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Abstract We examine mathematical models for semi-supervised support vector machines
(S
�
VM). Given a training set of labeled data and a working set of unlabeled data,

S
�
VM constructs a support vector machine using both the training and working

sets. We use S
�
VM to solve the transductive inference problem posed by Vapnik.

In transduction, the task is to estimate the value of a classification function at the
given points in the working set. This contrasts with inductive inference which
estimates the classification function at all possible values. We propose a general
S
�
VM model that minimizes both the misclassification error and the function

capacity based on all the available data. Depending on how poorly-estimated
unlabeled data are penalized, different mathematical models result. We examine
several practical algorithms for solving these model. The first approach utilizes
the S

�
VM model for 1-norm linear support vector machines converted to a mixed-

integer program (MIP). A global solution of the MIP is found using a commerical
integer programming solver. The second approach uses a noncovex quadratic
program. Variations of block-coordinate-descent algorithms are used to find
local solutions of this problem. Using this MIP within a local learning algorithm
produced the best results. Our experimental study on these statistical learning
methods indicates that incorporating working data can improve generalization.

1. INTRODUCTION

The focus of this paper is mathematical programming approaches to semi-
supervised learning for classification tasks. The main idea of semi-supervised
learning is to construct a classifier using both a training set of labeled data
and a working set of unlabeled data. If none of the labels are known then
the problem becomes clustering. If some of the labels are known, then the
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Figure 1.1 Inductive Learning

problem is classification. There are many practical domains in which unlabeled
data are abundant but labeled data are expensive to generate and therefore
relatively scarce (e.g. medical diagnosis, web search, drug design, and database
marketing). When the training data consist of relatively few labeled data
points in a high-dimensional space, something must be done to prevent the
classification or regression function from overfitting the training data. The key
idea is that by exploiting the unlabeled data we hope to be able to provide
additional information about the problem that can be used to improve accuracy
on data with unknown labels (generalization).

By including the unlabeled data in the testing set, semi-supervised learning
can be used to perform transductive learning instead of the more typical induc-
tive learning. In induction, the task is to construct a good discriminant function
valid everywhere. This function is fixed and applied to any future test data
(Figure 1.1). In transduction, the labeled training data and unlabeled testing
data are given, then the discriminant function is constructed based on all the
available data. The learning task is to predict the labels of only those specific
test data points, not all possible future points. This simpler task can result in
theoretically better bounds on the generalization error [30], thus reducing the
amount of required labeled data for good generalization (Figure 1.2).

Our semi-supervised support vector machine approach can be illustrated by a
simple example. Consider the two-class problem shown in Figure 1.3(a). Since
the labeled training sets are linearly separable, there exists an infinite number
of possible separating planes that correctly classify the two sets. Intuitively, the
best linear classifier is the middle plane shown that separates the two sets with
greatest margin. The margin is the sum of distances from the closest points (the
support vectors) in each set to the plane or equivalently the distance between the
supporting planes for each set. The supporting planes are shown using dotted
lines. Statistical Learning Theory proves that for a given misclassification
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Figure 1.2 Transductive Learning

error, maximizing the margin of separation minimizes a bound on the expected
misclassification error on future unseen data [30]. Maximizing the margin
reduces the capacity of the function to fit data. Intuitively, a “fat" plane with
wide margin has less capacity to fit data than a “skinny" one. In SVM, the
optimal plane can be found using quadratic or linear programming depending
on the metric used to measure the margin distance [30, 29, 3]. Consider now
the additional unlabeled test data shown in Figure 1.3(b). The SVM performs
poorly on this particular test set in terms of classification accuracy of the
testing data. Note also that the resulting margin for the combined labeled
training data and unlabeled testing data is very small. If we construct the
SVM margin that correctly classifies the training data and achieves the widest
margin based on all the data, the results found by our semi-supervised SVM
are significantly improved and the preferable plane is shown in Figure 1.3(c).
Results in statistical learning theory show that, for a fixed misclassification
error, maximizing the margin based on all the data (train and test) can lead to
better bounds on the expected generalization error[30].

For semi-supervised SVM we consider all possible labels of the test data and
assign the labels that produce the best SVM with maximum margin based on
all the available data, both labeled and unlabeled. For the purpose of this paper
we limit our discussion to linear SVM, but these methods can be extended
to nonlinear support vector machines using the standard SVM approach of
including kernel functions [30, 22]. In Section 2. we review support vector
machines. In Section 3. we provide a general framework for viewing the semi-
supervised support vector machine problem. Depending on how we penalize
unlabeled data appearing in the margin the problem can be formulated as a linear
or convex quadratic program with additional equilibrium constraints, mixed-
integer constraints, or nonconvex objective terms. In Section 4. we examine
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Figure 1.3 Traditional SVM (a, b) versus Semi-Supervised SVM (c)

practical approaches using the linear mixed integer program (MIP) formulation
first introduced in [5]. By incorporating the MIP within a local learning
approach, performance is greatly enhanced. In Section 5. we examine practical
algorithms for a nonconvex quadratic formulation. Finally, we conclude our
paper with a brief summary and discussion of optimization issues in semi-
supervised learning.

Other researchers have reported favorable results on semi-supervised meth-
ods on web-based text classification problems, for example using an EM
(Expectation-Maximization) [26, 23], co-training in Bayesian networks [10],
and a transductive version of SVM-Light [19]. Cataltepe and Magdon-Ismail
[13] propose augmented error, which has components from both labeled and
unlabeled data. They provide an analytical solution in the case of linear, noisy
targets and linear hypothesis functions. They also show some results for the
non-linear case. Theoretical results exist [12] on the relative value of labeled
and unlabeled data.
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Figure 1.4 Optimal Plane Maximizes Margin

2. REVIEW OF SVM

The underlying problem of interest is to estimate a classification functionHJIFKMLONQPSRUTWV
using input-output training data from two classes

XZY\[^]`_?[bab]dcdcecf]dXZYhgb]`_Sgia\j KMkmlnPWRUTSV c
(1.1)

The function
H

should correctly or almost correctly classify unseen examplesX
x
]`_oa

, i.e.
H X

x
a\pq_

if
X
x
]r_ha

is generated from the same underlying probability
distribution as the training data. In this work we limit discussion to linear
classification functions. If the points are linearly separable, then there exist ans -vector w and scalar t such that

w u Ywvwx tzy T {|H _}v~p T ]z� s\�
w u Ywvwx tz� x T�{|H _}v~p�x T ] { p T ]dcdcecr]`� (1.2)

or equivalently _ vd�
w u Y v x t��oy T ] { p T ]ecdcec�]r��c

(1.3)

The “optimal” separating plane, w u Y�p t , is the one that is furthest from the
closest points in the two classes. Geometrically this is equivalent to maximizing
the separation margin or distance between the two parallel planes w u Y�p th� T
and w u Y�p t x T (see Figure 1.4).

The “margin of separation” in Euclidean distance is �S��� w ��� where � w ��� pkvZ�h[
w
� v

is the 2-norm. To maximize the margin, we minimize � w � � �S�
subject to the constraints (1.3). According to structural risk minimization, for
a fixed empirical misclassification rate, larger margins should lead to better
generalization and prevent overfitting in high-dimensional attribute spaces[29].
The classifier is called a support vector machine because the solution depends
only on the points (called support vectors) located on the two supporting planes
w u Y�p t x T and w u Ynp t\� T .

In general the classes will not be linearly separable, so the generalized
optimal plane problem (1.4) [14, 29] is used. A slack term � v is added for each
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point such that if the point is misclassified, � v y T
. The quadratic programming

formulation is (SVM-QP):

��� �
w � �b� �

�
g
vZ�h[ � v �

T
� � w �

�
� c �^c�_ v �

w u Y v x t��F�¡� v y T
� v y£¢ ] { p T ]ecdcecr]`�

(1.4)

where
�£¤ ¢ is a fixed penalty parameter. The capacity control provided by the

margin maximization can greatly improve generalization [31, 28]. Typically,
the following dual form of (1.4) is solved in practice:

��� �¥
T
�
g
v¦�h[

g
§ �h[

_ v _ §©¨ v ¨w§ Y v u Y § x
g
v¦�w[ ¨ v

� c �|c
g
v¦�h[ ¨ vª_Sv«p ¢
¢U� ¨ v � � { p T ]dcecdcr]r�

(1.5)

The Robust Linear Programming approach to SVM is identical to SVM-
QP except the margin term is changed from the 2-norm � w � � to the 1-norm,� w � [ p k§ �h[;¬  § ¬ . The problem becomes the following robust linear program
(SVM-RLP) [6, 11, 4]:

�®� �
w � �b� ¯|� �

�
g
v¦�h[ � v �

k
§ �h[ � §� c �|c�_ v �

w u Y v x t��°�n� v y T
� v y£¢ ] { p T ]dcecdcr]r�x � §D± p w§M± p � § ]³²´p T ]ecdcdcb] s c

(1.6)

The RLP formulation is a useful variation of SVM with some nice character-
istics. The 1-norm weight reduction still provides capacity control. The results
in [21] can be used to show that minimizing � w � [ corresponds to maximizing
the separation margin using the infinity norm. Statistical learning theory could
potentially be extended to incorporate alternative norms. One major benefit of
SVM-RLP over SVM-QP is dimensionality reduction. Both SVM-RLP and
SVM-QP minimize the magnitude of the weights w. But RLP forces more
of the weights to be 0 due to the properties of the 1-norm. This results in
dimensionality reduction since variables with 0 weights can be removed from
the model. Another benefit of SVM-RLP over SVM-QP is that it can be solved
using linear programming instead of quadratic programming.

SVM are easily generalized to nonlinear discriminants through the introduc-
tion of kernel functions [30, 22]. The basic idea is that the data are mapped
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nonlinearly to a higher dimensional space and a linear SVM is constructed
in the transformed space corresponding to a nonlinear classifier in the origi-
nal space. We limit our formulation to the linear classification problem and
leave computational studies of these approaches extended with kernels to future
work.

3. SEMI-SUPERVISED SVM

The basic idea of semi-supervised support vector machines is that we want
the best support-vector machine on the labeled data that has no or very few
unlabeled points in the margin. Thus we want to penalize the support vector
machine if unlabeled points fall in the margin. Specifically, we define the
semi-supervised support vector machine problem (Sµ VM) as:

�®� �
w � �b� �}� ¶ � ·

�
g
v¦�w[ � v �

gf¸º¹
§ �ºgf¸h[S»

X
w u Y § x t a �¼� w �

� c �^c _}v`X
w u Ywvwx t a ��� v y T � v y£¢ { p T ]ecdcec�]r� (1.7)

where
�½¤ ¢ is a fixed misclassification penalty parameter and » X ¨ a is the

margin penalty function on unlabeled data.
The question then is how to define » . For a hard margin approach in which

no unlabeled points are allowed in the margin, the margin penalty function is
defined as »?¾ X ¨ a I p ¿ HhÀiÁ x T ± ¨ ± T

¢ À �|ÂÄÃ Á  { � Ã (1.8)

If an unlabeled point falls outside the margin, it is considered well-classified
and no penalty is incurred.

We can transform the hard margin »°¾ problem into a linear or quadratic
program with an additional equilibrium constraint. We start with either SVM
formulation, (1.4) or (1.6), and then add two constraints for each point in the
working set. One constraint calculates the misclassification error as if the point
were in class

T
and the other constraint calculates the misclassification error

as if the point were in class
x T

. We add a constraint that forces one of the
two misclassification errors per point to be zero. This produces the following
mathematical programming problem with equilibrium constraints:

�®� �
w � �b� ��� ¶©� ·

�
g
v¦�h[ � v �¼� w �

� c �^c _Sv`X
w u Ywvwx t a ��� v y T � v yO¢ { p T ]dcdcecr]`�
w u Y § x t\��Å § y T Å § y£¢ ²´p�� � T ]ecdcec�]r� �ÇÆxUX

w u Y § x t a �ÇÈ § y T È § y£¢Å § uSÈ § p ¢ ²Épq� � T ]ecdcecr]`� �ÊÆ

(1.9)
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Figure 1.5 Margin Penalty Functions

The requirement that no unlabeled points may fall in the margin may be too
strong. A natural relaxation of the problem would be to move the equilibrium
constraint into the objective and use it as the margin penalty function » . This
results in the following nonconvex quadratic optimization problem:

��� �
w � �b� �}� ¶©� ·

�
g
v¦�h[ � v �

g�¸º¹
§ �ºg�¸h[ Å § uSÈ § �¼� w �

� c �|c _Sv`X
w u Yhv �qt a ��� v y T � v y£¢ { p T ]ecdcdcf]r�
w u Y § x t«�nÅ § y T Å § yO¢ ²´p�� � T ]dcdcecr]`� �ÇÆxUX

w u Y § x t a �qÈ § y T È § y£¢
(1.10)

Close examination of this choice of error function shows that it has attractive
properties. If the unlabeled point

Y § falls outside or on the margin then Å § orÈ § is 0, and there is no error associated with that point. If the point falls in the
margin, then for

Ë�p  u Y § x t , Å § p T xÍË
and È § p T � Ë by construction of

the support vector machine. The following piecewise quadratic margin penalty
function is produced (see Figure 1.5(a)):

» � XZËÌa I p T xnË � HwÀiÁ x T ± Ë ± T
¢ À �^Â?Ã Á  { � Ãdc (1.11)

Another natural choice would be a margin penalty function that calculates
the minimum of the two possible misclassification errors. The final class of
a point corresponds to the one that results in the smallest error. This is the
transductive idea as proposed by Vapnik [30]. It has the advantage that if the
correct labels are found, the resulting SVM will be identical to the one produced
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if the points were known. The minimum error formulation is [5]:

�®� �
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The resulting margin penalty function is shown in Figure 1.5(b)

» XZËÌaÎp » [iXZËÌa I p T x ¬ Ë ¬ HwÀiÁ x T ± Ë ± T
¢ À �^Â?Ã Á  { � Ã (1.13)

For our experimental study of practical methods for solving these problems
we focused on the minimum error formulation (1.12). But this is not to say
that other formulations are not possible or preferable. In the next two sections
we explore two different approaches to practically solving this problem.

4. MIXED-INTEGER PROGRAMMING
FORMULATION

Integer programming can be used to exactly solve Sµ VM (1.12). The basic
idea is to add a 0 or 1 decision variable, � § , for each point x§ in the working
set. This variable indicates the class of the point. If � § p T

then the point is in
class

T
and if � § p ¢ then the point is in class

x T
. This results in the following

mixed integer program (Sµ VM-MIP):

��� �
w � �b� ��� ¶©� ·©� Ï

�
g
v¦�w[ � v �

gf¸º¹
§ �ºgf¸h[

X Å § �qÈ § a �¼� w �
� cÐ�|c _}v�X

w u Ywvwx t a �¡� v y T � v y£¢ { p T ]dcecdcr]r�
w u Y § x t\��Å § �ÊÑ X T x � § a y T Å § y£¢ ²´p�� � T ]dcecdcr]r� �qÆxUX

w u Y § x t a �ÇÈ § �ÇÑ � § y T È § y£¢ � § p P ¢ ] TSV
(1.14)

The constant Ñ ¤ ¢ is chosen sufficiently large such that if � § p ¢ thenÅ § p ¢ is feasible for any optimal w and t . Likewise if � § p T
then È § p ¢ .

In this paper we use the 1-norm of w in the objective. A globally optimal
solution to this problem can be found using CPLEX or other commercial mixed
integer programming codes [15] provided computer resources are sufficient for
the problem size. Using the mathematical programming modeling language
AMPL [16], we were able to express the problem in approximately thirty lines
of code plus a data file and solve it using CPLEX. One practical limitation of
this approach is the capacity of the MIP solver used. Using CPLEX 4.0 on a
Sun Ultra 1 with 700MB RAM we found it was practical to include about 50
unlabeled data points due to the CPU time limitation.
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4.1 LOCAL SEMI-SUPERVISED SUPPORT VECTOR
MACHINES

To get around the practical restriction on the number of integer variables and
thus unlabeled data handled by our MIP solver, we utilized the Sµ VM-MIP as
part of a local learning algorithm. In local learning, a point is classified based
on points in its “neighborhood”. For example, in the K-Nearest-Neighbor
algorithm (K-NN), the K nearest neighbors to a point (by Euclidean distance or
some other metric) are found and then the point is assigned the majority class
of the K nearest neighbors. Local learning methods are often called memory-
based methods, because training examples are kept in “memory” and used to
classify new points. Since the local models have fewer training examples,
it takes much less computational time to optimize each local Sµ VM than to
train one global one at the expense of many local models. Previous empirical
studies have shown that the generalization ability of local methods often exceeds
that of global ones since the local models include only the points which are
related to the query point (interested unlabeled data) in a given learning task.
Many variations exist for both selecting the neighborhoods and determining
the output class based on the neighbor. For example, Discriminant Adaptive
Nearest Neighbor [17] uses local discriminant analysis to estimate the class
within K-NN classification. Lawrence et al. [20] use local neural network
models for function approximation. See [1] for a survey of approaches.

4.2 LOCAL S Ò VM AND EXPERIMENTAL RESULTS

Local Sµ VM is nothing but an application of Sµ VM in a local neighborhood
of each unlabeled point as determined by the K-NN algorithm using Euclidean
distance. This neighborhood includes both labeled and unlabeled examples. In
order to have enough labeled examples in each neighborhood, we arbitrarily
pick K as 10% of all available data points. Further study is needed on how
to best select the neighborhood of a point. We can summarize the method
(Local-Sµ VM) to classify a given unlabeled point in the following steps:

1. Find K-NN for a given unlabeled point.

2. If all the labeled points in the neighborhood are in one class, then label
the unlabeled point as in that class and end. Otherwise continue.

3. Solve the Sµ VM-MIP (1.14) in the neighborhood.

4. Label the point according to the result of Sµ VM .

There are many advantages to using Local Sµ VM over using a single global
Sµ VM. In transduction for any data, we need to construct a new model. So
the fact that local Sµ VM must compute a new model for each point is also
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Table 1.1 Dataset Summary Statistics

Data Set Dim Points Test-size
Bright 14 2462 50*
Cancer 9 699 70

Diagnostic 30 569 57
Dim 14 4192 50*
Heart 13 297 30

Housing 13 506 51
Ionosphere 34 351 35

Musk 166 476 48
Sonar 60 208 21
Pima 8 769 50*

true for any transductive algorithm. Although there are as many models as
unlabeled points to solve in Local Sµ VM , the overall computational time of
the algorithm including time to find the local neighborhood is generally less
than the global Sµ VM algorithm. This is because we have fewer unlabeled
points in each local model which means we have fewer binary variables in each
model. Having fewer binary variables results in less running time for each local
model. Another advantage is that the overall classification function by Local
Sµ VM is nonlinear (piecewise linear to be exact) when a linear Sµ VM is used
locally.

Determining nearest neighbors of a point can become problematic for large
datasets. One must consider an appropriate metric and method to find K-
NN. Since we use datasets which have relatively small dimensions, we use
Euclidean distance combined with a partial sort algorithm [25] to find the
local neighborhood. As mentioned in the outlines of the algorithm, for each
unlabeled point, a related data file is created and the Sµ VM model is solved
using AMPL. Then the output of AMPL is analyzed to find the label of the
point.

Our computational study of Sµ VM consisted of 10 trials using the ten real-
world data sets described in Table 1.1 (eight from [24] and the bright and dim
galaxy sets from [27]) 1. The basic properties of the datasets are summarized
in Table 1.1. Each dataset is sampled randomly 10 times and each working set
is composed of 10% of the data except the Bright, Dim, and Pima datasets in
which the size of the working set is set to 50 points and rest of the data are used
as the training set. We use the following formula to pick the penalty parameter:

1The continuous response variable in Housing dataset was categorized at 21.5
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Table 1.2 Average Error Results for Inductive and Transductive SVM Methods

Data Set SVM-RLP ÓÔµÖÕÉÑ Local SVM Local ÓÎµSÕ×Ñ 3-NN
Bright 0.02 0.018 0.008 0.006 0.028
Cancer 0.036 0.034 0.06 0.059 0.034

Diagnostic 0.035 0.033 0.039 0.039 0.039
Dim 0.064 0.054 0.042 0.044 0.074
Heart 0.173 0.16 0.257 0.253 0.17

Housing 0.155 0.151 0.118 0.124 0.177
Ionosphere 0.109 0.106 0.117 0.109 0.129

Musk 0.173 0.173 0.092 0.085 0.208
Sonar 0.281 0.219 0.181 0.143 0.171
Pima 0.22 0.222 0.22 0.218 0.264

� p Ø [bÙÛÚºÜÚ Ø g�¸º¹�Ü with Ý p ¢ c ¢S¢ T , � is the size of the training set, and Æ is the size
of the working set. The average working set errors are reported in Table 1.2.
The best result from different models is underlined for each dataset.

Columns two and three of Table 1.2 provide a comparison of the inductive lin-
ear 1-norm support vector machine (SVM-RLP 1.6) with the transductive linear
1-norm SVM optimized used mixed integer programming (Sµ VM-MIP 1.14).
On all ten datasets, the transductive Sµ VM-MIP results are either slightly better
or not significantly different than the inductive results found using SVM-RLP.
Note that all parameters of the formulations are identical; the only difference
between the two formulations is the use of unlabeled data for the transduc-
tive case. For this formulation, unlabeled data seems to help and never hurt
generalization.

Columns 4 and 5 of Table 1.2 compare an inductive version of Local SVM
and the transductive version of Local Sµ VM . In our study, the neighborhoods
of points used by both Local SVM and Local Sµ VM are identical. Thus for each
testing set point the optimization problem solved by local Sµ VM is identical to
the one solved by local SVM once the terms involving the unlabeled data are
removed. This was done to ensure that the introduction of unlabeled data was
the only change in the experiment. But in fact, it means the unlabeled data are
being used to determine the effective size of the neighborhood for Local SVM
which in itself is a form of transduction. Column 6 of Table 1.2 gives results
for the 3-nearest neighbor algorithm. This was done to examine improvements
that occur by simply switching to a local algorithm. Local Sµ VM outperformed
or did as well as Local SVM on eight of the ten datasets, once again supporting
the transductive hypothesis. The improvements cannot be simply attributed
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to a local learning strategy since 3-NN did worse than both Local SVM and
Sµ VM on nine of ten datasets.

Overall, Local Sµ VM was consistently the best or almost the best in our
experiments. Either Sµ VM or the Local Sµ VM obtained the best results on
most of the datasets except Dim and Housing datasets. The results indicate that
using the labeled and unlabeled points in a transduction model can improve
accuracy. Local Sµ VM resulted in better accuracy than Sµ VM on six datasets.
One noteworthy point is that in some cases (Sonar, Musk, Housing, Bright)
Local Sµ VM improved accuracy notably. On Cancer, Diagnostic, Heart, and
Ionosphere the fact that Sµ VM performed best indicates that if the neighborhood
of Local Sµ VM is increased, Local Sµ VM could perform better. The best
method of choosing neighborhoods for local methods is still very much an
open question. The proposed algorithm in this section takes into consideration
only one unlabeled point at a given time. Although there might be many
unlabeled points in a given neighborhood, the algorithm returns the results
only on the test point of interest. The results for other points are basically
discarded. One extension would be keeping these results for a final vote at
the end of the algorithm. In this case, we can assign a probability of class
membership for a certain point. The results from one point can also be used as
starting points to improve the solution time of Local Sµ VM on nearby points.

5. NONCONVEX QUADRATIC APPROACH

An alternative approach to solving the minimum error Sµ VM problem (1.12)
is to convert it into a nonconvex quadratic program. We adapt the approach
used previously to handle disjunctiveness of classification labels within the
bilinear separability [7] and global tree optimization problems [9, 2, 7]. Once
again a decision variable � § is introduced for each point such that at optimality
if � § p T

then the predicted class of
Y § is 1 and if � § p ¢ then the

Y § is predicted
as class -1. The resulting problem is (Sµ VM-QP)

�®� �
w � �b� ��� ¶©� ·©� Ï

�
g
v¦�w[ � v �

gf¸º¹
§ �ºgf¸h[

X � § Å § � X T x � § a È § a �¼� w �
� c �^c _SvÞX

w u Ywvwx t a ��� v y T � v y£¢ { p T ]dcecdcf]`�
w u Y § x tß�¡Å § y T Å § y£¢ ²Ép�� � T ]ecdcdcb]`� �qÆxUX

w u Y § x t a �qÈ § y T È § y£¢q¢U� � § � T
(1.15)

An intuitively simple approach is to adapt a block coordinate descent al-
gorithm (e.g. [8]) which alternates between fixing � and estimating the SVM
weights w

] t and other dependent variables, and optimizing � with the other
SVM variables fixed. In [9], it was shown for a class of problems that includes
Sµ VM-QP (1.15), using 2-norm � w � � such an approach will converge in
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a finite number of iterations to a solution satisfying the minimum principal
necessary optimality conditions. No linesearch is required. The proof in [9]
does require each subproblem be solved to optimality, but this condition can
be relaxed to require only a strict decrease in the objective function. On the
global tree optimization problem [2, 9] , the block coordinate descent algorithm
was found to be very prone to local minima so a tabu search method was used.
When applied to transduction, we also found this simple algorithm to be very
prone to local minima and thus do not report the results here. To improve
the results, we developed a heuristic variation of the block coordinate descent
algorithm. We introduce this algorithm in the following section.

5.1 A DESCENT ALGORITHM FOR
TRANSDUCTIVE SVM

The essential idea behind our heuristic approach is that we start by heavily
penalizing solutions with points falling within the margin and then relax this
requirement in order to find solutions with wider margin. Just as in the basic
block coordinate descent method, we first estimate the labels ( � § ]M²àp�� �T ]dcecdcr]r� �áÆ ) based on our current estimate of the SVM, and then solve Sµ VM-
QP with � fixed. Note that in practice and for easy introduction of nonlinearity
via kernels we solve the dual of Problem (1.15) which for fixed � reduces to
the usual dual SVM problem (Eq. 1.5) tailored for transduction :

�®�Ð�¥
T
�
gf¸º¹
v¦�h[

g�¸º¹
§ �h[

_ v _ §Ö¨ v ¨w§©â XZY v ]`Y § ahx
gf¸º¹
v¦�h[ ¨ v

� c �|c
gf¸Û¹
v¦�w[ ¨ v9_Sv~p ¢
¢ã� ¨ v � � { p T ]dcecdcr]r� �qÆ

(1.16)

where
_ § p �=ä X � § x

[
� a for

²Jpå�}]dcecdcr]r� ��Æ . This process is repeated until
a local minimum is reached. Then the weight on the misclassification error

�
is decreased allowing wider margins. In order to escape from local minima,
the algorithm switches the labels of unlabeled data close to the separating
hyperplane, if necessary. For this purpose, we check the consecutive solutions
to track local minima. If 10 consecutive solutions are the same we assign the
opposite labels to the points satisfying

¬
w u Ywv¦¸h[Dx t ¬ ± Ó . Occassionally

a local minima is found with all points classified in one class (w
p ¢ ). In

this case, the algorithm restarts using the same initial conditions except for a
reduced margin penalty parameter C for the unlabeled data. We empirically
picked

� p Ú[Zæræeç Ø [rÙºÚÛÜ , because it performed well in most cases. To ensure
a good starting solution, the initial label assignments are made based on the
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closest class center for each unlabeled point. The resulting algorithm can be
summarized as follows:

Algorithm 5..1 Sµ VM-IQP

Find class centers from training points

Assign labels � æ to working set according to the closest class center

Initialization:
{ p ¢ , Ý p ¢ cªè , � p Ú[ZæræÖç Ø [bÙÛÚºÜ , é Àiê s �^Ã Á p ¢ , Ó p ¢ c � c

While
{ ��ë �dY { �^Ã Á �©� {|À s

1. Fix � v and solve Problem 1.15 (or its dual (1.16)) to find (w
v¦¸w[^] t v¦¸w[i] � vZ¸h[ ,Å v¦¸h[^] È vZ¸h[ ).

2. Fix (w
v¦¸h[ ] t v¦¸h[ ] � v¦¸w[ ] Å v¦¸h[ ] È v¦¸w[ ) and solve Problem 1.15 for � v¦¸h[ c

3. Check convergence criteria

– If solution is same as the previous one
then counter=counter +1 and Ý p ÝÉäA¢ cªè
else if there exists no point within margin
then stop
else let é Àiê s �^Ã Á p ¢

– if é Àiê s �^Ã Á�¤£T ¢ then let é Àiê s �|Ã Á p ¢ and assign the opposite
labels to the points satisfying

¬
w
v¦¸h[ u Yìx t v¦¸h[ ¬ ± Ó

– if solution is all-in-one-class then reassign initial conditions
except

{
and let Ýhä p ¢ cíè

4.
{ p { � T

As a benchmark for transductive SVM, we report results from SVM-Light
proposed by Joachims in [19, 18]. Transductive SVM-Light also can be viewed
as a block coordinate descent algorithm that alternates between estimating the
class labels and optimizing the SVM based on those labels. Transductive
SVM-Light has an inner and an outer loop. The outer loop adjusts the penalty
parameters on misclassification errors. Different errors are used for the un-
labeled data according to their estimated class labels. After initial inductive
iteration, the algorithm starts with low penalty terms for unlabeled data. Two
penalty terms (

� çÙ ] � ç¸
) are used in transductive SVM-Light, each for classi-

fying an unlabeled point as a class -1 or a class 1 object respectively. Then it
uniformly increases the influence of unlabeled data up to a user-defined penalty
level. During this phase, the algorithm tunes these penalty terms in a way to
satisfy a user-defined bias in data. The inner loop optimizes the SVM for the
given penalties. The inner loop switches the labels of two given points, if such
an action reduces the overall error. Like Sµ VM-IQP, SVM-Light alternates
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Table 1.3 Average Error Results for Transductive and Inductive Methods

Data Set SVM-QP SVM-Light Sµ VM-IQP
Heart 0.16 0.163 0.1966

Housing 0.1804 0.1608 0.1647
Ionosphere 0.0857 0.1572 0.0943

Sonar 0.1762 0.2524 0.1572

the labels to avoid local minima. The primary difference is that SVM-Light
changes the signs of at most two points at a time. Another difference is SVM-
Light uses different margin penalty parameters for class 1 and class -1 objects.
In addition, unlike Sµ VM-QP, it starts with lower values for margin penalty
parameters. Details of SVM-Light and successful results on large datasets can
be found in [19]. We use the default parameter options in our experiments with
SVM-Light.

5.2 S Ò VM-IQP RESULTS

In this section we compare Sµ VM-IQP with SVM-QP (Eq. 1.5) and trans-
ductive SVM-Light. We use same datasets as in the previous section. Due
to the long computational times for Sµ VM-IQP and transductive SVM-Light,
we limit our experiments to only the Heart, Housing, Ionosphere, and Sonar
datasets. Linear kernel functions are used for all methods used in this sec-
tion. The results given in Table 1.3 show that using unlabeled data in the
case of datasets Heart and Ionosphere affects generalization ability slightly but
the difference between the best transductive result and SVM-QP (Eq. 1.5) is
not statistically significant. In the other two cases (Housing and Sonar), the
best transductive method outperforms SVM-QP significantly. On two datasets
Sµ VM-IQP performs significantly better than transductive SVM-Light and in
one case (Housing) the difference between two methods is not statistically
significant.

As indicated above, the results from both Sµ VM-IQP and SVM-Light are
inconclusive. Both algorithms are much more expensive than their inductive
versions. From the results on the Mixed Integer Programming Approaches we
know that transduction can improve learning. We speculate that the reason that
these improvements were not found using Sµ VM-IQP and SVM-Light is that
the optimization problem is very difficult and that the methods are failing to
find the global minima. We know from the prior experiments that there is very
little room for improvement on these specific learning tasks. Very few local
minima will lead to better generalization. Sµ VM -MIP and its local version are
finding globally optimal solutions that are better. From the results on SVM-



Optimization Approaches to Semi-Supervised Learning 17

Light reported in [19] we know that on larger problems in text categorization,
transductive inference using SVM-Light did lead to significant improvements.
So on different learning tasks Sµ VM-IQP may perform better as well. We
speculate that on problems where there are many local minima that improve
generalization, it is not as essential that the global minimum be found. Further
studies are needed to identify when methods that find good but not globally
optimial solutions are sufficient. Note that nonlinear kernels also might result
in better generalization.

6. CONCLUSION

We examined mathematical models for semi-supervised support vector ma-
chines (Sµ VM). We proposed a general Sµ VM model that minimizes both the
misclassification error and the function capacity based on all the available data.
Three different functions for penalizing unlabeled points falling in the margin
were discussed. Our computational investigation focused on the minimum error
formulation for the transductive inference problem. We converted this problem
to a mixed-integer program that can be exactly solved using commercial integer
programming packages. By using the MIP formulation with a local learning
algorithm, a powerful scalable transductive inference method was created. Our
computational experiments found that the local learning method was the most
effective overall. Further studies are needed to determine how to best select
neighborhoods and to choose the parameters within the local Sµ VM-MIP. In
addition, very efficient computational methods for the local Sµ VM-MIP are
needed. One possibility is to use the estimated labels and models for one point
as a starting point for other points. We also examined a noncovex quadratic op-
timization approach to Sµ VM. Our computational studies were less conclusive
using this approach. The best optimization approach for solving this problem
is still very much an open question.
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