Assembly Morphing Using Phoenix

(Version 3.1)
Software Design Specification

Author:
Marc Eaddy
File:
Assembly Morphing Using Phoenix - Design.doc
Created:
06/30/05 5:34 PM

Last Change:
08/17/05 1:49 PM
Printed:
07/06/05 11:09 AM
Abstract

This document provides a detailed design for implementing an Assembly Morphing API using Phoenix. It is intended for review by the Phoenix team and to inform the users of the API.
Contents
11.
Introduction

1.1
Background and Motivation
1
2.
Goals
2
2.1
Not In Scope
2
2.2
Deliverables
2
3.
Configurations
3
3.1
Extensions
3
3.2
Extension attributes
3
3.3
Specifying extensions via the command-line
4
3.4
Alternative configurations
4
4.
Scenarios
5
4.1
Example
5
4.2
Roles
6
4.2.1
Original developers
6
4.2.2
Extension integrators
6
4.2.3
Clients
6
4.3
Use cases
6
4.3.1
Phoenix dynamic extensibility plug-ins (UC1)
6
5.
Requirements
7
5.1
Functional Requirements
7
5.2
Operational Requirements
7
6.
Dependencies
8
7.
Design
9
7.1
Overview
9
7.2
APIs
9
7.2.1
Phx.Morph.TypeEditor
9
7.2.2
Phx.Morph.MethodEditor
10
7.3
CLIs
11
7.3.1
Morph.exe
11
7.4
Multi-threading considerations
11
8.
Design Alternatives
12
9.
Open Issues
13

Figures
5Figure 1 – Example open classes scenario

1. Introduction

Open classes allows a developer to modify class definitions at post-compile time. For example, a developer may wish to extend a class, the extension target, by adding a new field or method. This provides a powerful composition mechanism that provides a greater separation of concerns then what is available with composition mechanisms provided by traditional object-oriented programming languages. Our open classes solution allows any type in any .NET assembly to be extended. Because our implementation is based on assembly rewriting using the Phoenix backend compiler, we can extend assemblies written in any .NET language without requiring access to source code. This makes our solution particularly suitable for extending assemblies developed by third parties.
Aspect-Oriented Programming (AOP) allows a developer to instrument methods by injecting code or modifying control flow [Kiczales]. AOP specifies how to select code for injection (pointcuts) and how to specify the injected code (advice). You can inject code before a pointcut (before advice) and after a pointcut (after advice). You can alter control flow using around advice which will execute the injected code instead of the code at the pointcut. However, the advice can optionally execute the original code at pointcut at anytime and can chose to ignore or change the original code’s return value. AOP also supports dynamic pointcuts where injected code is only executed if a certain condition at runtime exists, i.e., the injected method is called by a specific method.

1.1 Background and Motivation

This project started as a research project to explore using open classes as a way for researchers to extend Phoenix compiler classes with their own custom data. For example, a researcher would like to attach their custom analysis data to Instr or Opnd objects created by Phoenix during compilation. Currently, the researcher would need to add their custom data as an extension object that is stored in a list in the Instr or Opnd object. The disadvantages of this approach are: 1) the Instr and Opnd classes require additional code for maintaining and accessing the list, 2) only classes that support this extension list can be extended, and 3) it is inefficient due to the overhead involved in accessing extension objects in the list. In searching for a solution to the problem we decided that open classes was the best approach. In addition to separating concerns nicely the solution is very efficient as field accesses are resolved statically at compile-time. We decided to generalize the approach so that open classes would be available for extending any .NET assembly, not just Phoenix. At some point, we decided to integrate the peweave Phoenix RDK sample to enable AOP support.
2. Goals

Our morphing solution should be transparent, efficient, and seamless. Transparency is achieved by allowing the original developer to be oblivious. They do not need to do anything special to support extensions to their classes. Our solution is efficient because the client is able to statically bind to the newly added fields and methods at compile-time. The solution is seamless for the extension writer because extensions are assemblies themselves and for the client because they are able to use the transformed assembly as they would any other assembly.
2.1 Not In Scope

The following are not in scope for this project:

· Unmanaged binaries – Patching native binaries is possible but tricky since type layout changes (data type sizes, field offsets, and vtables) can easily break client code. There are also fewer restrictions on what can go into a native binary (think: wacky stuff) which makes it difficult to handle all possible cases.

· Value types – Managed value types have the same issue with client dependencies on type layout so we ignore them for now.

· C2 plug-in – We currently only plan to support open classes as a post-compilation step. We will not create a compiler plug-in (C2 plug-in).
· Multi-threading – We assume the open classes API will be used by a single thread.

2.2 Deliverables

· Phx.Morph.dll – exposes the morphing API

· Morph.exe – a standalone executable for post-compile-time class composition
· MorphPlugin.dll – a PE Reader plug-in for morphing – otherwise functionally equivalent to Morph.exe
3. Configurations
3.1 Extension assemblies
Extension assemblies contain custom metadata in the form of custom attributes that is recognized by the Morph tool. These attributes tell the Morph tool how to morph the original assembly.

Extensions are themselves valid .NET assemblies. This ensures that the extension types and code are type safe since errors are caught at extension compile-time. Even when the extension and the extension target assemblies are correct, integration errors may be introduced during transformation (e.g. naming clash) which we also have to handle.

Another benefit of requiring extensions to be valid assemblies is that they can be used explicitly, that is, without requiring the Morph tool. In fact, a possible way to develop an extension is to locate code in an existing class that would be better modularized using open classes. The code can then be manually extracted and put into a separate extension class. The extension code is then re-introduced using the Morph.exe tool as a post-compilation step. Effectively, this delays composition of the extension code until after compile-time with the benefits of cleaner code and better separation of concerns.

Instructions must be provided to the Morph tool to direct how it will extend the extension target. We support two mechanisms for supplying instructions: extension attributes and command-line parameters.

3.2 Extension attributes
Extension attributes are custom .NET attributes attached to units (assembly, classes, fields, methods, etc.) of the extension assembly. For example:
[Add("Phx.IR.Instr", "myExtField")]
class MyExt {

bool b;
...

}

The custom attribute in this case is Phx.Morph.AddAttribute. It specifies that a field called myExtField of type MyExt should be added to the class Phx.IR.Instr. If you only want to add a primitive type, you can do the following:
class MyExt {
[Add("Phx.IR.Instr")]

bool b;
...

}

This will add a boolean field named b to Phx.IR.Instr. In this case, MyExt is just used to hold the fields to be added to Phx.IR.Instr. Here’s an example for adding a method named DoesProgramHalt to the Phx.IR.Instr class:
class MyExt {

[Add("Phx.IR.Instr")]

bool DoesProgramHalt() {
...
}
...

}
3.3 Specifying extensions via the command-line
If you just want to add one field to a class you can specify it on the Morph command-line instead of using a custom attribute. Here’s an alternative way to add a boolean field named b to Phx.IR.Instr.
> Morph /in:Phx.dll /out:Phx.New.dll /ext:Phx.IR.Instr /field:System.Boolean,b

If you want to add MyExt, you also need to specify which assembly the type is defined:

> Morph /in:Phx.dll /out:Phx.New.dll /ext:Phx.IR.Instr /field:MyExt,myExtField /r:MyExt.dll
3.4 Alternative configurations
For this implementation we only support extension attributes and command-line parameters for directing extensions. However, the API does not preclude extension instructions from being specified in a different way, for example via the registry, a database, or a configuration file.
4. Scenarios

This section gives an example of an open classes scenario and describes the various roles played by different developers and development teams throughout the process.
4.1 Open Classes Example
In Figure 1, Hello.dll and Logger.dll are independently developed components. An extension integrator develops MyExt.dll to add logging functionality to Hello.dll. Inside MyExt.dll, a Phoenix custom extension attribute (e.g. Add) instructs Morph.exe to add the MyExt class as a field of class A. Morph generates the assembly Hello.New.dll with the new extension. Later, a client initializes and uses the new field of class A to access the logging functionality.

[image: image5.emf]ModuleEditor

Class

Fields

moduleUnit : PEModuleUnit

Properties

Lifetime : Lifetime

ModuleUnit : PEModuleUnit

SymTable : Table

Methods

AddAssemblyRef() : AssemblySym (+ 1 overload)

AddFieldSymRef() : FieldSym

AddFuncSymRef() : FuncSym

AddTypeRef() : Type

AddUserString() : ConstSym

EditType() : TypeEditor

FindAssemblySym() : AssemblySym (+ 1 overload)

GetEnumerator() : IEnumerator

ModuleEditor()

RemoveChildUnit() : bool

ToString() : string

IEnumerable

[image: image6.emf]TypeEditor

Class

Fields

classToExtend : AggrType

moduleEditor : ModuleEditor

Properties

AggrType : AggrType

ModuleEditor : ModuleEditor

Methods

AddAttribute() : AttrSym

AddEvent() : EventSym

AddField() : bool (+ 3 overloads)

AddInterface() : MsilTypeSym

AddMethod() : MethodEditor

AddProperty() : PropertySym

CloneRef() : TypeEditor

EditMethod() : MethodEditor

FindField() : FieldSym

FindMethod() : FuncSym

GetEnumerator() : IEnumerator

InsertBaseClass() : MsilTypeSym

ToString() : string

TypeEditor() (+ 1 overload)

[image: image7.png]Methodeditor ®
Clazx

= Fields
& methodSym: Funcsym
< typeEior : TypeEdtor
= Properties
25 Funcsym: Funcsym
F Name :Name
F NameString :strng
= Methods
& Clone() : MethodEdtor
59 CloneFuncSignature() : FuncType (+ 1 overload)
 CloneRef() ; MethodEdtor
5% CopyFuncli): bool
59 CopyFuncUnitSymTable() : void
59 CopyMembers() : void
@ InjctCal() : bocl
@ WethodEdtor() (+ 1 overlosd)
5% RaiseToLIR() : void
59 RaiseToMIR() : vod
@ ReplaceWihQ : bool
Tastring) : sting
weave) bosl

Figure 1 – Example open classes scenario
4.2 AOP Walkthrough
This example will show how to inject a method call into a method at a specific joinpoint.
4.2.1 Original assembly

Imagine that we have a Node class:

Figure 2 – Original Node class

We compile using the regular C# compiler to create Node.dll:
csc /target:library /out:Node.dll Node.cs

4.2.2 Client application

We create a simple client:

Figure 3 - Simple client

We compile using the regular C# compiler to create Client.exe:

csc /r:Node.dll Client.cs

Running the client does not display anything.

4.2.3 Extension assembly

We would now like to output a diagnostic message every time a child node is added but we don’t want to have to modify the Node.cs source code directly. Instead, we want to morph the Node.dll assembly using the Morph tool.

To do this we first create a new extension assembly with the NodeExt class and the MyTrace() method:

Figure 4 – Extension class NodeExt
The AdviceAttribute attribute is used to designate the MyTrace method as a piece of advice. The “call(…Add)” pointcut descriptor will match all calls to a method named Add() on any class. If we apply this pointcut to Node.cs it will match the “children.Add(child)” statement. AdviceType.before indicates that the advice should be woven before the pointcut (before the children.Add statement).
We compile using the regular C# compiler as before to create NodeExt.dll:

csc /target:library /out:NodeExt.dll /r:Phx.Morph.dll NodeExt.cs

Notice that you need a reference for Phx.Morph.dll in order to use the extension attributes.

4.2.4 Morphing/weaving

Now we apply the Morph tool to weave Node.dll according to the advice instructions in NodeExt.dll:

morph /in:Node.dll /out:tmp\Node.dll /ref:NodeExt.dll

Its important that the original and new assembly have the same filename, but we don’t want to overwrite the original assembly so we output the morphed assembly to a temporary directory.

Its easy to conceptualize the transformation when you imagine what the source code would look like if you made the transformation by hand:

Figure 5 – Logical Node.cs showing what the transformation
would look like if you made it by hand
Now when we run the client application it outputs:

Within Node.AddChild() [File: Node.cs, Line: 10]
4.3 Roles

Depending upon their role, a developer may be oblivious to open classes and AOP. It is also possible for one developer to play all three roles simultaneously.

4.3.1 Original developers

Transformations are transparent to the Original Developer. They can be completely oblivious to the possibility that their assemblies can be transformed in an open classes or AOP scenario. Alternatively, they can take advantage of open classes and AOP to enhance their development process by better modularizing their concerns. For example, they can add foreach-style enumeration support to a collection class without cluttering up the class’ source code.
4.3.2 Extension integrators

The Extension Integrator is the only one who must understand our morphing solution. They must design the composed solution and provide instructions to the Morph tool to perform the transformation. They are also responsible for integration issues that may arise as a result of the transformation.
4.3.3 Clients

The client may be oblivious of the fact that the component they are using is the result of one or more transformations. In order to make this seamless, the client should be able to debug the component as if it were any other component.

4.4 Use cases

We have identified some use cases that will be used to validate the requirements and design.

4.4.1 Phoenix dynamic extensibility plug-ins (UC1)
We will re-implement the IR Longevity dynamic extension plug-in from the Phoenix RDK by using the open classes Morph tool. In this scenario, the user is a researcher who has just installed the Phoenix RDK (which includes Morph.exe and Phx.dll). The researcher uses Morph to add a a field named birthPhase of type Phx.Phases.Phase to the Phx.Ir.Instr class. The IR Longevity sample is rewritten to use the birthPhase field directly instead of using the Phoenix dynamic extensibility API to access it.

Demonstrates:

· Open classes (add field)

· End-user/client extensibility (no source code needed)

4.4.2 foreach (UC2)

Add foreach-style support to a class.

Demonstrates:

· Add method (GetEnumerator)

· Add interface (IEnumerable)
· Modularization (add methods)

4.4.3 Visitor pattern (UC3)

Add support for the Visitor pattern to a class hierarchy. The extension will be written in JavaScript to demonstrate that the Morph tool is language agnostic.

Demonstrates:

· Multi-language (JavaScript)

· Modularization (add methods)

· De-coupling

4.4.4 Property change notification (UC4)

Add support for firing an event whenever a field changes.

Demonstrates:

· ArgAttribute

· Add event

· AOP

· around advice

· field set pointcut

· proceed behavior (easily alter control flow)
· MorphExec?

· Data flow: field synchronization
· Diagnostics: display callgraph when field change occurs, log field changes

· Serialization: dirty-bit

5. Requirements
5.1 Functional Requirements
Open classes has the following functional requirements:

· Add field

· Add method

· Add property

· Add event

· Add attribute
· Add base class [time permitting]

· Add base interface [time permitting]
We have to support adding fields, methods, etc. whose types do not occur in the original assembly, so an implicit requirement is:

· Import type

AOP has the following functional requirements:
· Specify pointcut
· Match pointcut to joinpoint
· Weave method

· after advice

· before advice

· around advice

· advice context (thisJoinPoint)

· dynamic pointcuts (cflow, cflowbelow, this, args, etc.)

5.2 Operational Requirements
· Correctness – Type safety must be preserved. Compositions must result in valid metadata and a valid executable (e.g., using PEVerify). User must be notified, as early possible, if the composition fails.

· Management – Ability to perform multiple independent compositions, e.g., open classes supplied by different vendors. Also, ability to partially or totally order compositions.

· Dependencies – Ability to resolve dependencies that compositions have on the program being transformed, libraries, or other open classes.

6. Dependencies

· We depend on Phoenix to provide all low-level assembly transformation (PE rewriting) functionality. We only provide a high-level API veneer and user-interface on top of that.
7. Design

7.1 Overview
The morphing API is exposed by Phx.Morph.dll. Morph.exe just provides a command-line interface to the API. The goal of the API is to make extending classes extremely easy, robust, and straightforward.
7.2 Modules

7.2.1 Phx.Morph.dll

Provides the core morphing API consisting of the Phx.Morph, Phx.Morph.Editors, Phx.Morph.Attributes, and Phx.Morph.Aop namespaces. This should be part of the Phoenix core at some point. Currently located in <phxroot>\src\phx\morph.
7.2.2 MorphPlugin.dll

Currently located in <phxroot>\src\samples\Morpher\MorphPlugin.
7.2.3 Morph.exe

Currently located in <phxroot>\src\samples\Morpher\Morph.
7.3 APIs

We will provide editor classes for wrapping all the functionality needed to morph modules, types, and methods.
7.3.1 Phx.Morph Namespace

Namespace for helper classes.

7.3.1.1 Phx.Morph.Helpers Class

Helper methods for finding typed Phoenix symbols (e.g., MsilTypeSym), dealing with primary and aggregate versions of the same built-in type (ConvertXXX, IsXXXType), and other miscellaneous functions.

[image: image1.png]Helpers
Clazt

) Methods
@ ConvertAgaregateToprimary() : void

ConvertPrimaryToAggregate() : AgarType (+ 1 overload)

DumpTypeTable() void

FindAagType() : AagrType (+2 overloads)

FindConstSym) : ConstSym

FindField() : Fieldsym

FindLocalVarSymeyindex(): Localvarsym

FindLocalvarSymeyamel) : Localvarsym (+ 1 overload)

Findiethod() : Funcsym

FindsiTypeSym() : MsiTypesym (+ 1 overload)

Findsym() : Sym (+ 1 overload)

FindUserString() : ConstSym

GetflametMap() : NameMap

GetlnderlyingTypesym() : Typssym

IsConstSymEqual) : bool (+ 1 overload)

IsObjectType() : bool

IsprimTypeEqual(: bool

IsStringType) : bool

IsThisparam() : bool

SafeGetiiame() : string

SafeGetSourceFietlame) : void

SafeGetSaurceline() : unt

bOLE66LE660866006666¢

7.3.1.2 Phx.Morph.ReflectionHelpers Class
Methods for interacting with System.Reflection and converting from Phoenix types to CLR types.

[image: image2.png]Reflectionelpers

Clazx

) Methods

o

o
o
o
o
o

ConvertChFiekdattr ToPhxAccess() : Access
ConvertCTypeToPhType() : Type
ConvertPhxTypeToClType() : Type
LoadAssembly() : Assembly
LoadMioduleLin() : PEModeLinit
HyGetType() : Type

7.3.2 Phx.Morph.Editors Namespace

Provides wrappers for Phoenix types and symbols for the purpose of editing/extending those types and symbols.
7.3.2.1 Phx.Morph.Editors.ModuleEditor Class
The ModuleEditor wraps a Phx.PEModuleUnit. It allows you to add assembly, type, field and method references, and new user strings, and obtain an editor for a class/type.

7.3.2.2 Phx.Morph.Editors.TypeEditor Class
The TypeEditor wraps an Phx.Types.AggrType. Provides the ability to add fields and methods, search for fields and methods, and add base classes, interfaces, attributes, events, and properties.

7.3.3 Phx.Morph.Editors.MethodEditor Class
The MethodEditor wraps a Phx.Syms.FuncSym. It allows you to copy methods from one class to another, replace methods, or add method references. It also supports aspect weaving.

7.3.4 Phx.Morph.Attributes Namespace

Custom attributes that control morphing/weaving. If Phx.Morph.Editors is the core API for morphing, you can think of Phx.Morph.Attributes as the user API, since this is how the user will interact with the morph tool. The description of the AddAttribute class includes a class diagram.
7.3.4.1 Phx.Morph.Attributes.IExtensionAttribute Interface
All custom morph attributes must derive from IExtensionAttribute in order for the Morph tool to recognize them. The interface provides the Init(Phx.Syms.Sym ownerSym) method so that we can associate the symbol of the thing that the attribute is attached to with the attribute. For example, if the attribute is attached to a field, the ownerSym will be the FieldSym for that field.
7.3.4.2 Phx.Morph.Attributes.AttributeBase Abstract Class

Implements IExtensionAttribute to deal with initializing an extension attribute and storing its ownerSym and the ownerSym’s type name (e.g., System.Boolean). You can also create an attribute with no ownerSym by specifying the type name in which case the ownerSym will be looked up (this won’t work for methods).

7.3.4.3 Phx.Morph.Attributes.IModuleMorphAttribute Interface

Extends the IExtensionAttribute to support a Morph() method that takes a ModuleEditor.
7.3.4.4 Phx.Morph.Attributes.IMethodMorphAttribute Interface

Extends the IExtensionAttribute to support a Morph() method that takes a MethodEditor.
7.3.4.5 Phx.Morph.Attributes.ExtendTypeAttribute Abstract Class

Implements AttributeBase and IModuleMorphAttribute to associate the attribute with the type we want to morph and to provide a list of names of things we want to morph (e.g., name of field to add, name of method to replace). Implements Morph() by creating a TypeEditor for the type and calling the abstract method MorphImpl(). Subclasses must implement MorphImpl().
7.3.4.6 Phx.Morph.Attributes.AddAttribute Class

Implements ExtendTypeAttribute to add fields and methods to a class. See the class diagram below. When adding a method, the method body can refer to the this ptr with the type of the class the method is being added to instead of the extension class where the method is defined. This is done by adding a field to the extension class that has the same type of the class we are extending and marking it with ThisAttribute. Here’s an example:
public class NodeExt

{

 [This]

 Node _this;

 [Add("Node")]

 virtual public void accept(NodeVisitor visitor)

 {

 visitor.visitNode(_this);

 }

}

At morph time, after the method body has been added to the class, _this is replaced with the this ptr.

[image: image3.png]O Eextensionattrbute

Attributesase
Abatract Clss
+ Atrbute

5 Propeties
5 Ownertame : string
' Ownersym : Sym O Woddeborphtrute
5 OwnerType : Type p———
& Methods oot o 1
@ Init() : bool T SatibuteBase
@ Islnited() : bool 4
 Properties
5 Names : sting
5F TypeTofstend :sting

(5 Methods Addattribute ®
@ ExtendTypeattributel) Claz
@ 1) : bool S ExtendTypediribute
@ IsIned() : bool £ r
& Morph) : ool = Properties
& Moohinol) : bool 5 IsOverride : bool
= Methods

& Addattrbute()
% Morphimpl(: bool

7.3.4.7 Phx.Morph.Attributes.ReplaceAttribute Class

Implements ExtendTypeAttribute to replace a method in a class. The method this attribute is attached to will replace the same named method in the class we are extending. See AddAttribute for a description for how to reference the this ptr.
7.3.4.8 Phx.Morph.Attributes.MorphExecAttribute Class

Implements ExtendTypeAttribute. Attaching this attribute to a method will cause the method to be executed at morph-time via the System.Reflection API [Chiba]. This provides a sort of compile-time reflection. If multiple methods have this attribute, the execution order is arbitrary. Here’s an example:
 [MorphExec("Node")]

 static void transformClass(Phx.Morph.Editors.TypeEditor typeEditor)

 {

 typeEditor.AddField(typeof(bool), "b1");

 typeEditor.AddField(typeof(NodeExt).GetField("b2"));

 }

7.3.4.9 Phx.Morph.Attributes.AdviceAttribute Class

Implements AttributeBase. This attribute can be associated with a method to indicate that the method is a piece of advice. Advice logically consists of the advice type (before, after, or around), a pointcut descriptor (e.g., “call:*.WriteLine), and advice body (the method body). In addition, the joinpoint and aspect context can be passed to the method via special parameters which are marked using Joinpoint Attributes (see Joinpoint Attribute Classes). Here’s an example:
 [Advice(AdviceType.around, "call(...Add)")]

 static public void MyTrace([AdviceType] AdviceType adviceType,

 [Kind] PointcutKind kind,

 [SignatureAttribute.Name] string name,

 [SourceLocationAttribute.WithinSignature]
 string withinSignature,

 [SourceLocationAttribute.FileName]
 string fileName,

 [SourceLocationAttribute.Line] uint line,

 [This] Node This)

 {

 System.Console.Write("{0} {1} {2}.{3}() ",

 adviceType, kind, This.GetType().ToString(), name);

 System.Console.WriteLine("within {0}() [File: {1}, Line: {2}]",

 withinSignature, System.IO.Path.GetFileName(fileName), line);

 }

7.3.4.10 Joinpoint Attribute Classes

These classes represent joinpoint and aspect context properties that can be passed to an advice method (a method with the AdviceAttribute). They provide the same information as the thisJoinPoint context object from AspectJ™.
See The AspectJ™ Programming Guide for details.
7.3.4.11 Phx.Morph.Attributes.AttributeHelper Class

Provides helper methods for examining the attributes attached to a symbol and instantiating an attribute using an attribute metadata blob via System.Reflection.

[image: image4.emf]AttributeHelper

Class

Methods

CreateTypeBuilder() : TypeBuilder

HasAttribute() : bool

InstantiateAttribute() : object

LocateExtensions() : void (+ 2 overloads)

7.3.5 Phx.Morph.Aop Namespace

Provides classes for implementing pointcuts and various joinpoints.
7.4 CLIs

We will support the following command-line interfaces (CLIs).
7.4.1 Morph.exe

Usage: morph /in:<path> [/out:<path>]

 /field:<type>,<name> /ext:<type>

 /r:<path>[,<path>]* [/pdb:<path>]
 morph /in:<path> [/out:<path>]

 /r:<path>[,<path>]* [/pdb:<path>]
 where

 /in:<path> Path to the input assembly

 /out:<path> Path to the output assembly (Default:

 <inputPath>.New.dll)

 /field:<type>,<name> Type and name of the field to add

 /ext:<type> Class type to add the field to

 /r:<path>[,<path>]* Reference metadata from the specified

 assembly files

 /pdb:<path> Path to the new pdb file (Default:

 <outputPath>.pdb)
7.4.2 PE Reader Plug-in

Usage: pereader /plugin:MorphPlugin.dll <InputAssembly> /out:<path>
 /r:<path>[,<path>]*
 where

 <InputAssembly> Path to the input assembly

 /out:<path> Path to the output assembly (Default:

 <InputAssembly>.New.dll)

 /r:<path>[,<path>]* Reference metadata from the specified

 assembly files

7.5 Multi-threading considerations

The open classes API manipulates the type and symbol tables. If access to these tables are synchronized then we may need to redesign or re-implement the API so that locks are not held for too long and we need to ensure that lock contention cannot occur.
8. Design Alternatives

· Compiler Construction Infrastructure (CCI) Abstract Syntax Tree (AST) API

· Meta.NET

· Visual Studio.NET Code Model API

· System.CodeDom Code Model API

· AbsIL

· PERWAPI

· CLI File Reader

· PostSharp

· CSharpParser

· Aspect.NET

· AOP.NET

· CLAW

· etc. etc.
9. Open Issues

1. Identity – Ability for a class extension to access the this pointer of the class it is extending in a type safe way. Ability to handle when a class extension method refers to one of its static members.

· Clearly requires a dependency on the class that is being extended.

· Solution #1: Extension class derives from extended class. How to deal with sealed classes?

· Solution #2: Extension class method requires explicit parameter (_this). How to deal with accessing private members? [DONE]
2. Dependencies – Morphs might depend on other morphs or require that morphs be applied in a certain order.

· No solution yet.

3. Maintenance – Ability for the user to see the transformed program as source code.

· Requires raising from IR (AST and then raising from AST (C++/C#/VB.NET/etc.
4. Debugging – Ability for the user to be able to debug the transformed program, i.e., that the PDB file remains consistent.

· Requires that the PDB is updated as well. [DONE]
· Requires that updates fix-up debug info if necessary. For example, if types, symbols, or code is injected, the PDB may need to be fixed-up in order to remain valid. In the extreme, injected code would provide debug info and source code to allow the user to step into the code, completely oblivious to the fact that it was injected and not manually written.
5. Tool Support – Ability to specify and view morphs in the IDE.

· Requires integrating Phoenix into IDE.

6. Naming – The user tries to add a field that has the same name as an existing field. This will also happen if the user performs the same morph twice.

· If the type and name are the same display a warning (“already added”). [DONE]
· If the type is different display an error (“naming conflict”).

7. Initialization – Since a field is added after the fact, the original class writer will not have written initialization code for it, for example, to create the field using new in the class’s constructors.

· By default, the CLR sets reference fields to null.

· Solution #1: Client is responsible for initializing the field (lazy initialization). [DONE]
· Solution #2: Client provides initialization code that will be injected into the constructor(s).

8. Reflective Behavior – Reflection, Cloning, Serialization, and Equality – When an instantiated class object is cloned, how do we ensure the added field is cloned as well?

· TODO: Determine default semantics of Clone() and MemberwiseClone(). What happens if the class overrides Clone()?

· TODO: Research effect on reflection and serialization. What happens if the class overrides serialization?

· TODO: Research effect on object equality. What happens if the class overrides Equals()?

9. Backward Compatibility, Forward Compatibility and Versioning – Ensure that adding a field to Phoenix doesn’t break Phoenix or any of its sample code/plug-ins. This seems to be similar to the Reflective Behavior issue.

· Issue is not yet well defined.

10. Signing – If the Phoenix DLL is signed and then morphed, the checksum will no longer be valid and the assembly will be rejected by the runtime.

· Solution #1: Only allow unsigned assemblies to be morphed. [DONE]
11. Security – Who are these yahoos who are changing my assemblies anyway? How do we prevent mal-morphs?

· Solution #1: Require the morphing and the morphs to be signed.

References
Julian Burger. Phoenix Dynamic Extensibility Design. Internal Microsoft document. Last revision: May 28, 2005.

Shigeru Chiba and Michiaki Tatusbori. A Yet Another java.lang.Class. Proceedings of ECOOP '98: Workshop on Object-Oriented Technology. 1998.

Marc Eaddy. Open Classes Using Phoenix - Project Proposal v2. Internal Microsoft document. Last revision: June 30, 2005.
Jan Gray and Sonja Keserovic. Boosting .NET Platform Productivity and Agility with Meta.NET (Draft 0.5). Internal Microsoft document. January 15, 2005.

Jan Gray and Sonja Keserovic. Meta.NET Design. Internal Microsoft document. Last revision: June 13, 2005.
Weiping Hu. Unify Dynamic and Static Extension. Internal Microsoft document. Last revision: June 6, 2005.

Gregor Kiczales. AspectJ™: Aspect-Oriented Programming in Java. NODe '02: Revised Papers from the International Conference NetObjectDays on Objects, Components, Architectures, Services, and Applications for a Networked World. Springer-Verlag. London, UK. ISBN 3-540-00737-7. 2003.

Client.cs

public class Client

{

	static public void Main()

	{

		Node root = new Node();

		Node child = new Node();

		root.AddChild(child);

	}

}

Node.cs (logical)

public class Node

{

	public ArrayList children = new ArrayList();

	public void AddChild(Node child)

	{

		NodeExt.MyTrace("Node.AddChild()", "Node.cs", 7);

		children.Add(child);

	}

}

NodeExt.cs

using Phx.Morph.Aop;

using Phx.Morph.Attributes;

public class NodeExt

{

 [Advice(AdviceType.before, "call(...Add)")]

 static public void MyTrace([SourceLocationAttribute.WithinSignature]� string withinSignature,

 [SourceLocationAttribute.FileName]� string fileName,

 [SourceLocationAttribute.Line] uint line)

 {

 System.Console.WriteLine("Within {0}() [File: {1}, Line: {2}]",

 withinSignature, fileName, line);

 }

}

Node.cs

public class Node

{

	public ArrayList children = new ArrayList();

	public void AddChild(Node child)

	{

		children.Add(child);

	}

}

Phoenix core components

Phx.Morph.dll

Hello.New.dll

class A {

	MyExt Logger myFieldlogger;

}

Morph.exe

Hello.dll

class A {

}

MyExt.dll

[Extends("A")]

[Add("A", "myField")]

class MyExt {

[Add]

	Logger logger;

}

Logger.dll

class Logger {

	void Log(string msg) {

		...

}

}

Original Developers

Extension

Integrators

Clients

Depends on

Separation of concerns boundary

Key

Client.cs

class Client {

	static void Main() {

		A a = new A();

		a.myField logger = new MyExtLogger();

		a.myField.logger.Log("hey");

}

}

Input/Output

� Detailed milestones are provided in the project proposal [Eaddy].

PAGE
Page iii
Copyright SYMBOL 211 \f "Symbol" Microsoft Corporation, 2005LastChangedField
2/15/06 12:01 PM

