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Abstract 
 

We present a novel, inexpensive, coarse tracking sys-
tem that determines a person’s approximate 2D location 
and 1D head orientation in an indoor environment. While 
this coarse tracking cannot support precise registration of 
overlaid material, it can be used to drive user interfaces 
that can adapt to the quality of tracking available. 

Our approach uses a set of strong infrared beacons, 
each of which broadcasts a unique ID.  The beacons are 
deployed in the environment such that their zones of influ-
ence strategically overlap, partitioning the area of cover-
age into a set of uniquely identifiable fragments. We use a 
compound, omnidirectional infrared receiver, composed 
of a set of individual, directional infrared receivers, to 
infer 2D position (parallel to the ground plane) and 1D 
orientation (azimuth), employing a Kalman-filter–based 
architecture for smoothing and data integration with 
other tracking systems available.  To test our ideas, we 
have applied them to a prototype head tracker, and pre-
sent results from our tests. 

 
1. Introduction 
 

Augmented reality [3] is a potentially promising user 
interface metaphor for mobile information systems, offer-
ing the ability to spatially register relevant virtual infor-
mation with the user’s experience of the physical world. 
Much augmented reality research has concentrated on the 
design and use of relatively precise tracking technologies. 
These systems are typically limited in the size of the area 
that they track and the number of simultaneously tracked 
objects that they support, and are often relatively expen-
sive. We are interested in how such precise tracking tech-
nologies might be complemented by coarser technologies 
that could significantly increase the area being tracked, at 
a modest increase in cost, and for a larger number of 
tracked objects. 

To address this problem, we are developing an inex-
pensive, coarse, three-degree-of-freedom (3DOF), infra-
red-based tracking system.  This system uses intersections 
and differences of the strategically overlapped zones of 
influence (ZOIs) of unsynchronized, world-stabilized in-
frared beacons, to provide a 2D position estimate relative 
to the ground plane.  It also uses the world-frame beacon 
layout and the user-frame poses of its collection of wear-
able receivers to provide a 1D orientation estimate of user 
azimuth. 

In the remainder of this paper, we first describe related 
work in Section 2.  Next, in Section 3, we present our 
coarse, infrared tracker.  Finally, we present our conclu-
sions and plans for future work in Section 4. 

 
Figure 1.  User wearing test helmet. Two beacons are visible 
on wall beyond. 



 

 
2. Previous Work 

 
There is a significant body of research on tracking sys-

tems for large-scale indoor and outdoor environments. 
Hightower and Borriello [11] present a taxonomy of loca-
tion systems for mobile-computing applications.  Within 
their taxonomy, the positional aspect of our tracking 
method can be classified as a proximity-based infrared 
technology that yields either physical or symbolic location 
information in absolute coordinates, uses localized loca-
tion computation, and does not provide recognition of 
tracked objects. The accuracy and precision of the system 
is variable and depends on the deployment scheme of the 
infrared transmitters in the environment.  

High accuracy tracking has been achieved in research 
and commercial systems for up to room-sized areas using 
different technologies, such as magnetic [2, 18], hybrid 
inertial and ultrasonic [10], and infrared technologies [1, 
22].  Most of these systems are tethered, but there are mo-
bile wireless options available for some trackers [13].  

Covering large parts of a building with these technolo-
gies can be quite expensive. Related research explores the 
tradeoff between cost and accuracy for such wide area 
(multiple room) indoor tracking.  The most prominent 
technologies used for this purpose are ultrasound, IEEE 
802.11b radio frequency (RF), dead reckoning, and infra-
red.  

The Cricket [17] uses concurrent radio and ultrasonic 
signals to infer distance of sensors to beacons placed in 
the environment, achieving portion-of-a-room granularity. 
Randell and Muller [19] describe a similar approach, us-
ing four ultrasonic transmitters per room with reported 
tracking accuracies of 10–25cm. The Active Bat system 
[16] also uses ultrasound time-of-flight, but employs 
emitters in the mobile sensors that communicate with a 
grid of ceiling-mounted receivers. It has been shown to be 
effective, not only in position-tracking, but also in coarse 
orientation-tracking—especially when fused with superior 
local sensors for the latter. 

Several research systems determine a person’s location 
from signal quality measures of IEEE 802.11b (WiFi) 
wireless networking. The RADAR system uses multilat-
eration and pre-computed signal strength maps for this 
purpose [4], while Castro et al. [7] employ a Bayesian 
networks approach.  At least one commercial venture is 
already marketing such services [8]. 

Dead-reckoning tracking approaches have been ex-
plored by [5] and [12]. Infrared (IR) is an attractive tech-
nology for location aware computing, since many mobile 
devices, such as palmtop computers, come with built-in 
IR ports, or can easily be IR enabled. In the Swarm of 
Locusts [20], infrared beacon cells provide coarse loca-
tion and/or object tagging. Butz et al. [6] deploy strong 
infrared senders throughout a building, which broadcast 
either ID tags or contextual information to infrared-

equipped clients, thereby enabling coarse location aware-
ness—the receipt of a particular signal means simple 
proximity to an entity of interest. 

We present here an experimental infrared tracker that 
also uses infrared beacons, but which exploits layout de-
signs to create overlapping signals and a finer space parti-
tion, enabling our receiver and algorithms to infer more 
precise and continuous position and orientation estimates. 
Unlike other approaches, we use inexpensive, uncorre-
lated beacons, supporting an arbitrary number of tracked 
users. 

 
3. Tracking Strategy 

 
3.1 A Coarse Infrared Tracker 
 

Our infrared-based tracking method uses a set of 
world-stabilized infrared beacons, and an array of mobile 
infrared receivers for each user.  For beacons, we cur-
rently use battery-operated wireless Eyeled GmbH ELT-
400 infrared transmitters [9].  Each one is user-configured 
to broadcast a unique numeric ID twice per second at 
2400 baud.  Butz and colleagues originally developed 
these transmitters for use in an architecture in which each 
beacon is mapped uniquely to a single entity—typically 
positioned nearby [6].  In their system, beacons are set up 
such that at most one beacon influences a given point in 
space, and the receipt of its signal by a hand-held com-
puter with an infrared port means that the user is near that 
beacon’s entity.  This model is more logical than spatial.  
Beacon zones either must not ambiguously overlap, or 
ones that do must share the same semantics: two or more 
beacons broadcasting the same ID might be positioned 
near one another to provide a wider area of influence for 
the logical entity to which they map. 

In contrast to this approach, we design and develop al-
gorithms for beacon layouts whose ZOIs (zones of influ-
ence) intentionally overlap, so that the area of coverage is 
partitioned as uniformly as possible, given the coverage 
area, its shape, and the number of beacons currently avail-
able. Our approach also combines multiple IR receivers to 
increase accuracy and reliability. 

 
Hardware and Setup Considerations.  The mobile side 
of our infrared tracking system “watches” for beacon sig-
nals with a set of Extended Systems XTNDAccess Serial-
to-IRDA infrared “dongle” receivers connected to a back-
pack-mounted laptop computer with Socket Communica-
tions PCMCIA-to-DB9 RS-232 adapters.  In our work 
thus far, we have modeled each dongle as a point receiver, 
and have mounted eight of them on a helmet at 45° in-
crements around a plane just above the user’s head (Fig-
ures 1 and 2).   

In modeling the characteristics of the beacons, our tests 
showed that the signal intensity of each beacon dimin-



 

ished continuously as the signal was measured farther 
from the beacon’s central axis at constant range.  We first 
plotted a rough curve, accumulating a set of points, at 
each of which the receivers lost signal, even when (opti-
mally) pointed directly at the beacon.  This began our 
search for a best-case beacon ZOI in our model.  This 
plotted region was more or less elliptical, with the beacon 
at one end of the major axis, a finding confirmed by the 
vendor’s documentation. 

Our initial plot provided a rough equipotential curve, at 
each point of which approximately the same signal energy 
was present—the minimum signal required to excite our 
receivers.  We used the inverse-square law to back out a 
sense of what level of signal was propagating from the 
beacon along the various vectors to those plotted points, 
vectors described in 2D as angles measured from the bea-
con axis.  We suspected that signal “falloff” might be 
Gaussian, since, despite their individual characteristics, 
several LEDs are clustered inside each beacon. In com-
paring the curves of best fit generated by models using 
Gaussian, geometric, and arithmetic falloff assumptions, it 
was clear that the Gaussian model was the best choice, 
and one surprisingly close to our observations.  Figure 3 
shows the Gaussian-model-driven curve which best fit our 
observations—a zone whose bounding box would be 
roughly seven meters long and 2.8 meters wide. 

The primary, if slight, divergence of this Gaussian 
model from our observations was seen very near the bea-
con.  Whereas the Gaussian model is somewhat “pointed” 
there, our observations implied a shape that was slightly 
more broadly curved than at the opposite end.  We attrib-
ute that difference to what we assume are reflections in-
ternal to the beacon housings.  While presumably very 
off-axis and resultantly weak, they would have a soften-
ing, fill effect on the shape.  Given that this effect only 

makes the ZOI more elliptical, that we typically position 
beacons where users will not get very close to them, and 
that we were designing our system for fairly coarse-
grained tracking, we determined that it was sufficient—
for the positioning “side” of the system—to model the 
beacon ZOIs as 2D elliptical projections like those shown 
in the layout images of Figure 4.  Each such ellipse repre-
sents a slightly simplified model of the intersection of a 
horizontal plane, at the height of the typical walking user, 
with the 3D ellipsoidinal ZOI of a beacon firing more or 
less horizontally, at or just above the level of the user’s 
head.  Given our coarse tracking expectations for this de-
vice, such simplifying assumptions have not seemed prob-
lematic as yet. 

On the mobile, user-stabilized side of the system, we 
found an analogous situation.  A dongle’s ability to re-
ceive any constant-strength signal decreases the farther its 
pose is rotated away from the dongle-to-beacon vector.  
This means that the nearer a dongle is to a beacon, espe-
cially along the beacon axis, where the signal is stronger 
at any given range, the more it can be oriented away from 
the vector joining the two.  The farther away it is, espe-
cially off the beacon’s axis, where the signal is compara-
tively weaker, the more closely it must be pointed toward 
the beacon to receive the signal.  This observation be-
comes useful later, as we describe the azimuth inference 
techniques: it means that distant, off-beacon-axis readings 
will have higher angular certainty than closer, on-axis 
readings.  We also model this off-axis signal attenuation 
as Gaussian, as evidenced in the beacon-side signal-
strength algorithm and the dongle-side azimuth-inference 
algorithms of Figures 5 and 6. 

The setup approach we currently follow is to hand-
define beacon locations and orientations, considering sev-
eral strategic elements.  Obviously, the space we wish to 
track must be covered.  As we incrementally add elliptical 
ZOIs to the tentative plan, we monitor the largest few area 
fragments defined by the intersecting ellipses, trying to 

 
Figure 2.  Dongle array on test helmet 
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Figure 3.  Bounding our infrared beacon’s 2D ZOI, this is the 
curve of best fit (measured in meters), based on a Gaussian 
model of intensity falloff away from the “mean” central axis.  
Beacon is at the origin, pointing right. 



 

position the new ZOIs to cut them, continually reducing 
the size of the largest elliptical fragment in the layout.  
Furthermore, while we have encountered few problems 
with this, we try to avoid choosing any beacon pose that 
would be likely to cause a system-confusing signal reflec-
tion off an environmentally immobile object, such as a 
wall.  Finally, although we have not exploited it in our 
work here, we observe that in certain environments, more 
or less linear pathways between immobile objects seem 
highly probable user trajectories.  Given such a segment, 
if other constraints allow, tracking benefits further accrue 
from the parallel alignment of a pair of beacons, creating 
a long elliptical intersection that overlays such a poten-
tially high-traffic segment. 

Once all the design decisions are made, we store the 
beacon-pose ZOI layout in a configuration file.  Figure 4 
shows several layout styles we have considered.  We cur-

rently use the 10-beacon, orthogonal layout of (a) in our 
laboratory and in the test results we later show. 

 
Algorithms and Software Architecture.  At the lowest 
level in our architecture, there is one dongle driver for 
each dongle.  Each ID signal received by a particular don-
gle from any beacon is an event that calls higher-level 
updating logic on the orientation side of the tracker, and 
time-stamps and caches the received ID for subsequent 
batch use on the position side. 

On the orientation side, data resources include the po-
sitions and orientations for each IR beacon, which we 
encapsulate, along with signal-intensity-computing logic, 
in an object called BeaconProfile.  Also key are the posi-
tions and orientations of the dongle receivers in the user’s 
mobile reference frame.  These are stored within a class 
we call DonglePose, which also contains methods that 
support the user-azimuth inference logic.   

When a particular dongle and its driver receive a bea-
con’s ID signal, that event immediately invokes logic in 
its dedicated, higher-level IrDAStation construct.  It re-
trieves from the single, yet-higher-level IrDADriver the 
particular BeaconProfile that matches that ID, and gets 
the most recent user position estimate as well.  The 
BeaconProfile and user position are passed to 
IrDAStation’s dedicated DonglePose, which in turn calls 
a method on the BeaconProfile it was passed, which 
finally returns an estimate of beacon signal strength, 
based on the user position estimate it was given.  
DonglePose then computes an estimate of user azimuth 
and its angular uncertainty, based on the position estimate 
and the beacon signal strength.  Pseudocode for some of 
this logic is shown in Figures 5 and 6.  Finally, 
IrDAStation passes the azimuth estimate and variance to a 
dedicated Kalman filter, which handles each such event 
on a single-constraint-at-a-time (SCAAT) basis [21], and 
caches the time-stamped ID for near-term batch use by the 
position-inference logic.  Dynamic, graphical display of 
this user azimuth estimate is shown in Figure 12 as the 
short black line emerging like the hand on a clock from 
the white estimate dot. Above the dongle driver sits a higher-level, position-
only driver that frequently checks these cached IDs and 
their time-stamps, assembling them into a set of beacon 
IDs that includes both those received since its last itera-
tion, and those whose time-stamps are recent enough 
(≤500 ms) that it is rather likely that the reason they were 
not received since the last iteration is that their beacons 
were merely in between their 2Hz bursts.  Given a work-
ing set of IDs that the driver believes have been received 
or are likely receivable, space-partitioning and lookup-
facilities are invoked in a construct called the AreaCollec-
tion, submitting the ID set for its processing.  Based on 
the one-time start-up, and the runtime lookup algorithms 
described below, AreaCollection can retrieve any frag-
ment in constant time. 

(a)   
 

(b)   
 

(c)   
 

Figure 4.  Efficient layouts for:  (a) square room or section; 
(b) round room with finer detail toward center; (c) hallway or 
long, narrow room. 



 

Recall that the strategy is to exploit the overlaps of 
these strategically laid-out elliptical zones to create a par-
tition of the area of coverage.  We begin with an empty 
“universe” of coverage: some arbitrary, target shape.  
When the first elliptical ZOI, e1 is added, it partitions the 
universe into a fragment inside e1, which is e1, and the 
remaining universe fragment outside e1.  At this point e1 is 
one of two fragments in the space partition, yet it remains 
a complete ellipse.  As any subsequent ellipse en is incre-
mentally added to the system model, each fragment f—in 
the partition as it existed before the addition—whose in-
tersection with en is non-empty (including the remainder 
of the universe) is partitioned into sub-fragment fen inside 
en and f~en outside it.  As a side effect, en is itself parti-
tioned into the set containing all of its intersections with 
all previous fragments f, and any remaining portion out-
side all such fragments—the latter of which is, interest-
ingly, its intersection with the previously remaining uni-
verse fragment.  After any number of such incremental 

additions, the space remains a partition, each area frag-
ment of which is uniquely defined by the set of elliptical 
ZOIs it is inside, and the set of ellipses it is outside.  As 
Figure 7 illustrates, a binary number with the same num-
ber of digits as there are ZOIs, suffices to encode such a 
unique fragment identification—each digit maps to a ZOI, 
zero means “out” and one means “in.”   

In the abstract, ignoring layout-dependent impossibili-
ties, the set of all possible beacon combinations, given n 
beacons, is of cardinality 2n.  When applied to a particular 
layout domain, each combination maps to the area frag-
ment in which a point-modeled receiver would have to 
reside to receive that combination of signals.  Obviously, 
many such combinations map to area-fragments that are 
empty—in the modeled layout, there is no region in which 
that particular combination of beacons received and not 
received could occur.  Frequently, such combinations map 
to non-singular regions, not especially helpful for position 
tracking.  Is it realistic to assume that we will never en-
counter empty-fragment combinations?  And, are non-
singular fragments the best choice? 

Relaxing one of these constraints—that of subtracting 
ZOIs serviced by beacons whose IDs were not received—
results in another set of fragments.  While this set is not a 
partition (they overlap one another), these simple intersec-
tions produce the fragments in which a set of IDs that 
were received could have been.  Each of these fragments 
has several attractive properties: (1) it is always singular; 
(2) it is always a superset of its corresponding subtraction-
enforcing fragment; and (3) it is less often empty.  Many 
combinations, mapping to empty fragments in the subtrac-

 
Figure 7.  ZOI fragment binary encoding strategy. 

beacon_prof // BeaconProfile passed in call 
userPos  // user’s world position passed in call 
dongle_var // dongle attenuation variance 
user_to_dongle // constant angular pose in user frame 
 
user_beacon_range  beacon_prof.getRange( userPos ) 
user_beacon_angle  beacon_prof.worldAngleFrom( user-

Pos ) 
max_off_axis   

sqrt[ 2 * dongle_var * ln( beacon_prof.getIntensity(  ) ) ] 
lower_user_rot  user_beacon_angle  

– ( user_to_dongle + max_off_axis ) 
higher_user_rot  user_beacon_angle  

– ( user_to_dongle – max_off_axis )  
half_rot_range  ( higher_user_rot – lower_user_rot ) / 2 
azimuth_estimate  lower_user_rot + half_rot_range 
azimuth_std_dev  half_rot_range / 2   

// assuming range is 2 std devs off axis 
 
Figure 5.  DonglePose’s angle and variance algorithm, sim-
plified when all dongles are at the user origin—the general case 
is more complex. 
 

userPos // user’s world position passed in call 
sig_variance // constant variance of signal over angle 
min_received // constant minimum receivable signal 
 
userPosBF  transformToBeaconFrame( userPos ) 
th  arctan( userPosBF.y / userPosBF.x ) 
range_squared  userPosBF.y * userPosBF.y  

+ userPosBF.x * userPoBFs.x 
signal_at_1  e ^ ( –th * th / ( 2 * sig_variance ) )  

/ sqrt( 2 * PI sig_variance ) 
signal_at_point  signal_at_1 / range_squared 
return signal_at_point / min_received 

 
Figure 6.  BeaconProfile.getIntensity algorithm. 



 

tion-enforcing partition, map to non-empty ones in the 
simple-intersection set.  And, no combination that maps to 
an empty fragment in the simple-intersection set will map 
to a non-empty one in the subtraction-enforcing parti-
tion—simple intersections are just more “productive” of 
usable fragments.   

In answer to the question posed above, it is our sense, 
given environmental and dynamic factors we could never 
model, that we are more confident that we should have 
received what we did, than we are certain that we should 
not have received what we did not.  For this reason, 
among others, we also precompute the set of simple-
intersection fragments during initialization, ensuring that 
the set can be indexed identically to the subtraction-
enforcing fragment partition. 

In practice, the abovementioned AreaCollection is ini-
tialized from the configuration file in which we stored the 
layout design.  Each fragment—both the simple-
intersection and the subtraction-enforcing versions—is 
pre-computed at startup.  As in Figure 7, the “universe” 
fragment is accorded the internal ID of zero—it is “out” 
of all the ZOIs.  Whatever logical ID the layout designer 
chose to assign to each ZOI, the incremental initialization 
routine maps it to an internal ID, the smallest, yet-unused 
power of two.  This fast, but tedious, runtime mapping 
could be avoided by simply choosing logical IDs that 
were powers of 2, and initializing them in order.  After 
initialization, each fragment can be identified and located, 
bitwise uniquely, by the internal ID generated by the bit-
wise OR of all the power-of-two internal IDs of each ZOI 
it is in—zero bits for the ones it is outside. 

Pseudocode for the initialization algorithm, which sets 
up data structures supporting constant-time fragment 
lookups, is presented in Figure 8.  In that figure, Frag-
ments is a vector of subtraction-enforcing fragments, and 
Intersections is a vector of simple intersections.  Looking 
up a fragment, given a set of logical IDs, simply involves 
a fast lookup of the corresponding internal IDs (a step that 
could be omitted as noted above), and then retrieval can 
be accomplished using the simple algorithm of Figure 9.  
Given a small number of beacons (we currently use 10), 
and the fact that the arrays used in Figures 8 and 9 contain 
references, not large memory allocations, for clarity and 
elegance we currently forgo the space efficiencies hash 
tables might offer over sparsely populated arrays. 

What if the simple-intersection fragment is also 
empty?  In our implementation, an empty fragment is a 
non-update—the system maintains the status quo until it 
gets a meaningful change.  But, what might generate such 
a condition, and should we be concerned?  An empty sim-
ple-intersection fragment means that the set of IDs that 
the system received during its sliding time window, maps 
to a set of ZOIs, at least one of which we have modeled as 
being disjoint from the rest of the set.  Given the sliding 

time window in which we accumulate and retain beacon 
“hits,” user motion at a high speed might allow an ID to 
stay in the working set for at most a half second longer 
than theoretically ideal.  This can cause momentary situa-
tions in which the user is not simultaneously inside all the 
ZOIs mapped to by this sometimes-behind-the-times 
working set of beacon IDs. 

Aside from the above consideration, several other pos-
sibilities are: 

Ellipses    // an input vector of whole, elliptical 
       // zones 
Intersections  // a vector of size 2 ^ Ellipses.length 
Fragments   // a vector of size 2 ^ Ellipses.length 
 
Fragments[ 0 ]  universe 
Intersections[ 0 ]   universe 
newID  1 
m  0    // indexes vector of elliptical zones 
while m < Ellipses.length 
 newEllipse  Ellipses[ m ] 
 i  0 
 while i < newID 
  tempFrag   Fragments[ i ] 
  Fragments[ i ]  
   Fragments[ i ] SUBTRACT  newEllipse 
  Fragments [ i + newID ]  
   tempFrag INTERSECT  newEllipse 
  Intersections[ i + newID ]  
   Intersections[ i ] INTERSECT newEllipse 
 repeat 
 newID  newID * 2 
 m  m + 1 
repeat 

 
Figure 8.  Initialization algorithm for infrared beacon ZOIs. 
 

IIDs     // array of internal, power-of-two beacon IDs 
Fragments  // array of ellipse and universe fragments 
      // above 
WholeEllipses // array of whole ellipses cached above 
 
j  0 
fragIndex  0 
while j < IIDs.length 
 fragIndex  fragIndex OR IIDs[ j ] 
repeat 
if AND ( NOT_EMPTY( Fragments[ fragIndex ] ) 
     SINGULAR(Fragments[ fragIndex ]) 
     NOT_TINY(Fragments[ fragIndex ]) 
   )  return Fragments[ FragIndex ] 
else return Intersections[ FragIndex ] 

Figure 9.  Lookup algorithm for area-zone fragments, under 
the policy of usually using the knowledge about beacons not 
received. 



 

(1) an offending beacon signal has bounced off some re-
flective surface into the area surrounding our user—
an area in which we had not modeled it as receiv-
able; 

 (2) a beacon’s physical position doesn’t match its state 
in the configuration file; 

 (3) a beacon is broadcasting an ID that doesn’t match 
the one assigned to it in the configuration file. 

Problems 2 and 3 are simple, human configuration or 
setup errors, which we assume would be detected and 
corrected during post-setup tests.  Problem 1, however, 
requires further thought.  The layout schemes we have 
considered up to this point, some of which are pictured in 
Figure 4, are ones in which the likelihood of such a 
bounce is extremely low, given: 

(1) beacons pointed away from walls; 
 (2) beacon signals decaying just as or before they hit 

any opposite walls, or with any bounce zone a subset 
of the already-modeled ZOI. 

Pose choices can usually avoid the likelihood of detri-
mental bounces.  In a room whose dimensions are signifi-
cantly smaller than the longer axis of the beacon ellipse as 
modeled, the beacons’ developers mention that it is possi-
ble to bend the diodes outward from the central axis, thus 
altering the shape and length of a beacon’s receivable 
volume [personal communication].  Doing so would re-
quire each beacon to have its own, carefully calibrated 
model.  In our lab tests, in which the layout is that of Fig-
ure 4(a), without any of these avoidance techniques, we 
have experienced no ill effects we could attribute to such 
bounces.  We further note that even forced bounces, as 
long as they are constant, can be handled as follows.  If a 
wall, for instance, cuts across a necessary beacon’s ZOI, 
then at initialization, or even in configuration, that ZOI 
can be broken down into two portions:  that covered be-
fore the signal hits the wall, and that covered by the sig-
nal’s reflection off the wall.  The working ZOI would then 
be the union of these two portions.   

That said, random reflections of IR signal by moving 
surfaces cannot be modeled.  We observe, though, that it 
would take more than a flicker of light to confuse the sys-
tem.  Rather, four bytes of a sporadic, 2Hz, 2400-baud 
signal would have to be legible in an unexpected area. 

In Figures 10 and 12, we present screen-shots of our 
test program at the end of some walk-arounds in our lab 
tracked by this infrared system.  In the upper image of 
Figure 10, for example, the Intersections area is the 
lighter-shaded, larger fragment, bounded top and bottom 
by the third horizontal ellipse (from the top).  The Frag-
ments area is the darker-shaded, central subset of that—
the wedge bounded by the second and fourth horizontal 
ellipses.  The later-discussed ellipse of confidence appears 
as a full, shaded ellipse with a white dot at its centroid. 

 

3.2 Filtering the Raw Tracker Data 
 
Once a coherent area fragment is returned from the 

area collection, what happens?  One policy we have in-
vestigated is that of using the centroid of the fragment’s 
axially aligned bounding box as the 2D position meas-

 

Figure 10.  Casual user walk-arounds tracked by the infrared 
system in our lab.



 

 
Figure 11.  IR tracker trajectory (lighter, more linear, circle 
nodes) overlaying the Intersense IS-900 (heavier, curved).  This 
is an area roughly 1/3 the width of the lab area in Figure 10 
(half-meter ticks), so deviations are exaggerated.  Line segments 
show temporal matches between the two at one-second intervals.

urement.  Testing shows that those centroids are some-
times farther away from the user’s last known position 
than seems helpful, and that using the centroid as the 
measurement is excessive, especially with the largest of 
the simple-intersection fragments.  To address this issue, 
we have also investigated another strategy.  We evaluate 
the measurement differential (from the last update) in 
terms of implied velocity.  If that velocity exceeds a con-
figurable maximum-velocity assumption (2 m/sec in our 
walk-around tests), the differential is scaled back appro-
priately, and added to the last position estimate.  The 
measurement updates are always in the “right direction,” 
but are never far enough in that direction to imply a veloc-
ity above the configurable cap.  Second, we handle many 
kinds of uncertainty by using a Kalman filter [15], and 
some of its output is employed to further constrain the 
measurement fragment. 

Apart from other techniques, raw m easurements based 
on the above layouts and algorithms could be very noisy.  
For much of the solution to this problem, we turned to the 
Kalman filter.  We use the centroids of the area fragments 
returned by the AreaCollection as the x and y sensor-
measurement inputs to the Kalman filter—except when 
we attenuate large changes with our configurable veloc-
ity-cap assumption.  The width and height of the axially 
aligned bounding box for that fragment provide the basis 
for estimating the measurement’s standard deviation—
also a necessary input into the Kalman filter.   

We employ a second Kalman filter for the user azi-
muth estimates that flow immediately from each ID read.  
That azimuth is represented as an Euler angle, user yaw. 

Back on the position side of the device, we also benefit 
from the Kalman filter output by using it for pre-filtering 
feedback on the next cycle.  We cache a representation of 
what we call an “ellipse of confidence” around the current 
filter estimate.  Graphical examples of this appear in the 
images of Figures 10 and 12: it is always a full, shaded 
ellipse (often the only one)—with a white dot represent-
ing the estimate at its centroid.  Because of what is fil-
tered, this ellipse is axially aligned with the 2D coordinate 
frame, and the height and width of its bounding box are 
proportional to the standard deviations we get from the 
filter. 

We use this ellipse for more than graphical output, 
however.  It also has a role in smoothing noisy data.  Cur-
rently, we intersect its most current version with the next 
area fragment output by the AreaCollection, and pass to 
the filter a measurement we derive from that intersection, 
rather than just the raw fragment itself.  Since we believe 
the user to be within the filter’s estimate-confidence 
bounds, and since the fragment obtained from the Area-
Collection is also very likely to contain our mobile re-
ceivers, the most likely subset of both would seem to be 
their intersection. 

 

3.3 Evaluating a Coarse Tracker’s Resolution 
 
Figure 11 presents a typical example of the IR 

tracker’s output overlaying that of the Intersense IS-900 
[13] ceiling tracker, which we used for “ground truth.”  It 
should be noted that this image is scaled to show an area 
roughly 1/3 the width of those in Figure 10, so deviations 
are exaggerated here.  At one-second intervals we have 
provided leader lines between simultaneous estimates 
from the ceiling-tracker and the IR-tracker.  Occasional 
“fans” of these leader lines, connecting closely packed IR 
estimates to the more accurate IS-900 curve, serve to il-
lustrate the “stall-and-catch-up” positional nature of the 
IR device as it now stands. 



 

 
Figure 12.  User’s azimuth indicator and angle number. 
Note:  this walk-around was generated with different filter set-
tings—generating higher latency, but a more stable path image. 

When multiple beacons are in range, typical latency in 
position tracking is on the order of a second or so.  Worst-
case lags, typically driven by missed beacon broadcasts in 
this crude test-bed implementation, were occasionally as 
much as a few seconds.  Even under the most pessimistic 
view, this seems usable in the context of a user doing a 
stroll-and-stop browse around a museum or conference 
floor, for example.  Azimuth latency is often less than a 
second, but never worse than worst-case positional ex-
periences.  We attribute the lower latency to our use of a 
SCAAT [21] filtering approach for azimuth. 

A key cause of latency beyond our current control is 
the slow, 2Hz beacon broadcast rate.  During rapid 
movements, the user might pass through a narrow section 
of a ZOI without reading its signal at all.  Rapid user rota-
tion might also introduce delay, if none of the dongles get 
all four bytes of a beacon’s broadcast—generating a miss 
in the current structure. 

Positional accuracy, when the user pauses at some 
spot, is typically on the order of a meter, given the density 
and uniformity characteristics of the relatively sparse lay-
out design we test here.  Layouts populated more densely 
with beacons will enjoy a finer granularity of positional 
precision.  In the worst case, even if only one beacon is 
received, positional error is bounded by the dimensions of 
its ZOI.  More typically, the error is bounded by the di-
mensions of the simple-intersection fragment implied by 
the multiple beacon IDs currently receivable.  Azimuth 

accuracy is on the order of 5–10° in the typical, settled 
case.  Rapid user rotations are, of course, not immediately 
reflected, given the latency, but slow steady turns are of-
ten registered rather smoothly.  This tracking strategy 
seems, if anything, more stable in orientation than it does 
in position:  positioning requires the reliability of a set of 
IDs for inferencing.  Azimuth, given a rough position es-
timate, only requires a single beacon “hit” for a reason-
able update. 

 
4. Conclusions and Future Work 

 
We have described our early experiences with a coarse 

infrared-beacon tracker we are developing.  The device 
estimates 2D position from the set of infrared signals it 
receives—more precisely, from the spatial inferences it 
implicitly makes over the set of modeled zones to which 
that signal set maps.  Based on the current position esti-
mate and models of receiver poses and beacon locations, 
it also infers user azimuth from individual beacon “hits.”  
We have been pleasantly surprised, in the context of mod-
est, coarse-tracking expectations, at how well this device 
performs. 

The Kalman filter we employ for position tracking is 
being applied to an atypical domain—one in which some 
of its assumptions arguably do not hold.  Kalman filtering 
assumes that the probability distribution of measurements 
is normal (Gaussian).  One can reasonably assert that hav-
ing received signal set S, the probability of being in, say, 
the square decimeter of the fragment farthest from the 
operative beacons, is not equal to—indeed is surely quite 
a lot less than—the probability of being in the nearest one.  
If so, the probability distribution of the reception-location 
across these elliptical ZOIs, or indeed their fragments, is 
certainly not Gaussian.  That the filter performs as well as 
it does, in our view, merely serves to highlight the essen-
tially forgiving nature of Kalman’s algorithm—another 
example of the benefits of applying it where some of its 
theoretical assumptions may not hold.  That said, we are 
interested in investigating other alternatives to simple 
Kalman filtering, where the underlying assumptions may 
not differ as much from the physical facts. 

It is our reasonable intuition that the accuracy of our 
tracker is a function of the density of the beacon distribu-
tion.  We would like to do performance testing with sev-
eral layouts, and find a sound means of expressing the 
accuracy level that can be expected from this device, 
given a particular layout scheme.   

This tracking approach would greatly benefit from in-
creasing the frequency of the beacon broadcasts.  Were 
we to make or acquire beacons that could broadcast at, 
say, 10Hz, instead of the current 2Hz, there would be two 
improvements. The average time would be reduced be-
tween when a user entered a ZOI, and when its beacon 
broadcast was received. Also reduced would be the time 



 

window during which we buffer and use beacon IDs re-
ceived—assuming the user remains in those ZOIs. One 
risk of increasing frequency, however, is rooted in the 
reality that the current system uses simple, autonomous 
beacons, which receive no communication from the rest 
of the system. Internal clocks presumably drift with re-
spect to the other beacons, so one would expect situations 
in which one beacon’s broadcast “stomped” another’s, 
causing both signals to be lost. Expensive, high-precision 
systems employ beacon synchronization to support time-
slicing for higher frequencies. Doing such with this sys-
tem would increase its cost and complexity significantly. 

We can imagine replacing the eight dongles we used 
here by designing a smaller, custom receiver that would 
house many more uniquely posed diodes.   

Furthermore, we have considered introducing some 
vertical displacements into the beacon layouts—especially 
some beacons firing down from the ceiling. Between 
these two enhancements, we would anticipate being able 
to provide something more like 3DOF orientation track-
ing, and certainly coarse 3DOF position tracking, as well.  
At minimum, we need to extend the layout algorithms and 
space representation to support the notion of beacons that 
do not fire in a more or less horizontal manner. 

We look forward to using this device in hybrid combi-
nation with other inexpensive sensors, to both improve 
accuracy and provide more degrees of freedom in tracking 
estimates. Using an inclinometer might extend the 1DOF 
azimuth value to a 3DOF orientation one within certain 
ranges. Adding an altimeter would track vertical motion 
in elevators or staircases [14]. 
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