
Coarse, Inexpensive, Infrared Tracking for Wearable Computing

Drexel Hallaway * Tobias Höllerer † Steven Feiner *

* Department of Computer Science † Department of Computer Science
 Columbia University University of California, Santa Barbara
 New York, NY 10027 Santa Barbara, CA 93106-5110
 +1 212 939 7000 +1 805 893 8759
 {drexel, feiner}@cs.columbia edu holl@cs.ucsb.edu

Abstract

We present a novel, inexpensive, coarse tracking sys-
tem that determines a person’s approximate 2D location
and 1D head orientation in an indoor environment. While
this coarse tracking cannot support precise registration of
overlaid material, it can be used to drive user interfaces
that can adapt to the quality of tracking available.

Our approach uses a set of strong infrared beacons,
each of which broadcasts a unique ID. The beacons are
deployed in the environment such that their zones of influ-
ence strategically overlap, partitioning the area of cover-
age into a set of uniquely identifiable fragments. We use a
compound, omnidirectional infrared receiver, composed
of a set of individual, directional infrared receivers, to
infer 2D position (parallel to the ground plane) and 1D
orientation (azimuth), employing a Kalman-filter–based
architecture for smoothing and data integration with
other tracking systems available. To test our ideas, we
have applied them to a prototype head tracker, and pre-
sent results from our tests.

1. Introduction

Augmented reality [3] is a potentially promising user
interface metaphor for mobile information systems, offer-
ing the ability to spatially register relevant virtual infor-
mation with the user’s experience of the physical world.
Much augmented reality research has concentrated on the
design and use of relatively precise tracking technologies.
These systems are typically limited in the size of the area
that they track and the number of simultaneously tracked
objects that they support, and are often relatively expen-
sive. We are interested in how such precise tracking tech-
nologies might be complemented by coarser technologies
that could significantly increase the area being tracked, at
a modest increase in cost, and for a larger number of
tracked objects.

To address this problem, we are developing an inex-
pensive, coarse, three-degree-of-freedom (3DOF), infra-
red-based tracking system. This system uses intersections
and differences of the strategically overlapped zones of
influence (ZOIs) of unsynchronized, world-stabilized in-
frared beacons, to provide a 2D position estimate relative
to the ground plane. It also uses the world-frame beacon
layout and the user-frame poses of its collection of wear-
able receivers to provide a 1D orientation estimate of user
azimuth.

In the remainder of this paper, we first describe related
work in Section 2. Next, in Section 3, we present our
coarse, infrared tracker. Finally, we present our conclu-
sions and plans for future work in Section 4.

Figure 1. User wearing test helmet. Two beacons are visible
on wall beyond.

2. Previous Work

There is a significant body of research on tracking sys-

tems for large-scale indoor and outdoor environments.
Hightower and Borriello [11] present a taxonomy of loca-
tion systems for mobile-computing applications. Within
their taxonomy, the positional aspect of our tracking
method can be classified as a proximity-based infrared
technology that yields either physical or symbolic location
information in absolute coordinates, uses localized loca-
tion computation, and does not provide recognition of
tracked objects. The accuracy and precision of the system
is variable and depends on the deployment scheme of the
infrared transmitters in the environment.

High accuracy tracking has been achieved in research
and commercial systems for up to room-sized areas using
different technologies, such as magnetic [2, 18], hybrid
inertial and ultrasonic [10], and infrared technologies [1,
22]. Most of these systems are tethered, but there are mo-
bile wireless options available for some trackers [13].

Covering large parts of a building with these technolo-
gies can be quite expensive. Related research explores the
tradeoff between cost and accuracy for such wide area
(multiple room) indoor tracking. The most prominent
technologies used for this purpose are ultrasound, IEEE
802.11b radio frequency (RF), dead reckoning, and infra-
red.

The Cricket [17] uses concurrent radio and ultrasonic
signals to infer distance of sensors to beacons placed in
the environment, achieving portion-of-a-room granularity.
Randell and Muller [19] describe a similar approach, us-
ing four ultrasonic transmitters per room with reported
tracking accuracies of 10–25cm. The Active Bat system
[16] also uses ultrasound time-of-flight, but employs
emitters in the mobile sensors that communicate with a
grid of ceiling-mounted receivers. It has been shown to be
effective, not only in position-tracking, but also in coarse
orientation-tracking—especially when fused with superior
local sensors for the latter.

Several research systems determine a person’s location
from signal quality measures of IEEE 802.11b (WiFi)
wireless networking. The RADAR system uses multilat-
eration and pre-computed signal strength maps for this
purpose [4], while Castro et al. [7] employ a Bayesian
networks approach. At least one commercial venture is
already marketing such services [8].

Dead-reckoning tracking approaches have been ex-
plored by [5] and [12]. Infrared (IR) is an attractive tech-
nology for location aware computing, since many mobile
devices, such as palmtop computers, come with built-in
IR ports, or can easily be IR enabled. In the Swarm of
Locusts [20], infrared beacon cells provide coarse loca-
tion and/or object tagging. Butz et al. [6] deploy strong
infrared senders throughout a building, which broadcast
either ID tags or contextual information to infrared-

equipped clients, thereby enabling coarse location aware-
ness—the receipt of a particular signal means simple
proximity to an entity of interest.

We present here an experimental infrared tracker that
also uses infrared beacons, but which exploits layout de-
signs to create overlapping signals and a finer space parti-
tion, enabling our receiver and algorithms to infer more
precise and continuous position and orientation estimates.
Unlike other approaches, we use inexpensive, uncorre-
lated beacons, supporting an arbitrary number of tracked
users.

3. Tracking Strategy

3.1 A Coarse Infrared Tracker

Our infrared-based tracking method uses a set of
world-stabilized infrared beacons, and an array of mobile
infrared receivers for each user. For beacons, we cur-
rently use battery-operated wireless Eyeled GmbH ELT-
400 infrared transmitters [9]. Each one is user-configured
to broadcast a unique numeric ID twice per second at
2400 baud. Butz and colleagues originally developed
these transmitters for use in an architecture in which each
beacon is mapped uniquely to a single entity—typically
positioned nearby [6]. In their system, beacons are set up
such that at most one beacon influences a given point in
space, and the receipt of its signal by a hand-held com-
puter with an infrared port means that the user is near that
beacon’s entity. This model is more logical than spatial.
Beacon zones either must not ambiguously overlap, or
ones that do must share the same semantics: two or more
beacons broadcasting the same ID might be positioned
near one another to provide a wider area of influence for
the logical entity to which they map.

In contrast to this approach, we design and develop al-
gorithms for beacon layouts whose ZOIs (zones of influ-
ence) intentionally overlap, so that the area of coverage is
partitioned as uniformly as possible, given the coverage
area, its shape, and the number of beacons currently avail-
able. Our approach also combines multiple IR receivers to
increase accuracy and reliability.

Hardware and Setup Considerations. The mobile side
of our infrared tracking system “watches” for beacon sig-
nals with a set of Extended Systems XTNDAccess Serial-
to-IRDA infrared “dongle” receivers connected to a back-
pack-mounted laptop computer with Socket Communica-
tions PCMCIA-to-DB9 RS-232 adapters. In our work
thus far, we have modeled each dongle as a point receiver,
and have mounted eight of them on a helmet at 45° in-
crements around a plane just above the user’s head (Fig-
ures 1 and 2).

In modeling the characteristics of the beacons, our tests
showed that the signal intensity of each beacon dimin-

ished continuously as the signal was measured farther
from the beacon’s central axis at constant range. We first
plotted a rough curve, accumulating a set of points, at
each of which the receivers lost signal, even when (opti-
mally) pointed directly at the beacon. This began our
search for a best-case beacon ZOI in our model. This
plotted region was more or less elliptical, with the beacon
at one end of the major axis, a finding confirmed by the
vendor’s documentation.

Our initial plot provided a rough equipotential curve, at
each point of which approximately the same signal energy
was present—the minimum signal required to excite our
receivers. We used the inverse-square law to back out a
sense of what level of signal was propagating from the
beacon along the various vectors to those plotted points,
vectors described in 2D as angles measured from the bea-
con axis. We suspected that signal “falloff” might be
Gaussian, since, despite their individual characteristics,
several LEDs are clustered inside each beacon. In com-
paring the curves of best fit generated by models using
Gaussian, geometric, and arithmetic falloff assumptions, it
was clear that the Gaussian model was the best choice,
and one surprisingly close to our observations. Figure 3
shows the Gaussian-model-driven curve which best fit our
observations—a zone whose bounding box would be
roughly seven meters long and 2.8 meters wide.

The primary, if slight, divergence of this Gaussian
model from our observations was seen very near the bea-
con. Whereas the Gaussian model is somewhat “pointed”
there, our observations implied a shape that was slightly
more broadly curved than at the opposite end. We attrib-
ute that difference to what we assume are reflections in-
ternal to the beacon housings. While presumably very
off-axis and resultantly weak, they would have a soften-
ing, fill effect on the shape. Given that this effect only

makes the ZOI more elliptical, that we typically position
beacons where users will not get very close to them, and
that we were designing our system for fairly coarse-
grained tracking, we determined that it was sufficient—
for the positioning “side” of the system—to model the
beacon ZOIs as 2D elliptical projections like those shown
in the layout images of Figure 4. Each such ellipse repre-
sents a slightly simplified model of the intersection of a
horizontal plane, at the height of the typical walking user,
with the 3D ellipsoidinal ZOI of a beacon firing more or
less horizontally, at or just above the level of the user’s
head. Given our coarse tracking expectations for this de-
vice, such simplifying assumptions have not seemed prob-
lematic as yet.

On the mobile, user-stabilized side of the system, we
found an analogous situation. A dongle’s ability to re-
ceive any constant-strength signal decreases the farther its
pose is rotated away from the dongle-to-beacon vector.
This means that the nearer a dongle is to a beacon, espe-
cially along the beacon axis, where the signal is stronger
at any given range, the more it can be oriented away from
the vector joining the two. The farther away it is, espe-
cially off the beacon’s axis, where the signal is compara-
tively weaker, the more closely it must be pointed toward
the beacon to receive the signal. This observation be-
comes useful later, as we describe the azimuth inference
techniques: it means that distant, off-beacon-axis readings
will have higher angular certainty than closer, on-axis
readings. We also model this off-axis signal attenuation
as Gaussian, as evidenced in the beacon-side signal-
strength algorithm and the dongle-side azimuth-inference
algorithms of Figures 5 and 6.

The setup approach we currently follow is to hand-
define beacon locations and orientations, considering sev-
eral strategic elements. Obviously, the space we wish to
track must be covered. As we incrementally add elliptical
ZOIs to the tentative plan, we monitor the largest few area
fragments defined by the intersecting ellipses, trying to

Figure 2. Dongle array on test helmet

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

Figure 3. Bounding our infrared beacon’s 2D ZOI, this is the
curve of best fit (measured in meters), based on a Gaussian
model of intensity falloff away from the “mean” central axis.
Beacon is at the origin, pointing right.

position the new ZOIs to cut them, continually reducing
the size of the largest elliptical fragment in the layout.
Furthermore, while we have encountered few problems
with this, we try to avoid choosing any beacon pose that
would be likely to cause a system-confusing signal reflec-
tion off an environmentally immobile object, such as a
wall. Finally, although we have not exploited it in our
work here, we observe that in certain environments, more
or less linear pathways between immobile objects seem
highly probable user trajectories. Given such a segment,
if other constraints allow, tracking benefits further accrue
from the parallel alignment of a pair of beacons, creating
a long elliptical intersection that overlays such a poten-
tially high-traffic segment.

Once all the design decisions are made, we store the
beacon-pose ZOI layout in a configuration file. Figure 4
shows several layout styles we have considered. We cur-

rently use the 10-beacon, orthogonal layout of (a) in our
laboratory and in the test results we later show.

Algorithms and Software Architecture. At the lowest
level in our architecture, there is one dongle driver for
each dongle. Each ID signal received by a particular don-
gle from any beacon is an event that calls higher-level
updating logic on the orientation side of the tracker, and
time-stamps and caches the received ID for subsequent
batch use on the position side.

On the orientation side, data resources include the po-
sitions and orientations for each IR beacon, which we
encapsulate, along with signal-intensity-computing logic,
in an object called BeaconProfile. Also key are the posi-
tions and orientations of the dongle receivers in the user’s
mobile reference frame. These are stored within a class
we call DonglePose, which also contains methods that
support the user-azimuth inference logic.

When a particular dongle and its driver receive a bea-
con’s ID signal, that event immediately invokes logic in
its dedicated, higher-level IrDAStation construct. It re-
trieves from the single, yet-higher-level IrDADriver the
particular BeaconProfile that matches that ID, and gets
the most recent user position estimate as well. The
BeaconProfile and user position are passed to
IrDAStation’s dedicated DonglePose, which in turn calls
a method on the BeaconProfile it was passed, which
finally returns an estimate of beacon signal strength,
based on the user position estimate it was given.
DonglePose then computes an estimate of user azimuth
and its angular uncertainty, based on the position estimate
and the beacon signal strength. Pseudocode for some of
this logic is shown in Figures 5 and 6. Finally,
IrDAStation passes the azimuth estimate and variance to a
dedicated Kalman filter, which handles each such event
on a single-constraint-at-a-time (SCAAT) basis [21], and
caches the time-stamped ID for near-term batch use by the
position-inference logic. Dynamic, graphical display of
this user azimuth estimate is shown in Figure 12 as the
short black line emerging like the hand on a clock from
the white estimate dot. Above the dongle driver sits a higher-level, position-
only driver that frequently checks these cached IDs and
their time-stamps, assembling them into a set of beacon
IDs that includes both those received since its last itera-
tion, and those whose time-stamps are recent enough
(≤500 ms) that it is rather likely that the reason they were
not received since the last iteration is that their beacons
were merely in between their 2Hz bursts. Given a work-
ing set of IDs that the driver believes have been received
or are likely receivable, space-partitioning and lookup-
facilities are invoked in a construct called the AreaCollec-
tion, submitting the ID set for its processing. Based on
the one-time start-up, and the runtime lookup algorithms
described below, AreaCollection can retrieve any frag-
ment in constant time.

(a)

(b)

(c)

Figure 4. Efficient layouts for: (a) square room or section;
(b) round room with finer detail toward center; (c) hallway or
long, narrow room.

Recall that the strategy is to exploit the overlaps of
these strategically laid-out elliptical zones to create a par-
tition of the area of coverage. We begin with an empty
“universe” of coverage: some arbitrary, target shape.
When the first elliptical ZOI, e1 is added, it partitions the
universe into a fragment inside e1, which is e1, and the
remaining universe fragment outside e1. At this point e1 is
one of two fragments in the space partition, yet it remains
a complete ellipse. As any subsequent ellipse en is incre-
mentally added to the system model, each fragment f—in
the partition as it existed before the addition—whose in-
tersection with en is non-empty (including the remainder
of the universe) is partitioned into sub-fragment fen inside
en and f~en outside it. As a side effect, en is itself parti-
tioned into the set containing all of its intersections with
all previous fragments f, and any remaining portion out-
side all such fragments—the latter of which is, interest-
ingly, its intersection with the previously remaining uni-
verse fragment. After any number of such incremental

additions, the space remains a partition, each area frag-
ment of which is uniquely defined by the set of elliptical
ZOIs it is inside, and the set of ellipses it is outside. As
Figure 7 illustrates, a binary number with the same num-
ber of digits as there are ZOIs, suffices to encode such a
unique fragment identification—each digit maps to a ZOI,
zero means “out” and one means “in.”

In the abstract, ignoring layout-dependent impossibili-
ties, the set of all possible beacon combinations, given n
beacons, is of cardinality 2n. When applied to a particular
layout domain, each combination maps to the area frag-
ment in which a point-modeled receiver would have to
reside to receive that combination of signals. Obviously,
many such combinations map to area-fragments that are
empty—in the modeled layout, there is no region in which
that particular combination of beacons received and not
received could occur. Frequently, such combinations map
to non-singular regions, not especially helpful for position
tracking. Is it realistic to assume that we will never en-
counter empty-fragment combinations? And, are non-
singular fragments the best choice?

Relaxing one of these constraints—that of subtracting
ZOIs serviced by beacons whose IDs were not received—
results in another set of fragments. While this set is not a
partition (they overlap one another), these simple intersec-
tions produce the fragments in which a set of IDs that
were received could have been. Each of these fragments
has several attractive properties: (1) it is always singular;
(2) it is always a superset of its corresponding subtraction-
enforcing fragment; and (3) it is less often empty. Many
combinations, mapping to empty fragments in the subtrac-

Figure 7. ZOI fragment binary encoding strategy.

beacon_prof // BeaconProfile passed in call
userPos // user’s world position passed in call
dongle_var // dongle attenuation variance
user_to_dongle // constant angular pose in user frame

user_beacon_range beacon_prof.getRange(userPos)
user_beacon_angle beacon_prof.worldAngleFrom(user-

Pos)
max_off_axis

sqrt[2 * dongle_var * ln(beacon_prof.getIntensity())]
lower_user_rot user_beacon_angle

– (user_to_dongle + max_off_axis)
higher_user_rot user_beacon_angle

– (user_to_dongle – max_off_axis)
half_rot_range (higher_user_rot – lower_user_rot) / 2
azimuth_estimate lower_user_rot + half_rot_range
azimuth_std_dev half_rot_range / 2

// assuming range is 2 std devs off axis

Figure 5. DonglePose’s angle and variance algorithm, sim-
plified when all dongles are at the user origin—the general case
is more complex.

userPos // user’s world position passed in call
sig_variance // constant variance of signal over angle
min_received // constant minimum receivable signal

userPosBF transformToBeaconFrame(userPos)
th arctan(userPosBF.y / userPosBF.x)
range_squared userPosBF.y * userPosBF.y

+ userPosBF.x * userPoBFs.x
signal_at_1 e ^ (–th * th / (2 * sig_variance))

/ sqrt(2 * PI sig_variance)
signal_at_point signal_at_1 / range_squared
return signal_at_point / min_received

Figure 6. BeaconProfile.getIntensity algorithm.

tion-enforcing partition, map to non-empty ones in the
simple-intersection set. And, no combination that maps to
an empty fragment in the simple-intersection set will map
to a non-empty one in the subtraction-enforcing parti-
tion—simple intersections are just more “productive” of
usable fragments.

In answer to the question posed above, it is our sense,
given environmental and dynamic factors we could never
model, that we are more confident that we should have
received what we did, than we are certain that we should
not have received what we did not. For this reason,
among others, we also precompute the set of simple-
intersection fragments during initialization, ensuring that
the set can be indexed identically to the subtraction-
enforcing fragment partition.

In practice, the abovementioned AreaCollection is ini-
tialized from the configuration file in which we stored the
layout design. Each fragment—both the simple-
intersection and the subtraction-enforcing versions—is
pre-computed at startup. As in Figure 7, the “universe”
fragment is accorded the internal ID of zero—it is “out”
of all the ZOIs. Whatever logical ID the layout designer
chose to assign to each ZOI, the incremental initialization
routine maps it to an internal ID, the smallest, yet-unused
power of two. This fast, but tedious, runtime mapping
could be avoided by simply choosing logical IDs that
were powers of 2, and initializing them in order. After
initialization, each fragment can be identified and located,
bitwise uniquely, by the internal ID generated by the bit-
wise OR of all the power-of-two internal IDs of each ZOI
it is in—zero bits for the ones it is outside.

Pseudocode for the initialization algorithm, which sets
up data structures supporting constant-time fragment
lookups, is presented in Figure 8. In that figure, Frag-
ments is a vector of subtraction-enforcing fragments, and
Intersections is a vector of simple intersections. Looking
up a fragment, given a set of logical IDs, simply involves
a fast lookup of the corresponding internal IDs (a step that
could be omitted as noted above), and then retrieval can
be accomplished using the simple algorithm of Figure 9.
Given a small number of beacons (we currently use 10),
and the fact that the arrays used in Figures 8 and 9 contain
references, not large memory allocations, for clarity and
elegance we currently forgo the space efficiencies hash
tables might offer over sparsely populated arrays.

What if the simple-intersection fragment is also
empty? In our implementation, an empty fragment is a
non-update—the system maintains the status quo until it
gets a meaningful change. But, what might generate such
a condition, and should we be concerned? An empty sim-
ple-intersection fragment means that the set of IDs that
the system received during its sliding time window, maps
to a set of ZOIs, at least one of which we have modeled as
being disjoint from the rest of the set. Given the sliding

time window in which we accumulate and retain beacon
“hits,” user motion at a high speed might allow an ID to
stay in the working set for at most a half second longer
than theoretically ideal. This can cause momentary situa-
tions in which the user is not simultaneously inside all the
ZOIs mapped to by this sometimes-behind-the-times
working set of beacon IDs.

Aside from the above consideration, several other pos-
sibilities are:

Ellipses // an input vector of whole, elliptical
 // zones
Intersections // a vector of size 2 ^ Ellipses.length
Fragments // a vector of size 2 ^ Ellipses.length

Fragments[0] universe
Intersections[0] universe
newID 1
m 0 // indexes vector of elliptical zones
while m < Ellipses.length
 newEllipse Ellipses[m]
 i 0
 while i < newID
 tempFrag Fragments[i]
 Fragments[i]
 Fragments[i] SUBTRACT newEllipse
 Fragments [i + newID]
 tempFrag INTERSECT newEllipse
 Intersections[i + newID]
 Intersections[i] INTERSECT newEllipse
 repeat
 newID newID * 2
 m m + 1
repeat

Figure 8. Initialization algorithm for infrared beacon ZOIs.

IIDs // array of internal, power-of-two beacon IDs
Fragments // array of ellipse and universe fragments
 // above
WholeEllipses // array of whole ellipses cached above

j 0
fragIndex 0
while j < IIDs.length
 fragIndex fragIndex OR IIDs[j]
repeat
if AND (NOT_EMPTY(Fragments[fragIndex])
 SINGULAR(Fragments[fragIndex])
 NOT_TINY(Fragments[fragIndex])
) return Fragments[FragIndex]
else return Intersections[FragIndex]

Figure 9. Lookup algorithm for area-zone fragments, under
the policy of usually using the knowledge about beacons not
received.

(1) an offending beacon signal has bounced off some re-
flective surface into the area surrounding our user—
an area in which we had not modeled it as receiv-
able;

 (2) a beacon’s physical position doesn’t match its state
in the configuration file;

 (3) a beacon is broadcasting an ID that doesn’t match
the one assigned to it in the configuration file.

Problems 2 and 3 are simple, human configuration or
setup errors, which we assume would be detected and
corrected during post-setup tests. Problem 1, however,
requires further thought. The layout schemes we have
considered up to this point, some of which are pictured in
Figure 4, are ones in which the likelihood of such a
bounce is extremely low, given:

(1) beacons pointed away from walls;
 (2) beacon signals decaying just as or before they hit

any opposite walls, or with any bounce zone a subset
of the already-modeled ZOI.

Pose choices can usually avoid the likelihood of detri-
mental bounces. In a room whose dimensions are signifi-
cantly smaller than the longer axis of the beacon ellipse as
modeled, the beacons’ developers mention that it is possi-
ble to bend the diodes outward from the central axis, thus
altering the shape and length of a beacon’s receivable
volume [personal communication]. Doing so would re-
quire each beacon to have its own, carefully calibrated
model. In our lab tests, in which the layout is that of Fig-
ure 4(a), without any of these avoidance techniques, we
have experienced no ill effects we could attribute to such
bounces. We further note that even forced bounces, as
long as they are constant, can be handled as follows. If a
wall, for instance, cuts across a necessary beacon’s ZOI,
then at initialization, or even in configuration, that ZOI
can be broken down into two portions: that covered be-
fore the signal hits the wall, and that covered by the sig-
nal’s reflection off the wall. The working ZOI would then
be the union of these two portions.

That said, random reflections of IR signal by moving
surfaces cannot be modeled. We observe, though, that it
would take more than a flicker of light to confuse the sys-
tem. Rather, four bytes of a sporadic, 2Hz, 2400-baud
signal would have to be legible in an unexpected area.

In Figures 10 and 12, we present screen-shots of our
test program at the end of some walk-arounds in our lab
tracked by this infrared system. In the upper image of
Figure 10, for example, the Intersections area is the
lighter-shaded, larger fragment, bounded top and bottom
by the third horizontal ellipse (from the top). The Frag-
ments area is the darker-shaded, central subset of that—
the wedge bounded by the second and fourth horizontal
ellipses. The later-discussed ellipse of confidence appears
as a full, shaded ellipse with a white dot at its centroid.

3.2 Filtering the Raw Tracker Data

Once a coherent area fragment is returned from the

area collection, what happens? One policy we have in-
vestigated is that of using the centroid of the fragment’s
axially aligned bounding box as the 2D position meas-

Figure 10. Casual user walk-arounds tracked by the infrared
system in our lab.

Figure 11. IR tracker trajectory (lighter, more linear, circle
nodes) overlaying the Intersense IS-900 (heavier, curved). This
is an area roughly 1/3 the width of the lab area in Figure 10
(half-meter ticks), so deviations are exaggerated. Line segments
show temporal matches between the two at one-second intervals.

urement. Testing shows that those centroids are some-
times farther away from the user’s last known position
than seems helpful, and that using the centroid as the
measurement is excessive, especially with the largest of
the simple-intersection fragments. To address this issue,
we have also investigated another strategy. We evaluate
the measurement differential (from the last update) in
terms of implied velocity. If that velocity exceeds a con-
figurable maximum-velocity assumption (2 m/sec in our
walk-around tests), the differential is scaled back appro-
priately, and added to the last position estimate. The
measurement updates are always in the “right direction,”
but are never far enough in that direction to imply a veloc-
ity above the configurable cap. Second, we handle many
kinds of uncertainty by using a Kalman filter [15], and
some of its output is employed to further constrain the
measurement fragment.

Apart from other techniques, raw m easurements based
on the above layouts and algorithms could be very noisy.
For much of the solution to this problem, we turned to the
Kalman filter. We use the centroids of the area fragments
returned by the AreaCollection as the x and y sensor-
measurement inputs to the Kalman filter—except when
we attenuate large changes with our configurable veloc-
ity-cap assumption. The width and height of the axially
aligned bounding box for that fragment provide the basis
for estimating the measurement’s standard deviation—
also a necessary input into the Kalman filter.

We employ a second Kalman filter for the user azi-
muth estimates that flow immediately from each ID read.
That azimuth is represented as an Euler angle, user yaw.

Back on the position side of the device, we also benefit
from the Kalman filter output by using it for pre-filtering
feedback on the next cycle. We cache a representation of
what we call an “ellipse of confidence” around the current
filter estimate. Graphical examples of this appear in the
images of Figures 10 and 12: it is always a full, shaded
ellipse (often the only one)—with a white dot represent-
ing the estimate at its centroid. Because of what is fil-
tered, this ellipse is axially aligned with the 2D coordinate
frame, and the height and width of its bounding box are
proportional to the standard deviations we get from the
filter.

We use this ellipse for more than graphical output,
however. It also has a role in smoothing noisy data. Cur-
rently, we intersect its most current version with the next
area fragment output by the AreaCollection, and pass to
the filter a measurement we derive from that intersection,
rather than just the raw fragment itself. Since we believe
the user to be within the filter’s estimate-confidence
bounds, and since the fragment obtained from the Area-
Collection is also very likely to contain our mobile re-
ceivers, the most likely subset of both would seem to be
their intersection.

3.3 Evaluating a Coarse Tracker’s Resolution

Figure 11 presents a typical example of the IR

tracker’s output overlaying that of the Intersense IS-900
[13] ceiling tracker, which we used for “ground truth.” It
should be noted that this image is scaled to show an area
roughly 1/3 the width of those in Figure 10, so deviations
are exaggerated here. At one-second intervals we have
provided leader lines between simultaneous estimates
from the ceiling-tracker and the IR-tracker. Occasional
“fans” of these leader lines, connecting closely packed IR
estimates to the more accurate IS-900 curve, serve to il-
lustrate the “stall-and-catch-up” positional nature of the
IR device as it now stands.

Figure 12. User’s azimuth indicator and angle number.
Note: this walk-around was generated with different filter set-
tings—generating higher latency, but a more stable path image.

When multiple beacons are in range, typical latency in
position tracking is on the order of a second or so. Worst-
case lags, typically driven by missed beacon broadcasts in
this crude test-bed implementation, were occasionally as
much as a few seconds. Even under the most pessimistic
view, this seems usable in the context of a user doing a
stroll-and-stop browse around a museum or conference
floor, for example. Azimuth latency is often less than a
second, but never worse than worst-case positional ex-
periences. We attribute the lower latency to our use of a
SCAAT [21] filtering approach for azimuth.

A key cause of latency beyond our current control is
the slow, 2Hz beacon broadcast rate. During rapid
movements, the user might pass through a narrow section
of a ZOI without reading its signal at all. Rapid user rota-
tion might also introduce delay, if none of the dongles get
all four bytes of a beacon’s broadcast—generating a miss
in the current structure.

Positional accuracy, when the user pauses at some
spot, is typically on the order of a meter, given the density
and uniformity characteristics of the relatively sparse lay-
out design we test here. Layouts populated more densely
with beacons will enjoy a finer granularity of positional
precision. In the worst case, even if only one beacon is
received, positional error is bounded by the dimensions of
its ZOI. More typically, the error is bounded by the di-
mensions of the simple-intersection fragment implied by
the multiple beacon IDs currently receivable. Azimuth

accuracy is on the order of 5–10° in the typical, settled
case. Rapid user rotations are, of course, not immediately
reflected, given the latency, but slow steady turns are of-
ten registered rather smoothly. This tracking strategy
seems, if anything, more stable in orientation than it does
in position: positioning requires the reliability of a set of
IDs for inferencing. Azimuth, given a rough position es-
timate, only requires a single beacon “hit” for a reason-
able update.

4. Conclusions and Future Work

We have described our early experiences with a coarse

infrared-beacon tracker we are developing. The device
estimates 2D position from the set of infrared signals it
receives—more precisely, from the spatial inferences it
implicitly makes over the set of modeled zones to which
that signal set maps. Based on the current position esti-
mate and models of receiver poses and beacon locations,
it also infers user azimuth from individual beacon “hits.”
We have been pleasantly surprised, in the context of mod-
est, coarse-tracking expectations, at how well this device
performs.

The Kalman filter we employ for position tracking is
being applied to an atypical domain—one in which some
of its assumptions arguably do not hold. Kalman filtering
assumes that the probability distribution of measurements
is normal (Gaussian). One can reasonably assert that hav-
ing received signal set S, the probability of being in, say,
the square decimeter of the fragment farthest from the
operative beacons, is not equal to—indeed is surely quite
a lot less than—the probability of being in the nearest one.
If so, the probability distribution of the reception-location
across these elliptical ZOIs, or indeed their fragments, is
certainly not Gaussian. That the filter performs as well as
it does, in our view, merely serves to highlight the essen-
tially forgiving nature of Kalman’s algorithm—another
example of the benefits of applying it where some of its
theoretical assumptions may not hold. That said, we are
interested in investigating other alternatives to simple
Kalman filtering, where the underlying assumptions may
not differ as much from the physical facts.

It is our reasonable intuition that the accuracy of our
tracker is a function of the density of the beacon distribu-
tion. We would like to do performance testing with sev-
eral layouts, and find a sound means of expressing the
accuracy level that can be expected from this device,
given a particular layout scheme.

This tracking approach would greatly benefit from in-
creasing the frequency of the beacon broadcasts. Were
we to make or acquire beacons that could broadcast at,
say, 10Hz, instead of the current 2Hz, there would be two
improvements. The average time would be reduced be-
tween when a user entered a ZOI, and when its beacon
broadcast was received. Also reduced would be the time

window during which we buffer and use beacon IDs re-
ceived—assuming the user remains in those ZOIs. One
risk of increasing frequency, however, is rooted in the
reality that the current system uses simple, autonomous
beacons, which receive no communication from the rest
of the system. Internal clocks presumably drift with re-
spect to the other beacons, so one would expect situations
in which one beacon’s broadcast “stomped” another’s,
causing both signals to be lost. Expensive, high-precision
systems employ beacon synchronization to support time-
slicing for higher frequencies. Doing such with this sys-
tem would increase its cost and complexity significantly.

We can imagine replacing the eight dongles we used
here by designing a smaller, custom receiver that would
house many more uniquely posed diodes.

Furthermore, we have considered introducing some
vertical displacements into the beacon layouts—especially
some beacons firing down from the ceiling. Between
these two enhancements, we would anticipate being able
to provide something more like 3DOF orientation track-
ing, and certainly coarse 3DOF position tracking, as well.
At minimum, we need to extend the layout algorithms and
space representation to support the notion of beacons that
do not fire in a more or less horizontal manner.

We look forward to using this device in hybrid combi-
nation with other inexpensive sensors, to both improve
accuracy and provide more degrees of freedom in tracking
estimates. Using an inclinometer might extend the 1DOF
azimuth value to a 3DOF orientation one within certain
ranges. Adding an altimeter would track vertical motion
in elevators or staircases [14].

5. Acknowledgments

The research described here is funded in part by ONR
Contracts N00014-99-1-0394 and N00014-99-0683, NSF
Grants IIS-00-82961 and IIS-01-21239, and a gift from
Microsoft.

6. References

[1] 3rdTech Corp., http://www.3rdtech.com/HiBall.htm, 2001.
[2] Ascension Technology Corp., http://www.ascension-

tech.com.
[3] Azuma, R. T., “A Survey of Augmented Reality,” Pres-

ence: Teleoperators and Virtual Environments, vol. 6(4),
pp. 355–385, 1997.

[4] Bahl, P. and V. N. Padmanabhan, “RADAR: An In-
Building RF-based User Location and Tracking System,”
Proc. InfoCom 2000 (Joint Conf. of the IEEE Computer
and Communications Societies), vol. 2, 2000, pp. 775–784.

[5] Borenstein, J., H. Everett, L. Feng, and D. Wehe, “Mobile
Robot Positioning: Sensors and Techniques,” Journal of
Robotic Systems, vol. 14(4), pp. 231–249, 1997.

[6] Butz, A., J. Baus, A. Krüger, and M. Lohse, “A Hybrid
Indoor Navigation System,” Proc. IUI 2001 (Int'l Conf. on

Intelligent User Interfaces), Santa Fe, NM, 2001, pp. 25–
32.

[7] Castro, P., P. Chiu, T. Kremenek, and R. R. Muntz, “A
Probabilistic Room Location Service for Wireless Net-
worked Environments,” Proc. UbiComp 2001 (Int'l Conf.
on Ubiquitous Computing), Atlanta, GA, 2001, pp. 18–34.

[8] Ekahau, Inc., Accurate Positioning in Wireless Networks,
Ekahau Positioning Engine 2.0, http://www.ekahau.com.

[9] Eyeled GmbH, http://www.eyeled.com/en/1/1.html, 2001.
[10] Foxlin, E., M. Harrington, and G. Pfeifer, “Constellation: A

Wide-range Wireless Motion-tracking System for Aug-
mented Reality and Virtual Set Applications,” Proc.
SIGGRAPH '98 (ACM Conf. on Computer Graphics and
Interactive Techniques), 1998, pp. 371–378.

[11] Hightower, J. and G. Borriello, “Location Systems for
Ubiquitous Computing,” IEEE Computer, vol. 34(8), pp.
57–66, 2001.

[12] Höllerer, T., D. Hallaway, N. Tinna, and S. Feiner, “Steps
Toward Accommodating Variable Position Tracking Accu-
racy in a Mobile Augmented Reality System,” Proc. AIMS
2001 (Int'l Workshop on Artificial Intelligence in Mobile
Systems), Seattle, WA, August 4, 2001, pp. 31–37.

[13] InterSense, Inc., IS-900 Wide Area Precision Motion
Tracker, http://www.isense.com, 2001.

[14] Judd, C. T., “A Personal Dead Reckoning Module,” Insti-
tute of Navigation's ION GPS, Kansas City, MO, Septem-
ber, 1997.

[15] Kalman, R. E., “A New Approach to Linear Filtering and
Predictive Problems,” Trans. ASME—Journal of Basic En-
gineering, vol. 82(Series D), pp. 35–45, 1960.

[16] Newman, J., D. Ingram, and A. Hopper, “Augmented Real-
ity in a Wide Area Sentient Environment,” Proc. ISAR
2001 (IEEE and ACM Int'l Symp. on Augmented Reality),
New York, NY, 2001, pp. 77–86.

[17] Priyantha, N. B., A. Chakraborty, and H. Balakrishnan,
“The Cricket Location-Support System,” Proc. MobiCom
2000 (ACM Int'l Conf. on Mobile Computing and Network-
ing), Boston, MA, 2000, pp. 32–43.

[18] Raab, F. H., E. B. Blood, T. O. Steiner, and H. R. Jones,
“Magnetic Position and Orientation Tracking System,”
IEEE Trans. on Aerospace and Electronic Systems, vol.
15(5), pp. 709–718, 1979.

[19] Randell, C. and H. Muller, “Low Cost Indoor Positioning
System,” Proc. UbiComp 2001 (Conf. on Ubiquitous Com-
puting), September, 2001, pp. 42–48.

[20] Starner, T., D. Kirsch, and S. Assefa, “The Locust Swarm:
An Environmentally-Powered, Networkless Location and
Messaging System,” Proc. ISWC '97 (IEEE Int'l Symp. on
Wearable Computers), Cambridge, MA, October 13–14,
1997, pp. 169–170.

[21] Welch, G. and G. Bishop, “SCAAT: Incremental Tracking
with Incomplete Information,” Proc. SIGGRAPH '97 (ACM
Conf. on Computer Graphics & Interactive Techniques),
Los Angeles, CA, August 3–8, 1997, pp. 333–344.

[22] Welch, G., G. Bishop, L. Vicci, S. Brumback, K. Keller,
and D. Colucci, “The HiBall Tracker: High-Performance
Wide-Area Tracking for Virtual and Augmented Environ-
ments,” Proc. VRST '99 (ACM Symp. on Virtual Reality
Software and Technology), London, December 20–23,
1999, pp. 1–11.

