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ABSTRACT
Many languages, including Arabic, are characterized by a wide va-
riety of different dialects that often differ strongly from each other.
When developing speech technology for dialect-rich languages,
the portability and reusability of data, algorithms, and system com-
ponents becomes extremely important. In this paper, we describe
the development of a large-vocabulary speech recognition system
for Levantine Arabic, which was a new dialectal recognition task
for our existing system. We discuss the dialect-specific model-
ing choices (grapheme vs. phoneme based acoustic models, auto-
matic vowelization techniques, and morphological language mod-
els) and investigate to what extent techniques previously tested on
other languages are portable to the present task. We present state-
of-the-art recognition results on the 2004 Levantine Arabic Rich
Transcription evaluation.

1. INTRODUCTION

As speech technology is being applied to a increasingly wider
range of languages and dialects, the portability of system com-
ponents and models becomes very important. Limited resources
prohibit lengthy data collection and system development efforts;
as a consequence, more attention is being focused on algorithms
and techniques that can easily be re-used for novel languages or
dialects [1, 2]. In this paper our goal is to assess to what extent
acoustic and language modeling techniques adopted for English,
Mandarin, or Egyptian Arabic generalize to the recognition of Lev-
antine Arabic, and how much task-specific modeling is required.

Automatic Speech Recognition (ASR) of dialectal Arabic is
challenging not only because of the sparseness of the available
training data but also because of the rich morphology of the lan-
guage and the writing system: standard Arabic script lacks short
vowels and other diacritics indicating pronunciation differences,
which leads to high lexical ambiguity and introduces noise into
acoustic model training. Our previous work on dialectal Arabic
ASR focused on Egyptian Colloquial Arabic (ECA), whereas the
task described here (the NIST 2004 Rich Transcription Evalua-
tion Task) requires the recognition of Levantine Colloquial Arabic
(LCA). There are significant grammatical, lexical and pronunci-
ation differences between the two dialects. In addition, the tran-
scription standards used for the two corpora were very different:
for ECA, a ’romanized’ form was used that was fully vowelized.
For LCA, the standard Arabic orthography was used, which is pho-
netically deficient in that it omits short vowels and other pronun-
ciation information. Due to these differences we treated the new
domain as an entirely new language and a separate system was
trained for this task.
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e used the SRI DECIPHERTM recognition infrastructure
ilding our system. The setup closely follows that for previ-
cognition tasks but was modified by modeling choices spe-
o the task at hand. At the acoustic modeling level we use
eme-based rather than phoneme-based acoustic models, due
phonetically deficient training transcriptions. We also exper-
d with techniques to automatically insert the missing vowels
transcription and train vowelized acoustic models, that in-
either a generic vowel or all the short vowels. We found that
biguity in the pronunciations affects the efficiency of certain
g procedures such as cross-word triphones and discrimina-
ining. At the language modeling level, we use factored lan-
models, which are capable of utilizing morphological and

word class information for more robust probability estima-
In contrast to our previous systems, reliable morphological
ation was not readily available for this task and had to be
d automatically.

he following sections describe the data (Section 2), our ap-
es to acoustic modeling (Section 3), and language modeling

on 4). Section 5 describes our evaluation system, and how
ferent acoustic and language model components affected the
erformance. Section 6 summarizes our conclusions from

ork.

2. TRAINING AND TEST DATA

ed a corpus of LCA data provided by the Linguistic Data
rtium (LDC), consisting of 440 conversations (70 hours of
with about 500K words). The training corpus vocabulary

ts of 37.5K words including 2.5K word fragments and 8 non-
tokens. The data was transcribed in Arabic script without

ics. The development (dev04) set consists of 24 conversa-
3 hours of speech, about 16K words). The out-of-vocabulary
) token rate for this set based on the training set vocabulary
.6%. The test set used for the RT-04 evaluations (eval04)
ts of 12 conversations (1.5 hours of speech, 8K words).

3. ACOUSTIC MODELING

no phonetic lexicon was provided for the LCA corpus, we
rapheme-based rather than phoneme-basedacoustic models.

the lack of short vowels in the grapheme-based represen-
each acoustic model implicitly models either a long vowel
nsonant with optional adjacent short vowels. We used both

nd MFCC front ends, each with 13 coefficients with 1st, 2nd,
rd derivatives. HLDA was used to reduce the feature vec-
39 dimensions, and mean, variance, and vocal tract length



MFCC PLP
non-cw cw non-cw cw

MLE 54.3 53.6 52.1 53.0
MPFE-iter1 53.4 53.1 51.0 52.0
MPFE-iter2 53.8 53.4 51.0 52.3

Table 1. WER results (%) on the dev04 test set, comparing
MLE and discriminative MPFE training for unadapted within-
word (non-cw) models and SAT cross-word (cw) models

(VTL) normalization was performed per conversation side. We
trained gender-independent“tri-grapheme” models in combination
with decision-tree based (top-down) state clustering [3], resulting
in 650 state-clusters with 128 gaussians for each cluster. In the
absence of phone-level transcriptions we used the acoustic models
from our 2003 ECA system to initialize the LCA models and re-
estimated the model parameters by iterative embedded maximum-
likelihood training.

The following sections address the problems associated with
the grapheme-based modeling approach in more detail.

3.1. Grapheme-based Pronunciation Lexicon

The pronunciation lexicon was obtained by directly mapping the
graphemes to phones and applying the following pronunciation
rules, some of which added certain short vowels at specific word
locations.
- taa marbuta was converted to /i/ plus an optional /t/.
- hamza was pronounced as glottal stop except after “Al”.
- hamza over alif inserted short /a/ before the glottal stop.
- hamza over waaw inserted the short /u/ before the glottal stop.
- hamza under alif and hamza over yaa inserted the short /i/ before
the glottal stop.
- tanween was converted to /an/ at the end of the word.
- assimilation of the “sun” letters was incorporated.
All the rest of the short vowels were missing from the resulting
pronunciations.

3.2. Discriminative Training on Grapheme LCA Models

Discriminative training using the minimum phone frame error
(MPFE) approach ([4]) was applied in addition to maximum like-
lihood estimation (MLE). However, we found that the effect of the
discriminative training procedure was not as significant as in other
languages. In our comparable English and Mandarin ASR system,
MPFE has yielded relative improvements over MLE of 10% and
6-9%, respectively, using multiple MPFE iterations. In Table 1
we show that for the grapheme based models in this task MPFE
training only produced a 2% relative improvement in the first iter-
ation, while subsequent iterations increased WER. It is likely that
grapheme models cannot substantially benefit from the discrimina-
tive training procedure since each grapheme represents a class of
heterogeneous acoustic models rather than one single model. Also
the high WER and the numerous inconsistencies in the transcrip-
tions can limit the effect of the MPFE procedure, especially since
it relies on accurate phone alignments for discrimination.

3.3. Cross-Word Grapheme-Based Acoustic Models

As shown in Table 1, the performance of cross-word models is ei-
ther worse or only slightly better than that of within-word models,
even though speaker adaptive transforms (SAT) were applied only
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2. WER results (%) on the dev04 test set, compar-
ain cross-word (cw) and cw with word-boundary attributes
dbd) models for MFCC and PLP MPFE trained models, be-

nd after MLLR adaptation. All models also include SAT.

ss-word models. Without SAT, cross-word models actually
med worse than within-word models. This was again con-
o the behavior of cross-word models in our in-house ASR
s for other languages (English, Mandarin, ECA). The fact
ort vowels are not explicitly included in the acoustic model
t can cause problems in cross-word models if the nature of
den short vowels is different at word boundaries compared

within-word location. To test this assumption we built mod-
letting the decision trees use word boundary markers as ex-

attributes. This technique has been used before [5], but our
ence in English ASR systems was that it yielded only very
improvement over standard cross-word models. The com-
n in WER between the plain and the word boundary cross-
models is shown in Table 2. We see that before adapting

aximum likelihood linear regression (MLLR) the models
he boundary information gain about 3.5% absolute. After
tion the improvement is reduced to 0.8%, which, however,
significant.

odeling of Short Vowels

on the ECA corpus [6] has compared the WER in recog-
with phone-based vs. grapheme-based acoustic models. It
own that the relative loss in performance due to grapheme-
models was close to 10%. We therefore explored techniques
tomatic vowelization of the training transcripts.
our first effort to use vowels in the LCA system we gen-
word pronunciation networks that included one optional

c vowel phone in all possible positions in the pronunciation.
ossible positions were determined by applying a morpholog-
alysis tool for Modern Standard Arabic (MSA), the LDC
alter stemmer. The stemmer produced diacritized variants

13K subset of the 37K vocabulary. For about 150 words,
ssible vowel positions was annotated manually. For all other
, we added an optional vowel between every consonant pair
written form. This system was still using a non-vowelized
raphy for LM purposes.
our second approach we manually added the vowels on a

subset of the training data (about 40K words), which was
ed to have a high vocabulary coverage (covering 43% of
cabulary and 80% of the word tokens in the training data).
ined a 4-gram character-based language model on this data,
was used as a hidden tag model to predict the missing vow-
the whole training data transcriptions. On a held-out subset
ut 6K words, we estimated this procedure to have a char-
rror rate of about 7%, with about 30% of the words having
t one wrong character. From the automatically vowelized
e obtained pronunciations that included short vowels (/a/,

), and applied the rules described in Section 3.1. We also
e option to use a grapheme-based language model or train a
odel based on the automatically vowelized transcripts. For



WER (%)
grapheme AM + grapheme LM 54.3
generic vowel AM + grapheme LM 54.9
auto-vowelized AM + grapheme LM 54.5
auto-vowelized AM + auto-vowelized LM 54.0

Table 3. WER comparison of the grapheme based and vowelized
models on the dev04 testset. In all experiments the acoustic model
(AM) is using within-word MLE trained MFCC models.

computing the WER for that system we stripped the vowels from
the output words and compared it against the script references.

In Table 3 we show the effect of the different vowel model-
ing approaches after MLE training. The generic vowel system
performs worse than the grapheme based one, but in Section 5
we show that it improves the final result when combined with
other system components since it is sufficiently different from the
grapheme models. The auto-vowelized system with all short vow-
els performs better than the generic vowel system. The use of
a vowelized LM yields an additional improvement even though
the automatic vowelization procedure increased the LM vocabu-
lary and added diacritization errors to the transcriptions. We found
that MPFE training on the vowelized models had the same effect
as on the grapheme models ( about 1% absolute WER reduction).
The effect is still lower than in other ASR tasks, probably due to
the noisy transcriptions and the low accuracy of the MLE model.

4. LANGUAGE MODELING

For language model training we used the LCA training transcrip-
tions provided by the LDC. The vocabulary was reduced to 17,638
words by removing singletons from the training data; these were
mapped to a generic reject model. In our development experi-
ments, this resulted in a slight (0.5% absolute) improvement in
WER, possibly because of the elimination of spelling errors and
word fragments. All noise events except laughter were removed
as well. We used two different types of language models in our
system: standard word-based language models and factored lan-
guage models (FLMs). The baseline word-based bigram and tri-
gram models were trained using modified Kneser-Ney smoothing
and interpolation of higher-order with lower-order n-grams. The
bigram was used for generating the initial lattices, whereas the tri-
gram was used for lattice expansion and N-best list rescoring.

As part of our previous work on Arabic ASR we have devel-
oped a so-called factored language model approach [7], which is
based on a representation of words as feature vectors and a gener-
alized parallel backoff scheme which utilizes the word features for
more robust probability estimation. The word features represent
the morphological properties of the word. Complex Arabic words
may consist of affixes and a stem, which can be further subdivided
into roots and patterns. In previous work [8] we found that the
most useful of these for the purpose of language modeling were
the stem, the root, and a tag indicating the morphosyntactic prop-
erties of the affixes. A factored language model exploiting these
features can assign more robust probabilities to unseen combina-
tions of words in the test data when the combination of correspond-
ing morphological features has been observed in the training data.
The structure of the model , i.e. the set of features to be used and
the combination of partial probabilities estimates from features, is
optimized using a genetic algorithm [9]. In our previous ECA sys-
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4. WER (%) of the RT-04 evaluation system. The submitted
is compared to a post-eval system where the original cross-

models were replaced with those that used word-boundary
ation.

actored language models yielded an improvement of up to
solute, for a baseline with approximately 40% word error
]. For this system, however, information about the morpho-
l features of each word was available in the form of a lexicon
uted with the ECA corpus. For our present LCA system,
formation was not available and had to be inferred by other
. Since automatic morphological analyzers do not currently
or dialectal Arabic, we used a simple script and knowledge
antine Arabic morphology to identify affixes and a subsets
parts-of-speech from the surface script forms. We also ap-
morphological analyzer developed for MSA [10] to obtain

ots of the script forms. Those forms that could not be ana-
retained the original script form as factors. It was found that
pe of decomposition, although error-prone, yielded better re-
han using data-driven word classes. On the development set
rplexity was reduced from 222.7 to 211.8.

5. EVALUATION SYSTEM

rocessing stages of the full system submitted for the RT04
tion follow the setup of the SRI RT04 20xRT English CTS
. The system consists of two stages, both of which include
generation with within-word models, lattice acoustic rescor-
th multiple models to obtain different sets of N-best lists, and
-best combination (implemented as N-best-Rover) to obtain
al consensus hypotheses [11].
t the first stage, phone-loop adapted PLP acoustic models
) and a bigram language model (LM) are used to generate the
s. After trigram LM rescoring on the lattices, word confu-
etworks are constructed in order to obtain the best posterior
hypotheses. These hypotheses are used as reference to esti-
AT transforms for each of the models used in the following
. The following models are then used to perform acoustic
ing of the lattice and generate N-best lists:
P cross-word models adapted on the best word posterior hy-
es from the lattices
one-loop adapted MFCC within-word models
CC cross-word models adapted on the hypothesis from (b).

he final hypotheses from the first stage (after N-best-Rover of
) are used as adaptation references to compute new MLLR
rms for the PLP within-word model. The new model is used
erate the lattices for the second stage of the system. Then
-best lists are generated using
newly adapted PLP within-word models

P cross-word models adapted on the hypotheses from (c)
CC cross-word models adapted on the hypotheses from (a)

FCC within-word model that include short-vowels, adapted
hypotheses from (d).

e N-best lists at this stage are rescored with FLMs. The best
ior hypotheses are obtained after optimized 4-way N-best-
combination.



dev04 eval04
grapheme 43.1 47.3
+ generic-vowel non-cw MFCC 42.5 (-0.6) 46.9 (-0.4)
+ auto-vowel MFCC models 42.1 (-1.0) 46.5 (-0.8)

Table 5. Effect of the vowelized models on the final system WER.
The post-eval improved cross-word acoustic models are used in
both cases and a bigram FLM is used as described in Section 5.

For the system submitted for the evaluations (RT-04 system),
the cross-word models did not include the word boundary informa-
tion; this was added in the post-eval-04 system shown in Table 4
resulting in 0.5% absolute improvement of the final system result.

In Table 5 we demonstrate the contribution of the vowelized
models in the post-eval system. In the system without the vow-
elized model, we replaced the model in (d) with a grapheme-based
within-word MFCC model. We see that using the generic-vowel
model in step (d) reduces the error rate by 0.6%-0.4% absolute,
even though this system was worse in isolation (see Table 3). For
the auto-vowel model we modified the structure of the system by
replacing the MFCC models at the second stage of the system,
with vowelized models. We generated a third set of lattices us-
ing the vowelized LM, which were used to obtain the vowelized
MFCC N-bests with within-word and cross-word models. These
models improve the final performance by 0.8-1.0% absolute over
the grapheme based system.

Table 6 shows the contribution of the FLM. The system with-
out FLM uses only the standard word 3-gram for all rescoring
steps. We see that including the eval04 FLM only for final N-best
((d)-(g)) rescoring improves the result by 0.2% and 0.1% on each
test set. This is a much smaller contribution than that observed pre-
viously in our ECA system [8]. In a newer post-eval system, we
replaced the bigram FLM with a more optimized trigram FLM and
used it at every step in the system, for rescoring the lattices and N-
best lists, replacing the standard word 3-gram in steps (4), (6) and
(9). This resulted in improvements of 0.6% and 0.3% absolute.

6. CONCLUSIONS

We found that most of the techniques developed for English or
ECA ASR could be ported to the development of a LCA system.
However, due to use of script-based training transcriptions, some
techniques did not have the expected effect.

Discriminative training (MPFE) yielded a much smaller win
compared to previous tasks, probably because of the ambiguity in
the pronunciations, the noisy training transcriptions and the low
accuracy of the MLE models.

Adding extra information improves the grapheme-based mod-
els. Word-boundary information proved more valuable for cross-
word models in this task than in e.g. our phone-based system for
English. The vowelized models were beneficial for system combi-
nation, even when they did not improve over a purely grapheme-
based system in isolation. The system that uses vowelization
for both acoustic and language modeling performs the best, even
though the automatic vowelization approach induced errors in the
training transcriptions Techniques that would improve the accu-
racy of the automatic vowelization deserve further investigation.

Compared to our 2003 evaluation results on ECA, the FLM
was not as helpful as before. The larger size of the 2004 training
set was ruled out as a possible cause; FLMs were observed to yield
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6. Effect of the FLM on the WER in the post-eval-04 system
word models with word-boundary attributes, and vowelized
included). The eval04 FLM is the bigram FLM used in the

tted eval04 system, applied only to the rescoring of the final
t hypotheses. The Post-eval FLM is an improved trigram
which is applied at all steps of the system, except for lattice
tion (the word-bigram is still used for this step).

tent improvement over the word-based language model re-
ss of the training data size. The most likely causes are the
f accurate morphological information and the increased lex-

biguity due to the use of non-vowelized script forms for
ge modeling.
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