Open Classes Using Phoenix
Software Design Specification

Author:
Marc Eaddy
File:
Open Classes Using Phoenix - Design v2.doc
Created:
06/30/05 5:34 PM

Last Change:
07/27/05 9:51 PM
Printed:
07/06/05 11:09 AM
Abstract

This document provides a detailed design for implementing Open Classes API using Phoenix. It is intended for review by the Phoenix team and to inform the users of the API.
Contents
11.
Introduction

1.1
Background and Motivation
1
2.
Goals
2
2.1
Not In Scope
2
2.2
Deliverables
2
3.
Configurations
3
3.1
Extensions
3
3.2
Extension attributes
3
3.3
Specifying extensions via the command-line
4
3.4
Alternative configurations
4
4.
Scenarios
5
4.1
Example
5
4.2
Roles
6
4.2.1
Original developers
6
4.2.2
Extension integrators
6
4.2.3
Clients
6
4.3
Use cases
6
4.3.1
Phoenix dynamic extensibility plug-ins (UC1)
6
5.
Requirements
7
5.1
Functional Requirements
7
5.2
Operational Requirements
7
6.
Dependencies
8
7.
Design
9
7.1
Overview
9
7.2
APIs
9
7.2.1
Phx.Morph.TypeEditor
9
7.2.2
Phx.Morph.MethodEditor
10
7.3
CLIs
11
7.3.1
Morph.exe
11
7.4
Multi-threading considerations
11
8.
Design Alternatives
12
9.
Open Issues
13

Figures
5Figure 1 – Example open classes scenario

Reviewers

	Review group
	Members

	Working group
	AndyA, ChuckM, DGillies, JanGr, PaddyMcD, SMortaz, WeipingH

	Primary reviewers
	WeipingH

	Secondary reviewers
	

Review History

	Date
	Leader
	Result

	07/05/05
	Design Review
	Interface changes requested

Revision History

	Date
	Author
	Description

	07/01/05
	t-marcea
	Initial draft

	07/05/05
	t-marcea
	Incorporated design review feedback.

	07/12/05
	t-marcea
	Fixed grammar mistake

	
	
	

1. Introduction

Open classes allows a developer to modify class definitions at post-compile time. For example, a developer may wish to extend a class, the extension target, by adding a new field or method. This provides a powerful composition mechanism that provides a greater separation of concerns then what is available with composition mechanisms provided by traditional object-oriented programming languages. Our open classes solution allows any type in any .NET assembly to be extended. Because our implementation is based on assembly rewriting using the Phoenix backend compiler, we can extend assemblies written in any .NET language without requiring access to source code. This makes our solution particularly suitable for extending assemblies developed by third parties.
1.1 Background and Motivation

This project started as a research project to explore using open classes as a way for researchers to extend Phoenix compiler classes with their own custom data. For example, a researcher would like to attach their custom analysis data to Instr or Opnd objects created by Phoenix during compilation. Currently, the researcher would need to add their custom data as an extension object that is stored in a list in the Instr or Opnd object. The disadvantages of this approach are: 1) the Instr and Opnd classes require additional code for maintaining and accessing the list, 2) only classes that support this extension list can be extended, and 3) it is inefficient due to the overhead involved in accessing extension objects in the list. In searching for a solution to the problem we decided that open classes was the best approach. In addition to separating concerns nicely the solution is very efficient as field accesses are resolved statically at compile-time. We decided to generalize the approach so that open classes would be available for extending any .NET assembly, not just Phoenix.
2. Goals

Our open classes solution should be transparent, efficient, and seamless. Transparency is achieved by allowing the original developer to be oblivious. They do not need to do anything special to support extensions to their classes. Our solution is efficient because the client is able to statically bind to the newly added fields and methods at compile-time. The solution is seamless for the extension writer because extensions are assemblies themselves and for the client because they are able to use the transformed assembly as they would any other assembly.
2.1 Not In Scope

The following are not in scope for this project:

· Unmanaged binaries – Patching native binaries is possible but tricky since type layout changes (data type sizes, field offsets, and vtables) can easily break client code. There are also fewer restrictions on what can go into a native binary (think: wacky stuff) which makes it difficult to handle all possible cases.

· Value types – Managed value types have the same issue with client dependencies on type layout so we ignore them for now.

· C2 plug-in – We currently only plan to support open classes as a post-compilation step. We will not create a compiler plug-in (C2 plug-in).
· Multi-threading – We assume the open classes API will be used by a single thread.

· Aspect Oriented Programming (AOP) – The open classes API provides some but not all of the functionality needed to build an AOP solution (AOP = Open Classes + Aspect Rules + Weaver).
2.2 Deliverables

· Phx.dll – Exposes the open classes API

· Morph.exe – a standalone executable for post-compile-time class composition

· BakePhxPlugins.exe – a standalone executable for post-compile-time that uses Reflection and rewriting to convert dynamic extension lookups for Phoenix plug-ins into statically resolved references [time permitting]
3. Configurations
3.1 Extensions
Extensions are themselves valid .NET assemblies. This ensures that the extension types and code are type safe since errors are caught at extension compile-time. Even when the extension and the extension target assemblies are correct, integration errors may be introduced during transformation (e.g. naming clash) which we also have to handle.

Another benefit of requiring extensions to be valid assemblies is that they can be used explicitly, that is, without requiring the Morph tool. In fact, a possible way to develop an extension is to locate code in an existing class that would be better modularized using open classes. The code can then be manually extracted and put into a separate extension class. The extension code is then re-introduced using the Morph.exe tool as a post-compilation step. Effectively, this delays composition of the extension code until after compile-time with the benefits of cleaner code and better separation of concerns.

Instructions must be provided to the Morph tool to direct how it will extend the extension target using the extension. We support two mechanisms for supplying instructions: extension attributes and command-line parameters.

3.2 Extension attributes
Extension attributes are custom .NET attributes attached to units (assembly, classes, fields, methods, etc.) of the extension assembly. For example:
[AddField("Phx.IR.Instr", "myExtField")]
class MyExt {

bool b;
...

}

The custom attribute in this case is Phx.Morph.AddFieldAttribute. It specifies that a field called myExtField of type MyExt should be added to the class Phx.IR.Instr. If you only want to add a primitive type, you can do the following:
class MyExt {
 [AddField("Phx.IR.Instr", "myBool")]

bool b;
...

}

This will add a boolean field named myBool to Phx.IR.Instr. In this case, MyExt is just used to hold the fields to be added to Phx.IR.Instr. You can omit the field name argument (myBool) and the underlying field name will be used (b). Here’s an example for adding a method named DoesProgramHalt to the Phx.IR.Instr class:
class MyExt {

[AddMethod("Phx.IR.Instr")]

bool DoesProgramHalt() {
...
}
...

}
You can also attach extension attributes to the assembly. In fact, all the extension attributes can be specified in an assembly separate from the extension class. This requires that you explicitly specify the type:

[AddField("Phx.IR.Instr", "MyExtNS.MyExt", "myExtField")]
3.3 Specifying extensions via the command-line
If you just want to add one field to a class you can specify it on the Morph command-line instead of using a custom attribute. Here’s an alternative way to add a boolean field named b to Phx.IR.Instr.
> Morph /in:Phx.dll /out:Phx.New.dll /ext:Phx.IR.Instr /field:System.Boolean,b

If you want to add MyExt, you also need to specify which assembly the type is defined:

> Morph /in:Phx.dll /out:Phx.New.dll /ext:Phx.IR.Instr /field:MyExt,myExtField /r:MyExt.dll
3.4 Alternative configurations
For this implementation we only support extension attributes and command-line parameters for directing extensions. However, the API does not preclude extension instructions from being specified in a different way, for example via the registry, a database, or a configuration file.
4. Scenarios

This section gives an example of an open classes scenario and describes the various roles played by different developers and development teams throughout the process.
4.1 Example
In Figure 1, Hello.dll and Logger.dll are independently developed components. An extension integrator develops MyExt.dll to add logging functionality to Hello.dll. Inside MyExt.dll, a Phoenix custom extension attribute (e.g. AddField) instructs Morph.exe to add the MyExt class as a field of class A. Morph generates the assembly Hello.New.dll with the new extension. Later, a client initializes and uses the new field of class A to access the logging functionality.

Figure 1 – Example open classes scenario
4.2 Roles

Depending upon their role, a developer may be oblivious to open classes. It is also possible for one developer to play all three roles simultaneously.

4.2.1 Original developers

Open Class transformations are transparent to the Original Developer. They can be completely oblivious to the possibility that their assemblies can be transformed in an open classes scenario. Alternatively, they can take advantage of open classes to enhance their development process by better modularizing their concerns. For example, they can add foreach-style enumeration support to a collection class without cluttering up the class’ source code.
4.2.2 Extension integrators

The Extension Integrator is the only one who must understand our open classes solution. They must design the composed solution and provide instructions to the Morph tool to perform the composition. They are also responsible for integration issues that may arise as a result of the transformation.
4.2.3 Clients

The client may be oblivious of the fact that the component they are using is the result of one or more transformations. In order to make this seamless, the client should be able to debug the component as if it were any other component.

4.3 Use cases

We have identified a use case that will be used to validate the open classes requirements and design. Although the use cases are very specific to Phoenix, open classes is a generic mechanism that can be applied to any .NET assembly.

4.3.1 Phoenix dynamic extensibility plug-ins (UC1)
We will re-implement the IR Longevity dynamic extension plug-in from the Phoenix RDK by using the open classes Morph tool. In this scenario, the user is a researcher who has just installed the Phoenix RDK (which includes Morph.exe and Phx.dll). The researcher uses Morph to add a a field named birthPhase of type Phx.Phases.Phase to the Phx.Ir.Instr class. The IR Longevity sample is rewritten to use the birthPhase field directly instead of using the Phoenix dynamic extensibility API to access it.

5. Requirements
5.1 Functional Requirements
Open classes has the following functional requirements:

· Add field

· Add method

· Add property

· Add event

· Add attribute
· Add base class [time permitting]

· Add base interface [time permitting]
Of these, the only one that is really needed to satisfy the use case by replacing a dynamic extension with a static extension is Add Field.
We have to support adding fields, methods, etc. whose types do not occur in the original assembly, so an implicit requirement is:

· Import type
In addition, to support the BakePhxPlugins tool we require:

· Modify method body

because we need to be able to replace a dynamic lookup:

foo.Get<Bar>().hello();

with a statically resolved reference:

foo.bar.hello();

5.2 Operational Requirements
· Correctness – Type safety must be preserved. Compositions must result in valid metadata and a valid executable (e.g., using PEVerify). User must be notified, as early possible, if the composition fails.

· Management – Ability to perform multiple independent compositions, e.g., open classes supplied by different vendors. Also, ability to partially or totally order compositions.

· Dependencies – Ability to resolve dependencies that compositions have on the program being transformed, libraries, or other open classes.

6. Dependencies

· We depend on Phoenix to provide all low-level assembly transformation (PE rewriting) functionality. We only provide a high-level API veneer and user-interface on top of that.
7. Design

7.1 Overview
The open classes API is exposed by Phx.dll. Morph.exe just provides a command-line interface to the API. The goal of the API is to make extending classes extremely easy, robust, and straightforward.
7.2 APIs

7.2.1 Phx.Morph.TypeEditor
namespace Phx.Morph

{

enum PropKind

{

Getter

= 1,

Setter

= 2,

GetterAndSetter
= 3

}

class TypeEditor

{

bool Init(Phx.PEModuleUnit unit, string className);

Phx.Syms.MsilTypeSym InjectBaseClass(Phx.Types.Type baseClass);

Phx.Syms.MsilTypeSym InjectBaseInterface(Phx.Types.Type baseInterface);

Phx.Syms.AttrSym InjectAttribute(Phx.Syms.Sym symToExtend,

Phx.Types.Type attrType,

object[] ctorArgs);

Phx.Syms.EventSym InjectEvent(Phx.Types.Type delegateType,

string eventName,

Phx.Syms.Access eventAccess);

Phx.Syms.FieldSym InjectField(Phx.Types.Type fieldType,

string fieldName,

Phx.Syms.Access fieldAccess);

Phx.Syms.FuncSym InjectMethod(Phx.Syms.FuncSym methodSym,

string methodName,

Phx.Syms.Access methodAccess);

Phx.Syms.PropertySym InjectProperty(Phx.Syms.FieldSym targetFieldSym,

string propName,

PropKind propKind,

Phx.Syms.Access propAccess);

}

 }
7.2.2 Phx.Morph.MethodEditor
The MethodEditor API will allow some common types of method body transformations. For example, the transformations required by Aspect-Oriented Programming will be supported, and, in fact, that is our base line. It should be possible to build an Aspect-Oriented Programming solution based on our open classes API.
namespace Phx.Morph

{

class MethodBodyLocation

{

enum LocationType

{

MethodEnter,

MethodLeave,

Callsite,

Field,

}

void Init(LocationType locType);

void Init(LocationType locType, string pattern);

bool Find(
Phx.IR.Instr startInstr,

out Phx.IR.Instr firstInstr,

out Phx.IR.Instr lastInstr);

}

class MethodEditor

{

bool Init(Phx.ModuleUnit unit, string funcName);

bool Init(Phx.ModuleUnit unit, Phx.Syms.FuncSym methodSym);

void InlineBefore(MethodBodyLocation location,

Phx.Syms.FuncSym methodToInline);

void InlineAfter(
MethodBodyLocation location,

Phx.Syms.FuncSym methodToInline);

void InjectCallBefore(
MethodBodyLocation location,

Phx.Syms.FuncSym methodToInject);

void InjectCallAfter(
MethodBodyLocation location,

Phx.Syms.FuncSym methodToInject);

void Replace(
MethodBodyLocation location,

Phx.Syms.FuncSym methodToInject);

}

 }
7.3 CLIs

We will support the following command-line interfaces (CLIs).
7.3.1 Morph.exe

Usage: morph /in:<path> [/out:<path>]

 /field:<type>,<name> /ext:<type>

 /r:<path>[,<path>]* [/pdb:<path>]

 morph /in:<path> [/out:<path>]

 /r:<path>[,<path>]* [/pdb:<path>]

 where

 /in:<path> Path to the input assembly

 /out:<path> Path to the output assembly (Default:

 <inputPath>.New.dll)

 /field:<type>,<name> Type and name of the field to add

 /ext:<type> Class type to add the field to

 /r:<path>[,<path>]* Reference metadata from the specified

 assembly files

 /pdb:<path> Path to the new pdb file (Default:

 <outputPath>.pdb)
7.4 Multi-threading considerations

The open classes API manipulates the type and symbol tables. If access to these tables are synchronized then we may need to redesign or re-implement the API so that locks are not held for too long and we need to ensure that lock contention cannot occur.
8. Design Alternatives

· Compiler Construction Infrastructure (CCI) Abstract Syntax Tree (AST) API

· Meta.NET

· Visual Studio.NET Code Model API

· System.CodeDom Code Model API

· AbsIL

· PEWAPI

· PostSharp

· CSharpParser

· Aspect.NET

· AOP.NET

· CLAW

· etc. etc.
9. Open Issues

1. Identity – Ability for a class extension to access the this pointer of the class it is extending in a type safe way. Ability to handle when a class extension method refers to one of its static members.

· Clearly requires a dependency on the class that is being extended.

· Solution #1: Extension class derives from extended class. How to deal with sealed classes?

· Workaround: Extension class method requires explicit parameter (ThisPtr).
2. Dependencies – Morphs might depend on other morphs or require that morphs be applied in a certain order.

· No solution yet.

3. Maintenance – Ability for the user to see the transformed program as source code.

· Requires raising from IR (AST and then raising from AST (C++/C#/VB.NET/etc.
4. Debugging – Ability for the user to be able to debug the transformed program, i.e., that the PDB file remains consistent.

· Requires that the PDB is updated as well. Currently, a bug in the C# compiler prevents Phoenix from determining local variable names and creating a PDB when rewriting a C# created assembly. Phoenix has no problem rewriting PDBs for Managed C++.
· Requires that updates fix-up debug info if necessary. For example, if types, symbols, or code is injected, the PDB may need to be fixed-up in order to remain valid. In the extreme, injected code would provide debug info and source code to allow the user to step into the code, completely oblivious to the fact that it was injected and not manually written.
5. Tool Support – Ability to specify and view morphs in the IDE.

· Requires integrating Phoenix into IDE.

6. Naming – The user tries to add a field that has the same name as an existing field. This will also happen if the user performs the same morph twice.

· If the type and name are the same display a warning (“already added”).

· If the type is different display an error (“naming conflict”).

7. Initialization – Since a field is added after the fact, the original class writer will not have written initialization code for it, for example, to create the field using new in the class’s constructors.

· By default, the CLR sets reference fields to null.

· Solution #1: Client is responsible for initializing the field (lazy initialization).

· Solution #2: Client provides initialization code that will be injected into the constructor(s).

8. Reflective Behavior – Reflection, Cloning, Serialization, and Equality – When an instantiated class object is cloned, how do we ensure the added field is cloned as well?

· TODO: Determine default semantics of Clone() and MemberwiseClone(). What happens if the class overrides Clone()?

· TODO: Research effect on reflection and serialization. What happens if the class overrides serialization?

· TODO: Research effect on object equality. What happens if the class overrides Equals()?

9. Backward Compatibility, Forward Compatibility and Versioning – Ensure that adding a field to Phoenix doesn’t break Phoenix or any of its sample code/plug-ins. This seems to be similar to the Reflective Behavior issue.

· Issue is not yet well defined.

10. Signing – If the Phoenix DLL is signed and then morphed, the checksum will no longer be valid and the assembly will be rejected by the runtime.

· Solution #1: Only allow unsigned assemblies to be morphed.

11. Security – Who are these yahoos who are changing my assemblies anyway? How do we prevent mal-morphs?

· Solution #1: Require the morphing and the morphs to be signed.

References
Julian Burger. Phoenix Dynamic Extensibility Design. Internal Microsoft document. Last revision: May 28, 2005.

Marc Eaddy. Open Classes Using Phoenix - Project Proposal v2. Internal Microsoft document. Last revision: June 30, 2005.
Jan Gray and Sonja Keserovic. Boosting .NET Platform Productivity and Agility with Meta.NET (Draft 0.5). Internal Microsoft document. January 15, 2005.

Jan Gray and Sonja Keserovic. Meta.NET Design. Internal Microsoft document. Last revision: June 13, 2005.
Weiping Hu. Unify Dynamic and Static Extension. Internal Microsoft document. Last revision: June 6, 2005.

Phoenix core components

Phx.dll

Hello.New.dll

class A {

	MyExt myField;

}

Morph.exe

Hello.dll

class A {

}

MyExt.dll

[AddField("A", "myField")]

class MyExt {

	Logger logger;

}

Logger.dll

class Logger {

	void Log(string msg) {

		...

}

}

Original developers

Extension

Integrators

Clients

Depends on

Separation of concerns boundary

Key

Client.cs

class Client {

	static void Main() {

		A a = new A();

		a.myField = new MyExt();

		a.myField.logger.Log("hey");

}

}

Input/Output

� Detailed milestones are provided in the project proposal [Eaddy].

PAGE
Page iv
Confidential SYMBOL 211 \f "Symbol" Microsoft Corporation, 2005LastChangedField
8/1/05 5:23 PM

