpolated bigram language model for language 1, A y G ,  
produced the phone sequence W ,  is 

r 

L(WIAFG) = C l o g  P(wtIwt-1, At”“) (10) 
t=l 

For language identification, the maximum-likelihood classifier 
decision rule is used, which hypothesizes that f is the language 
of the unknown utterance, where 

Based on early experiments, we set n = 2, a2 = 
0.399, a1 = 0.6, and a0 = 0.001 for PRLM experiments, 

Ultimately, we tested single-language front-ends in six different languages. 

as we found that peak performance was obtained in the region 
of 0.3 < a1, a2 < 0.7. We have found little advantage to 
using n > 2 for PRLM, and this observation is consistent with 
other sites [l]: Our settings for a and n are surely related 
to the amount of training speech available; for example, one 
might weight the higher order a’s more heavily as the amount 
of training data increases. 

D. Algorithm 3: Parallel PRLM 

Although PRLM is an effective means of identifying the 
language of speech messages (as will be shown in Section 
VI), we know that the sounds in the languages to be identified 
do not always occur in the one language used to train the 
front-end phone recognizer. Thus, it seems natural to look for 
a way to incorporate phones from more than one language 
into a PRLM-like system. For example, Hazen has proposed 
to train a front-end recognizer on speech from more than 
one language [39]. Alternatively, our approach is simply 
to run multiple PRLM systems in parallel with the single- 
language front-end recognizers each trained in a different 
language [7], [38]. This approach requires that labeled training 
speech be available in more than one language, although 
the labeled training speech does not need to be available 
for all, or even any, of the languages to be recognized. 
An example of such a parallel PRLM system is shown in 
Fig. 3. In the example, we have access to labeled speech 
corpora in English, Japanese, and Spanish, but the task at 
hand is to perform language classification of messages in 
Farsi, French, and Tamil. To perform the classification, we 
first train three separate PRLM systems: one with an English 
front-end, another with a Japanese front-end, and the last 
with a Spanish front-end. This parallel PRLM system would 
have a total of nine n-gram language models-one for each 
language to be identified (Farsi, French, and Tamil) per each 
front-end (English, Japanese, Spanish). During recognition, a 
test message is processed by all three PRLM systems, and 
their outputs are averaged in the log domain (multiplied in 
the linear domain, as if each PRLM system were operating 
independently) to calculate overall language log likelihood 
scores. Note that this approach extends easily to any number of 
parallel PRLM systems. The only limitation is the number of 
languages for which labeled training speech is available. The 
phone recognizer parameters (e.g., number of states, number 
of Gaussians, etc.) used in parallel PRLM are identical to 
those used in PRLM. Parallel PRLM processing time is about 
1 . 5 ~  real-time on a Sun SPARCstation-10 per front-end phone 
recognizer; therefore, a system with phone recognizers in three 
languages (e.g., English, Japanese, and Spanish) would take 
about 4.5 x real-time. 

E. Algorithm 4: Parallel Phone Recognition (PPR) 
The PRLM and parallel PRLM systems perform phonetic 

tokenization followed by phonotactic analysis. Though this 
approach is reasonable when labeled training speech is not 
available in each language to be identified, the availability 

used successfully in other types of language-ID systems (e 8.. [%I, [32]). 
4Though not yet effectwe for PRLM-based language hD, trigrams have been 
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Fig. 4. PPR block diagram. Several single-language phone recognition front 
ends are used in parallel. The likelihoods of the Viterbi paths through each 
system are compared from which a language is hypothesized. 

of such labeled training speech broadens the scope of pos- 
sible language-ID strategies; for example, it becomes easy 
to train and use integrated acoustic/phonotactic models. By 
allowing the phone recognizer to use the language-specific 
phonotactic constraints during the Viterbi decoding process 
rather than applying those constraints after phone recognition 
is complete (as is done in PRLM and parallel PRLM), the most 
likely phone sequence identified during recognition is optimal 
with respect to some combination of both the acoustics and 
phonotactics. The joint acoustic-phonotactic llikelihood of that 
phone sequence would seem to be well-suited for language 
ID. Thus, we tested such a parallel phone recognition (PPR) 
system, as shown in Fig. 4. Like PRLM, PPR makes use of 
the phonological differences between languages. Such systems 
had been proposed previously by Lamel [9] and Muthusamy 
[lo]. 

The language-dependent phone recognizers in the PPR 
language-ID system, also implemented using HTK, have the 
same configuration as the single-language phone recognizer 
used in PRLM, with a few exceptions. First, the language 
model is an integral part of the recognizer in the PPR sys- 
tem, whereas it is a post-processor in the PRLM system. 
During PPR recognition, the inter-phone transition probability 
between two phone models i and j is 

rLE3 = slog P(j l i )  (12) 

where s is the grammar scale factor, and the p’s are bigram 
probabilities derived from the training labels. Based on pre- 
liminary testing, s = 3 was used in these experiments, as 
performance was seen to have a broad peak near this value. 
Another difference between PRLM and PPR phone recognizers 
is that while both can use context-dependent phone models, 
our PRLM phone recognizers use only monophones while our 
PPR phone recognizers use the monophones of each language 
plus the 100 most commonly occurring right (i.e., succeeding) 
context-dependent phones. This strategy was motivated by 
initial experiments showing that context-dependent phones 

improved PPR language-ID performance but had no effect on 
PRLM language-ID performance. 

PPR language-ID is performed by Viterbi decoding the test 
utterance once for each language-dependent phone recognizer. 
Each phone recognizer finds the most likely path of the test ut- 
terance through the recognizer and calculates the log likelihood 
score (normalized by length) for that best path. During some 
initial experiments, we found that the log likelihood scores 
were biased, i.e., the scores out of a recognizer for language 
1 were higher, on average, than the scores from the language 
m recognizer. We speculate that this effect might be due to 
the use of the Viterbi (best-path) log likelihood rather than the 
full log likelihood across all possible paths. Alternatively, the 
bias might have been caused by a language-specific mismatch 
between speakers or text used for training and testing. Finally, 
it might be that these biases represent different degrees of 
mismatch between the HMM assumptions and various natural 
languages. In any case, to hypothesize the most likely language 
in our PPR system, we use a modified maximum-likelihood 
criterion in which a recognizer-dependent bias is subtracted 
from each log likelihood score prior to applying the maximum- 
likelihood decision rule. Instead of finding [, 

i = arg max , L C ( ~ ~ L I X ~ )  

il = arg max [~(c l l~ i )  - K ~ I  

(13) 
1 

we find p ,  
(14) 

1 

where L(filX1) is the log likelihood of the Viterbi path $1 

through the language 1 phone recognizer and Kl is the 
recognizer-dependent bias. The recognizer-dependent bias 
is set to the average of the normalized log likelihoods for all 
messages processed by the recognizer. In preliminary tests, this 
heuristic bias-removal technique was shown to reduce the error 
rate by a factor of two. The PPR recognizer for each language 
runs at about 2x real-time on a Sun SPARCstation-10. 

Note that PPR systems require labeled speech for every 
language to be recognized; therefore, it may be more difficult 
to implement a PPR system than any of the other systems 
already discussed, although Tucker [8] and Lamel [31] have 
bootstrapped PPR systems by using labeled training speech in 
only one language, and Lund [56] has developed a technique 
for using acoustic models in one language to train language 
models (and run phone recognizers) in many languages (a 
bridge between PRLM and PPR). 
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Training 
male female 

33 17 

TABLE I 
OGI MULTI-LANGUAGE TELEPHONE SPEECH CORPUS 

1 Initial 1 Development 1 Extended I Final 
Test Training Test 

male female male female male female 
14 6 72 30 16 4 

Language 

English 
Farsi 
French 
German 
Hindi 
Korean 
Japanese 
Mandarin 
Spanish 
Tamil 
Vietnamese 

39 10 
40 10 
25 25 
47 3 
32 17 
30 20 
34 15 
34 16 
43 7 
31 19 

15 4 s  1 18 2 
15 5 11 2 12 S 
11 9 10 5 15 5 
13 4 25 11 14 6 
18 2 3  2 15 5 
15 5 1  0 11 S 
14 6 8  8 10 10 
16 4 14 5 11 S 
17 3 20 2 19 1 
16 4 11 6 13 7 

V. SPEECH CORPUS 

The Oregon Graduate Institute Multi-Language Telephone 
Speech (OGI-TS) Corpus [ l l ]  was used to evaluate the per- 
formance of each of the four language-ID approaches outlined 
above.5 Each message in the corpus was spoken by a unique 
speaker over a telephone channel and comprises responses to 
ten prompts, four of which elicit fixed text (e.g., “Please recite 
the seven days of the week,” “Please say the numbers zero 
through ten”) and six of which elicit free text (e.g., “Describe 
the room from which you are calling,” “Speak about any topic 
of your choice”). The ten responses contained in each message 
together comprise about two minutes of speech. 

Table I contains a listing of the number of messages per 
language in each of the four segments of the corpus: initial 
training, development test, extended training, and final test. 
Our GMM, PRLM, parallel PRLM, and PPR comparisons 
were run with the initial training segment for training and the 
development test set for testing. Because the Hindi messages 
were not yet available when we performed our preliminary 
test, only ten languages were used. Test utterances were 
extracted from the development test set according to the April 
1993 National Institute of Standards and Technology (NIST) 
specification [57]: 

“45 s”  Utterance Testing: Language ID is performed on a 
set of 45 s utterances spoken by the development test speakers. 
These utterances are the first 45 s of the responses to the 
prompt “speak about any topic of your choice.” OGI refers 
to these utterances as “stories before the tone,” and they are 
denoted st ory-bt .6 

“10 s”  Utterance Testing: Language ID is performed on a 
set of 10 s cuts from the same stories utterances used in “45 
s” testing. 

Phonetic labels for six of the languages were provided by 
OGI during the course of this work. English, Japanese, and 
Spanish labels were provided first, followed by German, Hindi, 
and Mandarin. For all six languages, labels were provided only 
for the story-bt utterances. We compared GMM, PRLM, 
parallel PRLM, and PPR using only the English, Japanese, and 
Spanish messages. Additional experiments that compared only 

5The OGI-TS corpus is avadable from the Linguistx Data Consortium, 

6A tone signaled the speaker when 45 s of speech had been collected, 
University of Pennsylvania, Philadelphia, PA. 

indxatmg 15 s remaming. 

the GMM, PRLM, and parallel PRLM systems used messages 
in all ten languages. 

Though the same OGI-TS messages were used to train each 
of the four systems, the systems used the training data in 
different ways. The Gaussian mixture models were trained 
on the responses to the six free-text prompts. The PRLM 
back-end language models and the phone recognizers for 
the parallel PRLM and PPR systems were trained on the 
story-bt utterances. For the PRLM system, three chfferent 
English front-ends were trained: 

A phone recognizer was trained on the phonetically 
labeled messages of the English initial training segment 
of the OGI-TS c o r p u ~ . ~  Models for 48 monophones were 
trained. 

* A second phone recognizer was trained on the entire8 
training set of the NTIMIT telephone-speech corpus [58]. 
The data comprised 3.1 hr of read, labeled, telephone- 
speech recorded over many telephone channels using a 
single handset. Models for 48 monophones were trained. 
A third phone recognizer was trained on CREDITCARD 
excerpts from the SWITCHBOARD corpus [59]. The 
data comprised 3.8 hr of spontaneous, labeled, telephone- 
speech recorded using many handsets. Models for 42 
monophones were trained. 

Note that the number of monophone models trained is 
dependent on the corpus labeling scheme. 

We conducted further testing of the parallel PRLM system 
after OGI released the extended-training segment and the 
Hindi messages. Single-language front-ends were eventually 
trained in six languages (English, German, Hindi, Japanese, 
Mandarin, Spanish). Language model training was performed 
on the union of the initial training, development test, and 
extended training segments. Test utterances were selected 
according to the March 1994 NIST specification, with both 
“45 s” and “10 s” utterances extracted from the final test set 
1571. 

VI. EXPERIMENTS AND RESULTS 

The four algorithms were compared by performing two- 
alternative and three-altemative, forced-choice classification 
experiments using the English, Japanese, and Spanish OGI-TS 
messages. As defined in Table I, this first set of experi- 
ments used the “Initial Training” data for training, and the 
“Development Test” data for testing. For the two-alternative 
testing, one model was trained on English speech and another 
on Japanese speech. Test messages spoken in English and 
Japanese were then presented to the system for classification. 
Similar experiments were run for English versus Spanish 
and Japanese versus Spanish. For the three-alternative testing, 
models were trained in all three languages, and test messages 
in all three languages were presented to the system for forced- 
choice classification. Results of all of these experiments are 

Because the forward-backward algorithm would have had trouble aligning 
phone models against 45 s utterances, shorter, hand endpointed segments of 
the story utterances were used. Th~s also resulted in less heavy reliance on 
the OGI supplied phone start and end times. 

Except for the shibboleth sentences. 



ZISSMAN: COMPARISON OF FOUR APPROACHES TO AUTOMATIC LANGUAGE IDENTIFICATION 

System 

39 

1OL I Eng. vs. L I L vs. L' 
45-s I 10-s I 45-s I 10-s I 45-s I 10-s 

VARY # OF CHANNELS 

6ol------l 

GMM 
PRLM (NTIMIT) 
PRLM (SWITCHBOARD) 

-I 

47 50 19 16 20 21 
33 53 12 18 10 16 
28 46 5 12 8 14 

45 SEC 

NUMBER OF CHANNELS 
(AVERAGING OVER ALL 
POSSIELE COMBINATIONS) 

PRLM [OGI-ENGLISH) ' ' 28 
Parallel PRLM 21 
D (standard deviation) 

USE ONE ONLY 

46 7 13 8 14 
37 8 12 6 10 

3 2 2 1 1 1  

, . , . . .  

11L Eng. vs. L 

201 30 4 1  6 
45s I 10s 45s 1 10s 

--'" 

10 SEC . .=  . 

L vs. L' 

5 1  8 

45s 1 10s 

e *  e 

LEAVE ONE OUT 

Fig. 5. Using fewer than six front-ends. Left panel shows the average effect of reducing the number of channels. Middle panel shows the effect of using 
only one channel. Right panel shows the effect of omitting one of the six channels. 

TABLE II 
RESULTS COMPARING ALL FOUR SYSTEMS (% ERROR) 

System 

TABLE I11 
FULL TEN-LANGUAGE RESULTS (% ERROR) 

shown in Table 11. In the table, the averages were computed 
with equal-weighting per language pair. Standard deviations 
for the last four columns were computed with the assumption 
of a binomial distribution. Generally, the results show that 
parallel PRLM and PPR perform about equally. This result 
is not surprising because the major difference between the 
two systems for these three languages is the manner in 
which the language model is applied. For the 45 s utterances, 
SWITCHBOARD-based PRLM performs about as well as 
parallel PRLM and PPR, though it performs worse than 
parallel PRLM and PPR for the shorter, 10 s utterances. 

Some additional experiments were run comparing PRLM, 
parallel PRLM, and GMM using all ten languages of the OGI- 
TS corpus. PPR could not be run in this mode, as phonetic 
labels did not exist for all of the languages. The first two 
columns of Table I11 show ten language, forced-choice results. 
Next, two language, forced-choice average results for English 
versus each of the other nine languages are presented. The 
final two columns show two-language, forced-choice results 
averaged over all of the 45 language paiirs. Approximate 
standard deviations are shown in the bottom row. Table I11 
shows that parallel PRLM generally performs best.-Also note 
that PRLM with a SWITCHBOARD front-end performs about 
equally to PRLM with an OGI-TS English front-end. PRLM 
with an NTIMIT front-end performs rather poorly, perhaps 
because there are significant differences between the recording 
conditions of the OGI-TS and NTIMIT corpora: NTIMIT 
speech is read, and the entire corpus was collected using a 
single handset, while the OGI-TS corpus is extemporaneous, 
and it was recorded using hundreds of handsets. We suspect 
that the lack of handset variability in NTIMIT caused the poor 
performance. 

Table IV shows the results of evaluating the parallel PRLM 
system according to the March 1994 NIST guidelines. With 
the addition of Hindi, the first two columns refer to eleven- 
alternative, forced-choice classification, the next two columns 
refer to an average of the ten two-alternative, forced-choice 
experiments with English and one other language, and the last 
two columns refer to an average of the 55 two-alternative, 
forced-choice experiments using each pair of languages. Six 
front-end phone recognizers (English, German, Hindi, Japan- 
ese, Mandarin, and Spanish) were used for this experiment. 
As defined in Table I, this second set (and all subsequent sets) 
of experiments used the initial training, development test, and 
extended training data for training, and the final test data for 
testing. Table IV shows our first pass through the final test 
evaluation data, so for these results there was no possibility of 
tuning the system to specific speakers or messages. 

Further analysis of our NIST March 1994 results was 
performed to determine the effect of reducing the number 
of front-end phone recognizers. The results on the eleven- 
language classification task are shown in Fig. 5. The left 
panel shows that reducing the number of channels generally 
increases the error rate more quickly for the 10 s utterances 
than the 45 s utterances. The middle panel shows that using 
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English 
Japanese 
Spanish 

TABLE V 
PPR PHONE RECOGNITTON RESULTS 

1 Error Rate I N 1 I I S I D I H Number of I #phone I 
% monophones classes 

58.1 8269 966 2715 1120 4434 52 39 
44.5 7949 864 945 1730 5274 27 25 
45.1 7509 733 1631 1021 4857 38 34 

only one channel, no matter which one it is, greatly increases 
the error rate. The right panel shows that omitting any one of 
the six channels has only a small impact. 

We also measured the within-language accuracy of a few of 
the front-end recognizers; i.e., we tested the English recognizer 
with English, the Spanish recognizer with Spanish, and so 
on. Table V shows the within-language phone recognition 
performance of the PPR recognizers. The results are presented 
in terms of error rate, i.e., the sum of the substitution, deletion, 
and insertion errors, divided by the true number of phones. N 
is number of actual phone tokens in test set, I is number 
of insertions, S is number of substitutions, D is number of 
deletions, H is number of phones correctly identified. Note 
that for each language, the number of equivalence classes 
(i.e., those classes of similar phones that are, for the intent 
of scoring, considered equivalent) is less than the number of 
monophones. Equivalence classes for English were motivated 
by Lee and Hon [60]. For Japanese and Spanish, similar rules 
were applied. The 10 s utterances from the development test 
set were used to evaluate phone recognition performance. For 
these evaluations, the phone networks included all context- 
independent and right context-dependent phones observed in 
the training data. The results of Tables 11 and V indicate 
that individual PPR recognizers can exhibit a high phone- 
recognition error rate while still allowing the overall PPR 
system to achieve good language-ID performance. 

Although not measured, we believe that our PRLM phone 
recognizers, which do not employ any context-dependent 
phones, have even higher error rates than our PPR phone 
recognizers. Therefore, it is interesting that their output can 
be used to perform language ID effectively. Some preliminary 
studies indicate that mutual information, as opposed to phone 
accuracy, might be a better measure of front-end utility. As 
suggested by Gish [61], mutual information of the front-end 
measures jointly the resolution of the phone recognizer and 
its consistency. Consistency, rather than accuracy, is what 
is required by the language models; after all, if phone a is 
always recognized by a two-phone front-end as phone b, and 
phone b is always recognized as phone a, the accuracy of 
the front-end might be zero, but the ability of the language 
model to perform language ID will be as high as if the front- 
end made no mistakes. That bigram performance is better 
than unigram performance, even though we rarely recognize 
a bigram “accurately,” might be due to the fact that we can 
recognize bigrams “consistently.” 

VII. ADDITIONAL EXPERIMENTS 

Given the high performance of the parallel PRLM approach, 
our attention has focused on ways of boosting its language-ID 
capabilities even further. In this section, we report on efforts 
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to use gender-dependent phonotactic weighting and duration 
tagging to improve parallel PRLM language-ID performance. 

A. Gender-Dependent Channels 

Using gender-dependent acoustic models is a popular tech- 
nique for improving speech recognition performance (e.g., 
[62]-[@I). We were motivated to use gender-dependent front- 
ends and back-ends for two reasons: 

Gender-dependent phone recognizers should produce a 
more reliable tokenization of the input speech relative to 
their gender-independent counterparts; therefore, n-gram 
analysis should prove more effective. 
The acoustic likelihoods output by gender-dependent 
phone recognizers could be used to weight the phonotactic 
scores output by the interpolated language models. This 
weighting procedure would represent our first use of 
acoustic likelihoods in a PRLM-type system. 

The general idea of employing gender-dependent channels 
for language ID is to make a preliminary determination regard- 
ing the gender of the speaker of a message and then to use 
the confidence of that determination to weight the phonotactic 
evidence from gender-dependent channels. A block diagram 
is shown in Fig. 6. During training, three phone recognizers 
per front-end language are trained: one from male speech, 
one from female speech, and one from combined male and 
female speech. Next, for each language I to be identified, three 
interpolated n-gram language models are trained, one for each 
of the front-ends. The language models associated with the 
male phone recognizer are trained only on male messages, the 
female language models only on female messages, and the 
combined models on both male and female messages. 

During recognition, an unknown message x is processed by 
all three front-ends. The acoustic likelihood scores emanating 
from the male front-end and from the female front-end are 
used to compute the a posteriori probability that the message 
is male as9 

where p(zlR,) is the likelihood of the best state sequence 
given the male HMMs, A,, and p(zlAf) is the likelihood 
of the best state sequence given the female HMMs, Af .  
Observing empirically that the cutoff between male and female 
messages is not absolutely distinct and does not always occur 
exactly at P r  (malelz) = 0.5, P r  (malelz) is used to calculate 
three weights: 

P r  (malelz) - K . 

0 otherwise 
wn%={ 1 - K  i fPr  (malelz) 2 K (16) 

K - Pr  (male/$) . 

wf={ 0 K otherwise 
if Pr (malelz) < K (17) 

9We could c e d y  use a simpler algonthm for malung the gender ID 
decision, but the phone recognizer acousac likellhoods are already being 
calculated as part of the phone recogmtion process; hence, we get them for 
free in OUI system. 
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Three weight functions. The value of each weight is a function of 

where W,, W f ,  and Wg, are the weights for the male, female, 
and gender-independent channels, respectively, and K is a 
constant set empirically during training (typically ranging from 
0.30-0.70). The weight functions are shown graphically in 
Fig. 7. The W’s are used to weight the pholnotactic language 
model scores as follows. 

P(Zl1) = WmP(ZIX?) + WfP(XlXf) + WgzP(ZlXT) (19) 

where X? is the interpolated n-gram language model trained 
by passing male language 1 speech through thie male phone rec- 
ognizer, Xlf is the interpolated n-gram language model trained 
by passing female language 1 speech through the female phone 
recognizer, is the interpolated n-gram language model 
trained by passing both male and female language 1 speech 
through the gender-independent phone recognizer. 

B. Duration Tagging 
On advice from Mistretta at Lockheed-Martin Sanders [65], 

we have begun to use phone duration to improve the perfor- 
mance of our parallel PRLM system. Duration tagging makes 
explicit use of phone-duration information tlhat is output from 
the front-end phone recognizers. Our version of the Lockheed- 
Martin Sanders approach for using duration information is 
shown in Fig. 8. The training data for all languages are passed 
through each of the front-end phone recognizers. A histogram 

TABLE VI 
PARALLEL PRLM PERFORMANCE WITH SEVERAL ENHANCEMENTS (% ERROR) 

of durations for each phone emitted from each recognizer is 
compiled and the average duration determined. A -L suffix 
is appended to all phones having duration longer than the 
average duration for that phone, and a -S suffix is appended 
to all phones having duration shorter than the average duration 
for that phone. This modified sequence of phone symbols 
is then used in place of the original sequence for training 
the interpolated language models. During recognition, we use 
the duration thresholds determined during training to apply 
the same procedure to the output symbols from the phone 
recognizer. 

C. Results and Analysis 

Use of gender-dependent front-ends together with gender- 
independent front-ends has resulted in a modest improvement 
in LID performance. Table VI compares the performance of 
six systems: 

Baseline: Our baseline six-channel parallel PRLM sys- 
tem from the March 1994 evaluation (first row of results), 

New Baseline: A newer version of the baseline system 
that has better silence detection and a better set of language 
model interpolation weights (a2 = 0.599, a1 = 0.4, and 
a0 = 0.001), 

Gender: A 16 channel system having three front-ends 
(one male, one female, and one gender-independent) for Eng- 
lish, German, Japanese, Mandarin, and Spanish, and one 
front-end for Hindi (as there was insufficient female speech 
to train gender-dependent front-ends for Hindi). These results 
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Fig. 8. Approach to duration tagging. 

TABLE VII 
CONFUSION MATRIX FOR 45-S UTTERANCES 

En Fa Fr Ge Hi Ja KO Ma Sp Ta Vi 
English 18 0 0 0 0 0 0 0 1 0 0 
Farsi 0 19 0 0 0 0 0 0 0 0 0 
French 2 0 1 3 1 0 1 0 0 0 0 0  
German 0 1 1  17 0 0 0 0 0 0 0  
Hindi 0 0 0 0 18 0 0 0 0 1 0  
Japanese 0 0 1 0 1 16 0 0 1 0 0 
Korean 0 0 0 0 0 0 11 0 0 0 1 
Mandarin 0 0 1 0 0 0 2 14 0 0 0 
Spanish 0 0 0 0 3 0 0 0 13 0 1 
Tamil 0 0 0 0 0 0 0 0 0 1 4 0  
Vietnamese 0 0 0 0 1 0 0 0 0 1 13 

represent an attempt to use the acoustic likelihoods output 
by the front-end phone recognizer to improve the phonotactic 
scores output by the n-gram language models. 

Duration: A system that uses the simple technique for 
modeling duration using the -S and -L tags. 

Gender + Duration: A system that combines the gender 
and duration enhancements. 

Tables VI1 and VI11 show the confusion matrices for the 45 
s and 10 s utterances, respectively, using a parallel PRLM sys- 
tem with gender-dependent and duration processing. Each row 
shows the number of utterances truly spoken in some language, 
and each column shows the number of utterances classified by 
the ”system as spoken in some language. Therefore, entries 
along the main diagonal indicate utterances correctly iden- 
tified, while off-diagonal entries are errors. From studying 
the confusion matrices, it becomes clear that confusions are 
not necessarily correlated with the linguistic “closeness” of 
the language pair. For example, there are many more Span- 

TABLE VIII 
CONFUSION MA= FOR 10-s UTTERANCES 

En Fa Fr Ge Hi Ja KO Ma Sp Ta Vi 
English 61 0 2 0 0 0 2 0 2 2 0 
Farsi 2 4 7 3 2 2 0 0 0 2 0 0  
French 5 0 41 9 2 3 0 0 1 0  1 
German 3 3 2 5 3  1 1  0 1 0  0 1  
Hindi 3 2 0 2 5 1 0 0 1 1 5 0  
Japanese 0 0 2 0 2 49 2 0 5 0 1 
Korean 0 1 2  1 0  0 34 1 0  0 6 
M a n d a r i n 0 4 0 1 3 1 2 4 0 0 0 1  
Sparush 2 1 1  1 6  2 0 0 4 0 1 4  
Tamil 0 0 0 0 0 0 0 0 0 4 3 0  
Vietnamese 2 2 1 0 3 0 1 0 3 1 34 

ish/Hindi confusions than SpanishErench confusions. This 
may be due to the small size of the test corpus, which limits 
our confidence in these statistics. 

We also have some evidence that the parallel PRLM system 
has trouble with nonnative speakers of a language. For Span- 
ish, an expert Spanish dialectologist listened to each message, 
classifying the dialect of the speaker [66]. Though the Spanish 
speakers are generally native of Spain or Latin America, some 
were born andor raised in other countries (e.g., the United 
States and France). Of the 13 Spanish speakers correctly 
identified as shown in Table VII, 10 are native speakers, 
and three are not. Of the four Spanish speakers incorrectly 
identified, all are nonnative, and one was nonfluent. 

Although the phone recognizer acoustic likelihoods used in 
the gender weighting are already being calculated as part of 
the phone recognition process, and hence, we get them for free 
in our system, we have begun to use a simpler GMM-based 
algorithm for making the gender-ID decision. The GMM- 
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based approach to gender ID yields language-ID performance 
comparable with our original approach but ,allows for a more 
reliable separation between male and female speakers and 
obviates the computation of the K factor. 

The use of even more fine-grain duration tags has been 
studied both by us and by Lockheed-Martin Sanders. In both 
cases, quantizing duration into more than two values has not 
improved language-ID performance. 

VIII. DISCUSSION 

This paper has reviewed the research and development 
of language-identification systems at MIT Lincoln Labora- 
tory. We began by comparing the performance of four ap- 
proaches to automatic language identification of telephone- 
speech messages: Gaussian mixture modeling (GMM), single- 
language phone recognition followed by language model- 
ing (PRLM), parallel PRLM, and parallel phone recognition 
(PPR). The GMM system, which requires no phonetically 
labeled training speech and runs faster than real-time on a 
conventional UNIX workstation, performed poorest. PRLM, 
which requires phonetically labeled training speech in only 
one language and runs a bit slower than real-time on a 
conventional workstation, performs respectably as long as the 
front-end phone recognizer is trained on speech collected over 
a variety of handsets and channels. Even better results were 
obtained when multiple front-end phone recognizers were used 
with either the parallel PRLM or PPR systems, but these 
systems run more slowly (e.g., 4x to 24x real-time). Because 
phonetically or orthographically labeling foreign language 
speech is expensive, the high performance obtained with 
the parallel PRLM system-which can use, but does not 
require, labeled speech for each language to be recognized-is 
encouraging. 

With respect to a parallel PRLM system, we have shown 
that using gender-dependent front-ends in parallel with gender- 
independent front-ends can improve performance. This result 
is consistent with the experience of using gender-dependent 
models for continuous speech recognition. We have also used 
phone duration tagging to improve performance. On 45-s 
telephone speech messages, our very best system yields a 11% 
error rate in performing 1 1 -language closed-set classification 
and a 2% error rate in performing two-language closed-set 
tasks. 

NIST-sponsored language-ID evaluations occurred again in 
March 1995 and are planned for 1996. Details regarding 
the corpora used, the test guidelines, and the results may 
be obtained from NIST [57]. There is no doubt that the 
existence of the OGI-TS corpus together with the specification 
of evaluation scenarios by NIST has greatly enhanced our 
ability to do language-ID research. It has also allowed us to 
compare one language-ID system to another under carefully 
controlled conditions. 

As automatic speech recognition systems become available 
for more and more languages, it is reasonable to believe 
that the availability of standardized, multilanguage speech 
corpora will increase. These large new corpora should allow 
us to train and test systems that model language dependencies 

more accurately than is possible with just language-dependent 
phone recognizers employing bigram grammars. Language- 
ID systems that use language-dependent word spotters [32], 
[43] and continuous speech recognizers [42] are evolving. 
These systems are moving beyond the use of phonology for 
language ID, incorporating both morphologic and syntactic 
information. It will be interesting to compare the performance 
and computational complexity of these newer systems to the 
systems we studied. 

ACKNOWLEDGMENT 
The author is grateful to R. Cole and his team at the Center 

for Spoken Language Understanding at the Oregon Gradu- 
ate Institute for making available the OGI Multi-Language 
Telephone Speech Corpus. W. Mistretta and D. Morgan of 
Lockheed-Martin Sanders suggested the approach of duration 
tagging described in Section VII-B. K. Ng of BBN kindly 
provided high-quality transcriptions of the SWITCHBOARD 
CREDITCARD corpus. T. Chou and L. S. Sohn helped prepare 
the OGI-TS data at Lincoln for PPR processing. D. Reynolds, 
D. Paul, R. Lippmann, B. Carlson, T. Gleason, J. Lynch, J. 
O’Leary, C. Rader, E. Singer, and C. Weinstein of the Lincoln 
speech group offered significant technical advice. Lippmann, 
O’Leary, Reynolds, Weinstein, and five anonymous IEEE- 
appointed reviewers made numerous suggestions for improv- 
ing this manuscript. A. Hayashi of the Lincoln Publications 
Group also contributed numerous editorial improvements. 

REFERENCES 

[ l ]  T. Hazen, Private communication. 
[2] Y. K. Muthusamy, E. Barnard, and R. A. Cole, “Reviewing automatic 

language identification,” IEEE Signal Processing Mug., vol. 11, no. 4, 
pp. 3341,  Oct. 1994. 

[3] L. Riek, W. Mistreta, and D. Morgan, “Experiments in language iden- 
tification,” Lockheed Sanders, Inc., Nashua, NH, Tech. Rep. SPCOT- 
91-002, Dec. 1991. 

141 S. Nakagawa, Y. Ueda, and T. Seino, “Speaker-independent, text- _ _  
independent language identification by HMM? in Proc. ICSLP ’92, vol. 
2, Oct. 1992, pp. 1011-1014. 

[5] M. A. Zissman, “Automatic language identification using Gaussian 
mixture and hidden Markov models,” in Proc. ICASSP ’93, vol. 2, Apr. 
1993, pp. 399402. 

[6] T. J. Hazen and V. W. Zue, “Automatic language identification using a 
segment-based approach,” in Proc. Eurospeech ’93, vol. 2, Sept. 1993, 
pp. 1303-1306. 

[7] M. A. Zissman and E. Singer, “Automatic language identification of 
telephone speech messages using phoneme recognition and n-gram 
modeling,” in Proc. ZCASSP ’94, vol. 1, Apr. 1994, pp. 305-308. 

[8] R. C. F. Tucker, M. J. Carey, and E. S. Paris, “Automatic language 
identification using sub-words models,” in Proc. ZCASSP ’94, vol. 1, 
Apr. 1994, pp. 301-304. 

[9] L. F. Lame1 and J.-L. Gauvain, “Identifying non-linguistic speech 
features,” in Proc. Eurospeech ’93, vol. 1, Sept. 1993, pp. 23-30. 

[lo] Y. Muthusamy et al., “A comparison of approaches to automatic 
language identification using telephone speech,” in Proc. Eurospeech 
’93, vol. 2, Sept. 1993, pp. 1307-1310. 

[ I l l  Y. K. Muthusamy, R. A. Cole, and B. T. Oshika, “The OGI multi- 
language telephone speech corpus,” in Proc. ZCSLP ’92, vol. 2, Oct. 
1992, pp. 895-898. 

E121 R. G. Leonard, “Language recognition test and evaluation,” 
RADCITexas Instruments, Inc., Dallas, TX, Tech. Rep. RADC- 
TR-80-83, Mar. 1980. 

r131 R. G. Leonard and G. R. Doddington, “Automatic language iden- - .  
tification,” RADCITexas Instrumen&, Inc., Dallas, TX, Tech. Rep. 
RADC-TR-74-2OOITI-347650, Aug. 1974. 

[14] - , “Automatic classification of languages,” RADCITexas Instru- 
ments, Inc., Dallas, TX, Tech. Rep. RADC-TR-75-264, Oct. 1975. 



IEEE TRANS) 

- , “Automatic language discrimination,” RADC/Texas Instruments, 
Inc., Dallas, TX, Tech. Rep. RADC-TR-78-5, Jan. 1978. 
D. Cimarusti and R. B. Ives, “Development of an automatic identifica- 
tion system of spoken languages: Phase I,” in Proc. ICASSP ’82, May 

J. T. Foil, “Language identification using noisy speech,” in Proc. 
ICASSP ’86, vol. 2, Apr. 1986, pp. 861-864. 
F. J. Goodman, A. F. Martin, and R. E. Wohlford, “Improved automatic 
language identification in noisy speech,” in Proc. ICASSP ’89, vol. 1, 

1982, pp. 1661-1663. 

. -  
May 1589, pp. 528-531. 
R. B. Ives, “A minimal rule AI expert system for real-time classification 
of natural spoken languages,” in Proc. Second Ann. Artijicial Intell. Adv. 
Comput. Technol. Con$, Long Beach, CA, May 1986, pp. 337-340. 
M. Sugiyama, “Automatic language recognition using acoustic features,” 
in Proc. ICASSP ’91, vol. 2, May 1991, pp. 813-816. 
Y. K. Muthusamy and R. A. Cole, “Automatic segmentation and 
identification of ten languages using telephone speech,” in Proc. ICSLP 

A. S. House and E. P. Neuburg, “Toward automatic identification of the 
language of an utterance. I. Preliminary methodological considerations,” 
J.  Acoust. Soc. Amer., vol. 62, no. 3, pp. 708-713, Sept. 1977. 
M. Savic, E. Acosta, and S. K. Gupta, “An automatic language identi- 
fication system,” in Proc. ICASSP ’91, vol. 2, May 1991, pp. 817420. 
S. Nakagawa, T. Seino, and Y. Ueda, “Spoken language identification 
by ergodic HMMs and its state sequences,” Electron. Commun. Japan, 
Pt. 3, vol. 77, no. 6, pp. 70-79, Feb. 1994. 
K. P. Li and T. J. Edwards, “Statistical models for automatic language 
identification,” in Proc. ICASSP ’80, vol. 3, Apr. 1980, pp. 884-887. 
K.-P. Li, “Automatic language identification using syllabic spectral 
features,” in Proc. ICASSP ’92, vol. 1, Apr. 1994, pp. 297-300. 
V. Fromkin and R. Rodman, An Introduction to Language. Orlando, 
FL Harcourt Brace Jovanovich, 1993. 
L. F. Lamel and J.-L. Gauvain, “Cross-lingual experiments with phone 
recognition,” in Proc. ICASSP ’93, vol. 2, Apr. 1993, pp. 507-510. 
0. Andersen, P. Dalsgaard, and W. Barry, “On the use of data-driven 
clustering technique for identification of poly- and mono-phonemes for 
four European languages,” in Proc. ICASSP ’94, vol. 1, Apr. 1994, pp. 
121-124. 
K. M. Berkling, T. Arai, and E. Barnard, “Analysis of phoneme-based 
features for language identification,” in Proc. ICASSP ’94, vol. 1, Apr. 

L. F. Lamel and J. L. Gauvain, “Language identification using phone- 
based acoustic likelihoods,” in Proc. ICASSP ’94, vol. 1, Apr. 1994, pp. 
293-296. 
S .  Kadambe and J. L. Hieronymus, “Language identification with 
phonological and lexical models,” in Proc. ICASSP ’95, vol. 5, May 
1995, pp. 3507-3510. 
R. J. D’Amore and C. P. Mah, “One-time complete indexing of text: 
Theory and practice,” in Proc. Eighth Int. ACM Con$ Res. Dev. Inform. 
Retrieval, 1985, pp. 155-164. 
R. E. Kimbrell, “Searching for text? Send an N-gram!,” Byte, vol. 13, 
no. 5, pp. 297-312, May 1988. 
J. C. Schmitt, “Trigram-based method of language identification,” US 
Patent 5 062 143, Oct. 1991. 
M. Damashek, “Gauging similarity via N-grams: Language-independent 
text sorting, categorization, and retrieval of text,” submitted for publi- 
cation in Sei. 
T. A. Albina et al., “A system for clustering spoken documents,” in 
Proc. Eurospeech ’93, vol. 2, Sept. 1993, pp. 1371-1374. 
Y. Yan and E. Barnard, “An approach to automatic language identifica- 

’92, vol. 2, Oct. 1992, pp. 1007-1010. 

1994, pp. 289-292. 

LCTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 4, NO. 1, JANUAkY 1996 

automaQc language idenhficahon,” in Proc ICASSP ’94, vol 1, Apr 
1994, pp. 333-336 

[47] S. B. Davis and P. Mermelstein, “Comparison of parametnc repre- 
sentahons for monosyllabic word recognition in continuously spoken 
sentences,” IEEE Trans Acoust , Speech, Signal Processing, vol. ASSP- 
28, no. 4, pp. 357-366, Aug 1980. 

r481 D. B. Paul, “Speech recogmaon using hdden Markov models,’’ Lincoln . .  

Lab. J., vol. < no. 1, p; 41-62, Siring 1990. 
[491 D. A. Reynolds, R. C. Rose, and M. J. T. Smith, “PC-Based TMS320C30 

tion based on language-dependent phone recognition,” & Proc. ICASSP 
’95, vol. 5, May 1995, pp. 3511-3514. 
T. J. Hazen and V. W. Zue, “Recent improvements in an approach to 
segment-based automatic language identification,” in Proc. ICASSP ’94, 
vol. 4, Sept. 1994, pp. 1883-1886. 
S. Hutchins, Private communication. 
S. Itahashi and L. Du, “Language identification based on speech 
fundamental frequency,” in Proc. ICASSP ’95, vol. 2, Sept. 1995, pp. 
1359-1362. 
S. Mendoza, Private communication. 
P. Ramesh and D. B. Roe, “Language identification with embedded 
word models,” in Proc. ICASSP ’94, vol. 4, Sept. 1994, pp. 1887-1890. 
B. Comrie, The World’s Major Languages. New York Oxford Uni- 
versitv Press. 1990. 

~~ 

implementation of the Gaussian mixture model text-independent speaker 
recognition system,” in Proc. ICSPAT ’92, vol. 2, Nov. 1992, pp. 
967-973. 

[50] H. Hermansky et aL, “RASTA-PLP speech analysis technique,” in Proc. 

[51] Y. Lmde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer 
design,” IEEE Trans. Commun., vol. COM-28, no. 1, pp. 84-95, Jan. 
1980. 

[52] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from 
incomplete data via the EM algorithm.” J. Roval Statist. Soc., vol. 39. 

ICASSP ’92, vol. 1, Mar. 1992, pp. 121-124. 

pp. 1-38, 1977. 
1531 L. E. Baum, “An inequalitv and associated maximization technique in 

I 

. .  

statistical estimation for probabilistic functions of Markov processes,” 
Inequalities, vol. 3, pp. 1-8, 1972. 

[54] P. C. Woodland and S. J. Young, “The HTK tied-state continuous speech 
recognizer,” in Proc. Eurospeech ’93, vol. 3, Sept. 1993, pp. 2207-2210. 

[55] F. Jelinek, “Self-organized language modeling for speech recognition,” 
in Readings in Speech Recognition, A. Waibel and K.-F. Lee, Eds. Palo 
Alto, C A  Morgan Kaufmann, 1990, pp. 450-506. 

[56] M. A. Lund and H. Gish, “Two novel language model estimation 
techniques for statistical language identification,” in Proc. Eurospeech 
’95, vol. 2, Sept. 1995, pp. 1363-1366. 

Gaithersburg, MD: 
Nat. Inst. Std. Technol. (NIST), Spoken Natural Language Processing 
Group. 

[58] C. R. Jankowski et al., “NTIMIT: A phonetically balanced, continuous 
speech, telephone bandwidth speech database,” in Proc. ICASSP ’90, 
Apr. 1990, pp. 109-112. 

[59] J. J. Godkey, E. C. Holliman, and J. McDaniel, “SWITCHBOARD: 
Telephone speech corpus for research and development,” in Proc. 

[60] K.-F. Lee and H.-W. Hon, “Speaker-independent phone recognition 
using bidden Markov models,” IEEE Trans. Acoust., Speech, Signal 
Processing, vol. 37, no. 11, pp. 1641-1648, Nov. 1989. 

[57] A. F. Martin, Language ID Guidelines and Results. 

ICASSP ’92, vol. 1, Mar. 1992, pp. 517-520. 

[61] H. Gish, Private communication. 
[62] L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition. 

Englewood Cliffs, NJ: Prentice-Hall, 1993. 
[63] L. F. h e 1  and J.-L. Gauvain, “High performance speaker-independent 

phone recomition using CDHMM,” in Proc. Eurosueech ’93, vol. 1, 
Sept. 1993,-pp. 121-124. 

[64] D. B. Paul, and B. F. Necioilu, “The Lincoln large-vocabulary stack- 
decoder HMM CSR,” m Proc ICASSP ’93, vo< 2, Apr 1993, pp 
660-663. 

[65] W. mstrea F’nvate communicahon 
[66] D. M. Rekart and M. A. Zissman, “Dialect labels for the Sparush seg- 

ment of the OGI multi-language telephone speech corpus,” Sept. 1994, 
Mass. Inst. Technol., Lmcola Lab., Project Rep DVPR-2, Lexmgton, 
MA, USA. 

Marc A. Zissman (M’86) was born in Chicago, IL, 
USA, m 1963 He received the S B degree in com- 
puter science in 1985 and the S B , S M, and Ph D 
degrees in electncal engineenng in 1986, 1986, 
and 1990, respecbvely, all from the Massachusetts 
Institute of Technology (MIT), Cambndge, USA 

From 1983 to the present, he has been a mem- 
ber of the Speech Systems Technology Group at 
MIT Lincoln Laboratory, where lns research has 
focused on &gital speech processing, including par- 
allel computing for speech coding and recognihon, 

co-channel talker interference suppression, language and malect idenhficahon, 
and cochlear mplant processing for the profoundly deaf From 1992 to the 

[45] D. Chstal, The Cambridge Encyclopedia of Language. Cambridge 
U K  Cambndge University Press, 1987. 

[46] Y .  K. Muthusamy, N Jain, and R. A. Cole, “Perceptual benchmarks for 

present, he has &o bden a research affiliate at the MIT Research Laboratory 
of Electronics. 

Dr. Zissman is a member of Tau Beta Pi and Eta Kappa Nu. 


