
FROM GENE EXPRESSION TO
MOLECULAR PATHWAYS

THESIS SUBMITTED FOR THE DEGREE OF “DOCTOR OF PHILOSOPHY”
BY

Dana Pe’er

SUBMITTED TO THE SENATE OF THE HEBREW UNIVERSITY

NOVEMBER 2003

This work was carried out under the supervision of

Nir Friedman

ii

Abstract

Molecular networks involving interacting proteins, RNA, and DNA molecules, underlie the major
functions of living cells. DNA microarrays probe how the gene expression changes to perform
complex coordinated tasks in adaptation to a changing environment at a genome-wide scale. In this
dissertation we address the challenge of reconstructing molecular pathways and gene regulation
from gene expression data. Our goal is to automatically infer regulatory relations between genes,
as well as other types of molecular interactions. To answer this challenge, we develop probabilistic
graphical models of the biological system. We offer three such models and algorithms to automat-
ically learn these from gene expression data. Our models and learning algorithms are based on
the assumption that statistical correlation might indicate molecular or genetic interaction. We offer
systematic evaluation for each of the methods presented culminating in experimental validation of
novel predictions, automatically generated by one of our models.

Acknowledgements

I would like to express my deepest gratitude to my mentor, Nir Friedman. Nir is a genuine role
model, and while I have had many teachers, Nir’s mark is the most profound. Nir initiated me
into the discipline of machine learning in graphical models and continuously taught me the most
important scientific skills: how to dive deep into messy data and surface with simple models that
address the question at hand, always striving to understand the connection between data, model and
reality. Few have these skills and I was privileged to learn from a true master, I leave Nir with much
yet to learn. Nir’s contribution to the research in this thesis is fundamental, from the basic idea of
coupling Bayesian networks with gene networks to little comments that made my presentation so
much clearer.

I have spent a total of ten terrific years as a student at the Hebrew University and this has been a
significant chapter in my life. During this time, many teachers have molded me into the researcher
I am today. I would like to thank Avi Wigderson for patiently teaching me the rigors of problem
solving. Avi is a mental giant and I was most privileged to brainstorm with him and learn how he
takes a hard problem apart into little bits he can understand. I would like to thank Shmuel Peleg for
teaching me that resarch should first and foremost be fun. Shmuel taught me that if one does not
find enjoyment and passion in the problem at hand, it is probably the wrong problem to be working
on. I rarely left his office without a smile. I was especially fortunate to an adopting “mother” and
“father”, Daphna Weinshall and Noam Nisan, in the Computer Science department. While never my
official mentors, they took me under their wing, providing guidance, many rewarding discussions
and emotional support. In addition, I would like to thank Noam for bringing to my attention α-
modular functions and their connection to the MinReg algorithm. I would like to thank Daphna for
actively fighting to make my years at the university more comfortable, be it easing the prerequisites
when I transferred from mathematics or easing my TA workload as a new mother.

Good science is always the joint effort of many people and the research in this thesis is no
exception. This thesis could never have happened without Aviv Regev, my scientific partner, biology
tutor and dearest friend. My research is the result of a close and synergistic collaboration with Aviv,
working with whom is an absolute joy and pleasure. Aviv transformed me from a naı̈ve computer
scientist to semi-biologist teaching me so much more than biology along the way. In addition to
sharing her wisdom and many unique insights, Aviv gave me endless support and backing. During
the toughest and lowest points, Aviv was always there to stop me from quitting by infecting me with
her energetic enthusiasm and leading me to believe in myself. There are simply no words to express
my gratitude to her.

I would like to give many thanks to all my co-authors on the works presented here. Michal
Linial, the first biologist who dared believe our ideas might have merit. Iftach Nachman, who
shared with me the first steps of this research. Gal Elidan, who brought order and efficiency to the
chaos in which I was used to be working in. It was a wonderful pleasure to work with Amos Tanay
on our ‘underground’ MinReg project, and the speed in which he programmed some of our ideas
never ceased to surprise me. Amos has great scientific vision and I cherish the many hours we spent

ii

brainstorming over coffee.

My intense collaboration with Eran Segal has been very fruitful and lead to great science. Eran,
I very much admire your ability and stamina. I feel very priviliged to have worked with Daphne
Koller, a brilliant scientist; I learned much from our many insightful discussions.

Lots of thanks to all my lab mates at the Computational Biology group and the Machine Learn-
ing group at the Hebrew university. It was marvelous to belong to a group with such great academic
cooperation and social atmosphere; Full of seminars, reading groups, or just hallway discussions;
Beach parties, dinners, and hiking trips. Specifically, I would like to thank my office mate Matan
Ninio, who fed me well, almost as often as he distracted me. Matan was always helpful from the
countless times he aided me with system related issues, to the laborious work of printing this thesis
and submitting it for me.

I would also like to thank the many people who gave me the support and technical backing
so I could focus on my research. I thank the Ministry of Science, Israel, for the Eshkol fellowship
awarded to me and the Higher Education Council, Israel, for additional financing. I thank the System
group at the Computer Science Department for the consistently providing the best and most reliable
computer support possible. I thank the administrative staff at the Computer Science department for
all their help and support, shielding me from the bureaucratic jungle that laid beyond our department.
I would also like to thank Laura Garwin. Some times help comes unexpectedly, when my laptop
crashed at critical stages of writing this thesis, Laura (at the time a stranger) out of pure kindness
and generosity, lent me her personal laptop and hosted me in a wonderful office at the Bauer Center
for Genomic Research.

During the course of my PhD. studies, the two most important events of my life occurred, the
Births of Inbar and Carmel. I would like to thank my two most beloved daughters for distracting
me and granting me joy and happiness of a magnitude I never knew before. I apologize to them,
it is Inbar and Carmel that have paid the heaviest price for this thesis, during the endless hours I
worked away from them. I hope you understand and forgive. I thank Rocha, my mother-in-law for
the countless hours she took care of the girls, giving me more time to work. While Rocha was with
my girls, I could peacefully work, knowing they were getting the best of love and care. I thank my
brother Michael for caring so much and for his constant reminders that there is so much more to life
than research. I would like to thank Bat-Sheva for being available at any hour of the day or night
for a relaxing walk and an opportunity to wind down.

I am grateful to both my parents, Mara and Aaron, for being such wonderful and supportive
parents. They nurtured my curiosity, creativity and passion for understanding from the earliest age.
I started my studies in the Mathematics department at the Hebrew university where both my parents
met and the completion of this thesis gives me a great feeling of fulfillment. Dad, thank you for
attempting to teach me Cantor’s diagonal proof from preschool (that was a wee bit early), carefully
correcting the English for this entire thesis and everything in between. Mom, you have and will
always be my role model, you are my very inspiration to excel, I aspire to be like you.

Last, I dedicate this thesis to my better half, Itsik. I am endlessly indebted and grateful to Itsik

iii

for everything. My love, thank you for helping me in all aspects of my research. I thoroughly
enjoyed our scientific discussions that occurred at all times of the day and in all forms of dress.
Many of your comments have been invaluable to my work. Thank you for your help with all my
manuscripts including this one. Thank you for your unconditional love in my worse moments and
for being a strong pillar of support in most desperate moments. Thank you for making my victories
more memorable by sharing them with you, this victory could have never happened without all your
encouragement and help.

iv

Contents

1 Introduction 1

1.1 Biological Background . 1

1.2 Microarrays . 3

1.3 Previous work . 4

1.4 Our approach . 5

1.5 Road Map . 6

2 Bayesian Networks Primer 8

2.1 Model Semantics . 9

2.2 The Graph structure: Independence, Dependence and Causality 12

2.2.1 d-separation . 12

2.2.2 Equivalence Classes . 14

2.2.3 Causality . 17

2.3 Learning Bayesian Networks . 18

2.3.1 Parameter Estimation . 19

2.3.2 Structure Learning . 22

3 Bayesian Network Models for Biological Interactions 28

3.1 Overview . 28

3.2 Illustrative Example . 29

3.3 Extracting Features . 30

3.4 In Silico Experiment . 32

3.5 Biological Features . 34

3.5.1 Gene Mates . 34

3.5.2 Separators . 38

3.5.3 Hubs . 39

v

3.6 Subnetworks . 41

3.6.1 Constructing Subnetworks . 42

3.6.2 Biological Subnetworks . 44

3.7 Systematic Evaluation . 46

3.7.1 Statistical Robustness . 47

3.7.2 Comparison to Literature . 49

3.7.3 Comparison to Other Methods . 51

3.8 Discussion . 54

4 Computational Methods for Learning Bayesian Networks 56

4.1 The “Sparse Candidate” Algorithm . 56

4.1.1 Outline of Algorithm . 57

4.1.2 Choosing Candidate Sets . 58

4.1.3 Learning with Small Candidate Sets . 60

4.1.4 Empirical Results . 64

4.2 Modeling Mutations . 64

4.2.1 Modeling an Intervention . 65

4.2.2 Scoring with Mutations . 67

4.2.3 Inferring causality with mutational data 69

4.2.4 Empirical results . 72

4.2.5 Discussion . 76

5 Focusing on Regulation - MinReg 77

5.1 A Regulation Graph . 77

5.2 Learning . 79

5.2.1 Optimization Problem . 80

5.2.2 MinReg Algorithm . 82

5.3 Technical Details . 83

5.3.1 Performance Guarantee . 83

5.3.2 MinReg Implementation . 85

5.4 Annotating Regulators . 87

5.5 Biological Results . 89

5.6 Systematic Evaluation . 93

5.6.1 Robustness and Cross Validation . 93

5.6.2 The Importance of Candidate Regulators 95

vi

5.6.3 Simulated Data . 96

5.7 Discussion . 97

6 Module Networks - Reconstructing Regulatory Modules 98

6.1 From Bayesian Network to Module Network . 99

6.2 From Module Network to Regulatory Module . 100

6.2.1 Algorithmic Overview . 102

6.3 Biological Results . 104

6.3.1 Selected Modules . 104

6.3.2 Global View . 107

6.3.3 Experimental Validation . 110

6.4 Definition and Scoring . 112

6.4.1 Formal Definition . 112

6.4.2 Bayesian Scoring . 114

6.4.3 Likelihood Function . 114

6.4.4 Priors and the Bayesian Score . 116

6.5 Learning Algorithm . 117

6.5.1 Structure Search Step . 117

6.5.2 Module Assignment Search Step . 118

6.5.3 Algorithm Summary . 121

6.5.4 Learning with Regression Trees . 121

6.6 Systematic Evalution . 123

6.6.1 Cross Validation . 123

6.6.2 Gene Assignments . 123

6.7 Discussion . 125

7 Discussion 127

7.1 Summary . 127

7.2 Comparing the Methods . 128

7.3 From Gene Expression to Transcriptional Regulation 130

7.4 Future Prospects . 136

Bibliography 138

vii

viii

Chapter 1

Introduction

Molecular networks involving interacting proteins, RNA, and DNA molecules, underlie the major
functions of living cells. Different metabolic, signaling and transcriptional levels are integrated
to maintain a working cell. Deciphering the organization of molecular networks, their function
and behavior under different conditions is a major goal of molecular cell biology. The availability
of complete genomic sequences, combined with robotics, computing and material sciences, has
lead to the development of high-throughput assays that probe cells at a new, genome-wide, scale.
For instance, DNA microarrays [55, 90] can measure the mRNA levels of an entire genome in a
single experiment. A major promise of such high-throughput methods, is that they will enable us to
reconstruct how tens of thousands of genes and proteins work together in interconnected networks
to orchestrate the basic functions of life.

In this dissertation we address the challenge of reconstructing molecular pathways and gene
regulation from gene expression data. Our goal is to automatically infer regulatory relations be-
tween genes, as well as other types of molecular interactions. To answer this challenge, we develop
probabilistic models of the biological system. A model is a simplification of the underlying system
that captures the primary phenomena we are interested in and explains how these lead to the ob-
servations we make through our assays. We focus on probabilistic models that use stochasticity to
account for measurement noise, variability in the biological system, and aspects of the system that
are not captured by the model. In this thesis we formulate a number of such models, develop algo-
rithms to learn the structure of these models from data and provide a systematic biological analysis
for our resulting models.

1.1 Biological Background

We begin with a brief overview of the basic concepts of molecular biology - the interested reader
is referred to molecular biology textbooks [2] for more information. Cells are the fundamental
working units of every living system. To a large extent, cells are made of proteins, which determine
the shape and structure of the cell. In addition, other proteins serve as machines that perform many

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: The central dogma of molecular biology

of life’s functions, including molecular recognition and catalysis.

DNA is the organism’s blueprint, it contains the instructions for the synthesis and regulation
of proteins. Instructions for a particular protein is coded on a segment of DNA called a gene. The
central dogma of molecular biology states that information flows from DNA through RNA to protein
(see Figure 1.1). Thus, protein is synthesized from DNA in the following two step process:

1. DNA → RNA: Transcription is the process by which RNA polymerase copies a gene unto
mRNA (messenger RNA) sequence using the DNA sequence as a template. This process by
which a genes are transcribed into mRNA, present and operating in the cell, is termed gene
expression.

2. RNA → Protein: In the subsequent process, called translation, a protein factory call ribo-
some, synthesizes the protein according the information coded in the mRNA.

A key observation is while each cell contains the same copy of the organism’s DNA, the gene
expression(and subsequently protein expression) can drastically vary, both temporally and spatially.
To control gene expression, specialized proteins called transcription factors bind to the DNA and
either enhance or inhibit the transcription of specific genes. These transcription factors often work
together in different combinations, to ensure the correct amount of each gene is being transcribed.
We note that transcription factions are themselves proteins and are thus subject to transcriptional
control.

Transcription factors are by no means the only control over gene expression. Biological regu-
lation is extremely diverse and involves different mechanisms at many layers: Before transcription

1.2. MICROARRAYS 3

occurs, proteins regulate the structure of the DNA itself and determine whether a transcription fac-
tor can bind to the gene specific regulatory sites or not. Once the mRNA molecule is transcribed,
other mechanisms regulate its editing and transport to the ribosome, thus controlling whether it
gets translated into protein or not. For a given gene, the total amount of mRNA is regulated not
only by transcription (creation) of mRNA, but also regulated by the degradation of mRNA. Reg-
ulation continues even after the protein is translated: a large part of biological regulation is via
post-translational modifications that determine a protein’s activity.

1.2 Microarrays

In recent years, technical breakthroughs in spotting hybridization probes and advances in genome
sequencing lead to development of DNA microarrays, which consist of many species of probes, ei-
ther oligonucleotides or cDNA, that are immobilized in a predefined organization to a solid surface.
By using DNA microarrays researchers are now able to measure the abundance of thousands of
mRNA targets simultaneously [26, 64], providing a “genomic” viewpoint of gene expression.

Microarray technology is based on DNA hybridization: a process in which a DNA strand binds
to its unique complementary strand. A set of probes (known sequence) are fixed to a surface and
are placed in interaction with a set of fluorescently tagged targets (unknown sequences). After
hybridization, the fluorescently lit spots indicate the identity of the targets and the intensity of the
fluorescence signal is in correlation to the quantitative amount of each target. Due to different
hybridization affinities between clones and the fact that an unknown amount of cDNA is fixed
for each probe, we cannot directly associate the hybridization level with a quantitative amount
of transcript. Instead cDNA microarray experiments compare a reference pool and a target pool.
Typically, green is used to label the reference pool, representing the baseline level of expression
and red is used to label the target sample in which the cells were treated with some condition of
interest. We hybridize the mixture of reference and target pools and read a green signal in case our
condition reduces expression level and a red signal in case our condition increases expression level
(see Figure 1.2).

A genome wide measurement of transcription is called an expression profile and provides us
with a complete list of genes whose transcription level is effected in our condition. Biologically
speaking, what we measure is how the gene expression of each gene changes to perform complex
coordinated tasks in adaptation to a changing environment. In our context, while transcriptional
regulation directly changes the measured mRNA levels, other factors such as proteins and their
activity, are not observed by microarrays. Furthermore, due to biological variation and a multi-step
experimental protocol, these data are very noisy, and fluctuate up to two-fold between repeated
experiments.

In order to obtain a wide variety of profiles, reflecting different active pathways, various per-
turbations (e.g. mutations [51]) and treatments (e.g. heat shock [40]) are employed. The outcome
is a matrix associating for each gene (row) and condition (column), the expression level. In our

4 CHAPTER 1. INTRODUCTION

Reference DNA Target DNA

Label

Hybridize

Figure 1.2: An image of a microarray. Each spot represents a different gene.

setting, this expression matrix contains thousands of gene and hundreds of conditions. Our goal is
to uncover molecular interactions, most notably regulation, from these data.

1.3 Previous work

The first attempts to analyze these data identified a list of differentially expressed genes for each
condition or treatment. Since current technology is very noisy and typical datasets contain only 2-5
repeats of each condition, even this simple task is not trivial. Early works [49] defined differential
expression as a two-fold or greater change in expression. Developing statistically robust tests to
determine which genes are differentially expressed remains an active area of research.

Currently, the most popular analysis method is clustering. Clustering of the genes is used to
identify sets of genes that behave similarly (i.e. have similar expression patterns) over a set of ex-
periments [3, 30] (see Figure 1.3). Clustering provides an intuitive way to organize and visualize of
the data. Furthermore, clustering facilitates in the functional annotation of uncharacterized genes.
If an uncharacterized gene belongs a cluster dominated by genes of some function, the unknown
gene could possibly have a similar function. While clustering has successfully expanded our under-
standing in important biological processes (including cell cycle [30], cancer [3], metabolism [51]),
it does not address our challenge to uncover the underlying gene network of interactions.

Previously, a number of regulatory models have been suggested. The most realistic of such
models are stochastic networks [68]. While these directly model many of the actual details of the
regulatory machinery, they are extremely complex and can only deal with small scale networks. For
more global applications, simplified and abstract models are required. A few such models have been
suggested, all based on the following basic idea: The regulatory network is a directed graph G. Each
node in G corresponds to a specific gene that behaves according to some deterministic function of
its parents in G. These include: Boolean network models [89, 1], where each gene is either on or

1.4. OUR APPROACH 5

clustering
G

en
es

Experiments

Figure 1.3: Clustering gene expression data: Each row corresponds to a gene and
each column corresponds to a microarray sample, i.e., all the spots on the microar-
ray in Figure 1.2 appear as a column in this figure. To the left is the unclustered
input matrix. To the right is the matrix after clustering reordered the rows and
columns.

off depending on some boolean function of its parents. Linear models [99, 27], where each gene is
modeled as a continuous linear function of its parents. In order to simplify the complexity of such
models, it is typically assumed that G is acyclic and of bounded indegree. While these methods
have had partial success on simulated data, none of them have had any success when applied to real
biological data.

1.4 Our approach

Recall, our goal is to reconstruct molecular networks representing processes such as gene regula-
tion. To answer this challenge, we adopt a systems perspective of the cell and its components, and
attempt to build models of this system. Our measurements observe the system at different states,
which can be defined in terms of the concentration of active proteins and metabolites in the various
compartments, the concentration of different mRNA molecules in the cytoplasm, etc. Our basic
assumption is that the components in the cell do not work in isolation. Rather they effect each other
through a wide variety of interactions. The key point being, that the components effect each other
in a consistent fashion, Thus, if we consider a random sampling of the system, some states are more
probable than others. For example, Gal4 is a transcription factor which strongly activates the galac-
tose pathway genes, therefore if Gal4 is overexpressed in some state, it is likely that other galactose
pathway genes are also overexpressed.

We treat measurements of the cell’s components (e.g. gene expression measurements) as ran-
dom variables and thus the likelihood of a cell state can be specified by the joint probability dis-
tribution on these variables. By representing measurements as random variables, to account for

6 CHAPTER 1. INTRODUCTION

measurement noise, variability in the biological system, and aspects of the system that are not cap-
tured by the model.

In this dissertation, due to issues of data availability, we only observe the level of mRNA ex-
pression for each of the genes. Therefore, we resort to a partial view which projects the activity of
the entire cell onto gene expression profiles. In our model, each gene is associated with a random
variable that represents the measurement of its expression. We use the term genes, interchangeably,
to represent both the biological genes and the random variables that represent them in our model.
We stress that the basic approach described here for gene expression data can be easily extended
to other data types (e.g. protein levels) as these become available. For example, when more di-
rect measurements of transcription factor activity become available, these be easily incorporated as
random variables in the model and can greatly enhance the resulting reconstruction.

Our goal is to estimate the joint probability distribution over gene expression and understand
its structural features from data. Our reconstruction of pathway structure is based on the follow-
ing idea: molecular interactions between the genes sometimes generate corresponding statistical
dependencies between the random variables that represent them. Using Gal4 as an example: Gal4
activates the transcription of other galactose genes, thus creating a correlation in their expression.

The learning algorithms presented in this dissertation detect consistent statistical dependencies
and reconstruct a model that explains them, i.e., a model that could have generated the observed
data. Our approach is global: we fit a model to data by studying the joint probability distribution
over the entire gene set. Once we define such a model, its interpretation is as important an issue
as the learning algorithm. An important question that will be repeatedly addressed throughout the
dissertation is: What type of molecular relations create statistical dependencies in gene expression
profiles?

A large part of this dissertation focuses on regulatory relations. Our ability to detect regulatory
relations relies on the assumption that the gene expression profile of the regulators provides evidence
as to their activity level. In order to capture a regulation event in gene expression data, we must
observe concordant changes in the expression of both the regulator and its targets. While this is not
always the case, we shall demonstrate that in many cases, this approach is capable of automatically
reconstructing regulatory relations from gene expression profiles.

1.5 Road Map

In this dissertation, we present three different methods that infer molecular interactions and regu-
lation from gene expression data. All three methods rely on the same assumption that statistical
correlation might indicate molecular or genetic interaction. While these methods were designed for
the the gene expression domain, each method is based on novel learning techniques that are applica-
ble to other domains (e.g. documents or stock data). Evaluating these methods is not a trivial task:
Since gene network reconstruction is a newly emerging field, there are no established benchmarks,
nor known ground truth to which to compare to. Therefore, we emphasize the task of devising

1.5. ROAD MAP 7

systematic evaluations for our methods.

Chapter 2 is a tutorial on the technical background for this dissertation, providing both defini-
tions and algorithms for the task of learning Bayesian networks. An intuitive description of Bayesian
networks and how they can be used to model biology is presented in Section 3.2. Chapter 3 lays the
foundations of our approach and describes how Bayesian networks can be tailored to analyze gene
expression data. The method described infers detailed interactions of all types including transcrip-
tional, signalling and metabolic. Parts of this chapter were published in Friedman et. al. [36] and
Pe’er et.al. [76]. Chapter 4 provides details of the technical developments that solve two practical
difficulties that arise when adapting Bayesian networks to the gene expression domain. Chapter 5
describes a specialized Bayesian network and learning algoirhm designed to focus the learning on
regulatory relations between genes. Namely, using gene expression data, we demonstrate how to re-
construct regulatory relations on a global scale. This chapter is based on Pe’er et.al. [77]. Chapter 6
proposes a unified probabilistic framework that combines the best of both clustering and network
modeling. This framework identifies modules of co-regulated genes, their regulators, and the shared
regulation program that governs their behavior. These methods culminate in experimental validation
of our method’s predictions. This chapter is based on Segal et.al. [82, 81].

Chapter 2

Bayesian Networks Primer

Our goal is to model biological gene interactions derived from expression data. We believe that it
is essential for such a model to be of a probabilistic nature for the following reasons. First, gene
expression measurements are inherently noisy, and thus a probabilistic approach is required for
robust analysis. Second, molecular biology is in itself a stochastic process. Finally, gene expression
measurements provide only a partial picture of the state of the cell; many important parameters (e.g.
phosphorylation state of a regulating protein) are, unfortunately, not revealed by gene expression
measurements. A probabilistic model can handle uncertainty in such unobserved events. This
thesis will present a number of probabilistic models for molecular networks based on the language
and formalism of Bayesian networks [73]. This chapter will present the basic foundations of this
formalism.

Bayesian networks provide a compact graphical representation of the joint probability distri-
bution over X = (X1, . . . , Xn). Even for binary-valued variables, the joint distribution requires
specification of the probabilities for the 2n different assignments to X1 . . .Xn. The key property
of Bayesian networks is that they permit an explicit encoding of conditional independencies in a
natural manner. These independencies can be used to represent such high dimensional data in a
compact manner. Furthermore, these independencies are modeled using a qualitative graph struc-
ture that might correspond to structural aspects in the domain of interest. Therefore, the structural
relations in the Bayesian network can be used to infer interactions between the different variables
in the domain of interest.

In this chapter we will provide a brief overview of the formalism of Bayesian networks and the
algorithms to learn such models from observed data. We begin with a number of notations. Consider
a finite set X = {X1, . . . , Xn} of random variables where each variable Xi may take on a value xi

from the domain Val(Xi). In this thesis, we use capital letters, such as X,Y,Z , for variable names
and lowercase letters x, y, z to denote specific values taken by those variables. Sets of variables are
denoted by boldface capital letters X,Y,Z, and assignments of values to the variables in these sets
are denoted by boldface lowercase letters x,y, z.

At the core of Bayesian networks is the notion of conditional independence. We explain this

8

2.1. MODEL SEMANTICS 9

concept using the following example from classical genetics. Assume we are studying a certain
mutation that appears in the Springfield population at a frequency of 0.001. If we sample a random
resident of the city, we have Pr(Bart Simpson has mutation)= 0.001. Now, assume that we know that
Bart’s “Grandpa” (on his mothers side) has the mutation. In this case, Pr(Bart has mutation given
Grandpa has mutation)= 0.25. Grandpa’s genotype was informative towards Bart’s genotype, the
two genotypes are clearly dependent. Now we learn the additional information that Marge (Bart’s
mother) has the mutation too. In this case, Pr(Bart has mutation given Marge and Grandpa have
mutation) = Pr(Bart has mutation given Marge has mutation but Grandpa does not) = 0.5. Likewise,
if Marge does not have the mutation, the probability Bart has it is 0.001 regardless of whether
Grandpa has the mutation or not. Once conditioned on Marge’s genotype, Grandpa’s genotype does
not affect the probability of Bart’s genotype. In our terminology we say that Bart’s genotype is
conditionally independent of Grandpa’s genotype given Marge’s genotype.

Definition 2.0.1: We say that X is conditionally independent of Y given Z if

P (X|Y,Z) = P (X|Z)

and we denote this statement by (X ⊥ Y | Z).

2.1 Model Semantics

A Bayesian network is a structured graph representation of relationships between variables. The
nodes represent the random variables in our domain and the edges often represent direct influence
of one variable on another. More importantly, the graph represents conditional independencies
between these variables. We now formally define Bayesian networks.

Definition 2.1.1: [73] A Bayesian network is a representation of a joint probability distribution
consisting of two components. The first component, G, is a directed acyclic graph (DAG) whose
vertices correspond to the random variables X1, . . . , Xn. Let PaXi

denote the parents of Xi in G.
The second component, θ, describes a conditional probability distribution (CPD), P (Xi|PaXi

), for
each variable Xi in X .

Definition 2.1.2: The graph G encodes the Markov Assumptions: Each variable Xi is independent
of its non-descendants, given its parents in G.

∀Xi(Xi ⊥ NonDescendantsXi
| PaXi

)

As an example we will see how a Bayesian network can represent the relations between 5 differ-
ent genes. Assume that A is a transcription factor that binds to genes B and D, B is a transcription

10 CHAPTER 2. BAYESIAN NETWORKS PRIMER

A

B

E

D

C

Figure 2.1: An example of a simple Bayesian network structure. This network structure implies
several conditional independence statements:(A ⊥ E),(B ⊥ D | A,E), (C ⊥ A,D,E | B), (D ⊥
B,C,E | A), and (E ⊥ A,D). The joint distribution has the product form P (A,B,C,D,E) =
P (A)P (E)P (B|A,E)P (C|B)P (D|A)

factor that binds to C and E is a transcription factor that binds to B. Figure 2.1 shows an example
of a Bayesian network structure G that captures these relations. The figure also lists the Markov in-
dependencies it encodes, and the product form (see below) they imply. We can see how the different
relations between the genes are encoded in the graph structure. For instance, B is a function of A

and E, its two regulating transcription factors. The genes B and D are co-regulated and thus their
expression is dependant, but conditioned on their common regulator A, they become independent.

The two components, G and θ, specify a unique distribution on X1, . . . , Xn. By applying the
chain rule of probabilities and properties of conditional independencies, any joint distribution that
satisfies the conditional independence in definition Definition 2.1.2 can be decomposed into the
product form

P (X1, . . . , Xn) =
n
∏

i=1

P (Xi|PaXi
) (2.1)

This is called the chain rule for Bayesian networks. This product form makes a Bayesian net-
work representation of a joint probability compact and economizes the number of parameters. As
an example, consider the joint probability distribution P (A,E,B,C,D) represented in Figure 2.1.
By the chain rule of probability, without any independence assumptions: P (A,E,B,C,D) =

P (A)P (E|A)P (B|A,E)P (C|A,E,B)P (D|A,E, B,C). Assuming all variables are binary, this
representation requires 1+2+4+8+16 = 31 parameters. Taking the conditional independencies
into account P (A,E,B,C,D) = P (A)P (E)P (B|A,E)P (C|B)P (D|A), which only requires
1+1+4+2+2 = 10 parameters. More generally, given n binary variables and G whose indegree
(i.e. maximal number of parents) is bounded by k, then instead of representing the joint distribution
with 2n − 1 independent parameters we can represent it with at most 2kn independent parameters.
The conditional probability distribution (CPD), P (Xi|PaXi

) can be viewed as a probabilistic func-
tion of Xi whose inputs are Xi’s parents in G. In fact, these two dual views of a Bayesian network
are equivalent: any distribution P satisfying the conditional independencies in Definition 2.1.2 can
be encoded as a Bayesian network with structure G and associated CPDs.

2.1. MODEL SEMANTICS 11

A graph G specifies a product form as in Eq. (2.1). To fully specify a joint distribution, we
also need to specify the conditional distributions, P (Xi|PaXi

) for each variable Xi. We denote the
parameters that specify these distributions by θ. When specifying these conditional distributions, we
can choose from almost any computable representation. In this thesis we focus on discrete variables,
though many continuous CPDs have been used for Bayesian networks [36, 37, 42].

The most general representation is a conditional probability table (CPT). Each row in these ta-
bles corresponds to a specific joint assignment paXi

to PaXi
, and specifies the probability vector

for Xi conditioned on paXi
. For example, if PaXi

consists of k binary valued variables, the ta-
ble will specify 2k distributions. This general representation can describe any discrete conditional
distribution. This flexibility comes at a price: The number of free parameters is exponential in the
number of parents.

As an example assume that A and E each weakly activate gene B and together they strongly
activate gene B. Following is an example CPT that represents such a relation.

a e P (b = 0) P (b = 1)

a0 e0 0.96 0.04

a0 e1 0.61 0.39

a1 e0 0.68 0.32

a1 e1 0.07 0.93

Now assume a similar but slightly different scenario. Assume again that A weakly activates B,
A and E together strongly activate B, and without A, E has no affect on B. In this case, the CPT
would look like:

a e P (b = 0) P (b = 1)

a0 e0 0.96 0.04

a0 e1 0.96 0.04

a1 e0 0.68 0.32

a1 e1 0.07 0.93

Notice that the first two rows are redundant, they represent the exact same conditional proba-
bility over B for two different value assignments to PaB . A natural representation that captures
such behavior is a CPD-tree. This is a Context specific CPD, that uses value assignments for only a
subset of PaXi

, to derive P (Xi|PaXi
).

Definition 2.1.3: A CPD-tree for the distribution P (Xi|PaXi
) is a structured CPD that consists of

two types of nodes: decision nodes and leaf nodes. Each leaf node represents a distribution for X .
Each decision node is labeled with a query Y = y? s.t. Y ∈ PaXi

and y ∈ Val(Y). Given a set
of parent assignments, we begin at the root and traverse down the tree in a path that depends on the
answers to the queries along the path. P (Xi|PaXi

) is the probability distribution at the leaf node
reached by such a traversal using the values of PaXi

.

12 CHAPTER 2. BAYESIAN NETWORKS PRIMER

A

E(0.96,0.04)

10

(0.68,0.32) (0.07,0.93)

10

A

E(0.96,0.04)

10

(0.68,0.32) (0.07,0.93)

10

Figure 2.2: An example of a tree-CPD. Each square represents a query on a variable (A and E).
Each edge is annotated with the value of its associated query node. The leaves contain probability
distributions. Notice that when A is off, the value of E does not matter

Usually a path down the tree does not require an assignment to all variables in PaX . This
provides a compact, context specific representation of the CPD, which is suited for biological ap-
plications. If a given transcription factor only activates a target under specific conditions, its value
is irrelevant unless those conditions are met. In our previous example, if E only works when A is
active, we need to query its value only when A = 1. Figure 2.2 gives the associated CPD-tree for
this example.

The tree representation has a number of advantages. It requires less parameters. The context
specific relations can further provide biological understanding. In addition, many automated learn-
ing algorithms [9] exist to construct such trees from data. When the sample size is small, the fact
this representation has less parameters is a crucial for the robustness of the learning.

2.2 The Graph structure: Independence, Dependence and Causality

In this section we discuss different aspects of the Bayesian network structure G. We describe the
relationship between the graph structure and conditional independencies the structure implies. First,
we show how the graph structure can be used to make conditional independence queries. Second,
we introduce the notion of equivalent structures. Finally, we describe the possible implications of
these dependencies on the issue of causality.

2.2.1 d-separation

If we assume that genetic interactions can be modeled by probabilistic dependencies, then we can
use independence queries on the distribution P (X1, . . . , Xn) to infer these genetic interactions.
The Bayesian network structure G greatly facilitates efficient multivariate independence queries.
For instance, the structure X → Y → Z implies that while X and Z are dependent, the variable
Y renders them conditionally independent, (X ⊥ Z | Y). The variable Y explains away the
dependence between X and Z , hinting that the interaction between X and Z is indirect. Thus,
a Bayesian network can be used to distinguish between direct and indirect dependencies. While
this independence statement was easy to infer from the simple sub-structure (X → Y → Z), it

2.2. THE GRAPH STRUCTURE: INDEPENDENCE, DEPENDENCE AND CAUSALITY 13

is natural to ask about queries which relate to variables who are further apart in G. It is possible
to automatically derive such conditional independence relations between such variables from the
graph structure itself.

Before continuing, we present a graph sub-structure that plays a key role both for the notion of
d-separation and for the notion of equivalent graphs.

Definition 2.2.1: [73] A v-structure is an induced sub-graph of the form X → Y ← Z so that no
edge exists between X and Z .

The v-structure implies an interesting set of dependencies. In the previous cases, X and Z

were dependent only when Y was unobserved; in a v-structure, given the value of Y , two possibly
independent variables become dependant. A classic example of such a dependency is from genetics:
Consider random variable Y representing the existence of a rare mutation in some child and and
X,Z representing the existence of the same mutation in each of that child’s two biological parents.
The genotype of each of the parents X and Z is independent of one another. But, if we know
that Y = 1, i.e. the child has the rare mutation, this means one of the two parents must have the
mutation. Now if we are also given that X = 0 we can infer that P (Z = 1|Y = 1, X = 0) = 1 and
given X = 1 we can infer that P (Z = 1|Y = 1, X = 1) = ε. Therefore given the value of Y , the
independent variables X and Z become dependent.

Intuitively, one can view dependence as a property that can “flow” between the nodes represent-
ing X and Y through paths that connect them in the G. For instance, take the example X → Y → Z ,
dependence can “flow” from X to Z through Y , unless Y “blocks” this flow. Since (X ⊥ Z | Y),
the path is “blocked” only when Y is given. In an opposite case X → Y ← Z , dependence can
“flow” from X to Z only if Y is given. We generalize these notions to longer paths. We say the
graph has a trail from X1 to Xn, denoted X1− . . .−Xn. If for every i = 1..n−1, G contains either
Xi → Xi+1 or Xi ← Xi+1.

Definition 2.2.2: Let G be a Baysian network structure and X1 − . . . − Xn be a trail in G. Let
E ⊂ X be a subset of nodes. We say the there is an active trail between X1 and Xn given evidence
E if:

• Whenever we have a v-structure Xi−1 → Xi ← Xi+1 then Xi or one of its descendants are
in E.

• No other node along the trail is in E.

Intuitively this means that the dependence can “flow” through every triplet Xi−1 −Xi −Xi+1.

Definition 2.2.3: [43] Let X,Y,Z be three sets of nodes in G. We say that X and Y are d-separated
given evidence Z, denoted d-sepG(X;Y | Z), if there is no active trail between any node X ∈ X

and Y ∈ Y given evidence Z.

14 CHAPTER 2. BAYESIAN NETWORKS PRIMER

X

Y

Z

Z

Y

X
Z

Y

X

I

X

Y

Z

X

Y

Z

Z

Y

X

Z

Y

X
Z

Y

X Z

Y

X

I

Z

Y

X

II

Z

Y

X

II

X

Y

Z

Z

Y

X

I II

PDAG
X

Y

Z

X

Y

Z

Z

Y

X

I II

PDAG

Figure 2.3: The skeleton X − Y − Z is partitioned into two equivalence classes: I representing
((X ⊥ Y | Z),¬(X ⊥ Z | ∅)) and II the v-structure representing {¬(X ⊥ Y | Z), (X ⊥ Z | ∅)}.

The right pane illustrates the corresponding PDAGs.

Denote Ind(G) be the set of independence statements (of the form X is independent of Y given
Z) that are implied by G. Using this formulation of d-separation we can check if any such condi-
tional independence statement holds using a linear time graph algorithm [73].

2.2.2 Equivalence Classes

More than one graph can imply exactly the same set of independencies. For example, consider the
graphs X → Y and X ← Y , both imply the same set of independencies (i.e., Ind(G) = ∅).

Definition 2.2.4: Two graphs G1 and G2 are equivalent if Ind(G1) = Ind(G2). That is, both graphs
are alternative ways of describing the same set of independencies .

This notion of equivalence is crucial, since when we examine observations from a distribution,
we cannot distinguish between equivalent graphs1 . Pearl and Verma [75] show that we can char-
acterize equivalence classes of graphs using a simple representation. In particular, these results
establish that equivalent graphs have the same underlying undirected graph but might disagree on
the direction of some of the arcs.

Theorem 2.2.5: [75] Two Bayesian network structures are equivalent if and only if they have the
same underlying undirected graph (termed skeleton) and the same v-structures.

For example, the skeleton X−Y −Z can be partitioned into two equivalence classes. One con-
taining three graphs representing ((X ⊥ Y | Z),¬(X ⊥ Z | ∅)) and the v-structure representing
(¬(X ⊥ Y | Z), (X ⊥ Z | ∅)) (see Figure 2.3).

1To be more precise, under the common assumptions in learning networks, which we also make in this thesis, one
cannot distinguish between equivalent graphs. If we make stronger assumptions, for example by restricting the form of
the conditional probability distributions we can learn, to a tree, for example, we might have a preference of one equivalent
network over another.

2.2. THE GRAPH STRUCTURE: INDEPENDENCE, DEPENDENCE AND CAUSALITY 15

Moreover, an equivalence class of network structures can be uniquely represented by a par-
tially directed graph (PDAG) P , where a directed edge X → Y denotes that all members of the
equivalence class contain the directed edge X → Y ; an undirected edge X − Y denotes that some
members of the class contain the directed edge X → Y , while others contain the directed edge
Y → X .

Assume we are given some Bayesian network structure G and wish to derive the PDAG P
representing G’s equivalence class. Since Theorem 2.2.5 states that all equivalent graphs must agree
on their v-structures, it is obvious that we need to orient any edge that participates in a v-structure.
What is less obvious is that there are other edges in the graph that need to be oriented. These are the
edges that form new v-structures when reversed. They can be derived through one of the following
three propagation rules for compelled edges in P (see Figure 2.4):

• Consider the following subgraph X → Y −Z , where no edge exists between X and Z . Each
edge direction between Y and Z defines a different equivalence class. The edge Y ← Z

forms a v-structure, while Y → Z does not. Therefore the edge in the corresponding PDAG
P is compelled to be directed as Y → Z .

• Consider the following subgraph X → Y , Y → Z , and X − Z . If we direct the edge as
Z → X , a cycle is formed. Therefore, to ensure acyclicity, the edge is compelled to be
directed as X → Z .

• Consider the following subgraph X − Y , X −W , X − Z , Y → Z , and W → Z . The edge
X − Z is compelled to be directed as X → Z . Assume that the edge is directed as X ← Z .
Then to avoid acyclicity, the edges Y → X and W → X are compelled, thus forming a new
v-structure.

Given a DAG G, the PDAG representation of its equivalence class can be constructed as follows.
We begin from the underlying skeleton of G and orient all edges which participate in a v-structure.
Then we continue applying the propagation rules of Figure 2.4 until no more subgraphs correspond-
ing to one of the rules exist.

Proposition 2.2.6: If we apply the procedure described above to G, the resulting PDAG represents
the equivalence class of G.

It is interesting to characterize not only the set of reversible edges in a PDAG, but given a
specific DAG, we wish to characterize the set of edges that can be reversed so that the resulting
DAG remains equivalent. The following definition characterizes such edges:

Definition 2.2.7: An edge X → Y is covered in G if PaY = PaX ∪X .

The following clarifies the relation between covered edges and reversible edges: An edge is
reversible if it does not participate in a v-structure and does not create a new v-structure when
reversed. If PaX = PaY = ∅, then the edge X −Y obviously can not involve any v-structures and

16 CHAPTER 2. BAYESIAN NETWORKS PRIMER

X Y Z X Y ZX Y ZX Y Z X Y ZX Y Z

X

Y Z

X

Y Z

X

Y Z

X

Y Z

X

Y Z

X

Y Z

X

Y Z

X

Y

Z

W

X

Y

Z

W

11

22

3

Figure 2.4: Propagation rules for compelled edges After all v-structures are oriented, by iteratively
applying these rules to a PDAG, a representation of the equivalence class is constructed

can be reversed. For any Z ∈ PaY , the edges X → Y and Z → Y do not constitute a v-structure
due to the edge Z → X . If we reverse X → Y then Y → X and Z → X do not constitute a
v-structure due to the edge Z → Y . Notice that if X → Y is covered, then after the reversal the
edge Y → X remains covered as well.

Using the concept of covered edges, Chickering [13] shows that one can transform any structure
G1 to any other equivalent structure G2 via a series of single reversals of covered edges so that all
intermediate graphs remain in the same equivalence class. This transformation greatly simplifies
proving invariant properties of equivalent structures, since it is enough to prove the invariance be-
tween two graphs that only differ in the orientation of a single covered edge. Chickering [13] uses
this characterization to derive an efficient algorithm to identify all compelled edges in a structure.
For a graph with m edges and n nodes, the complexity of this algorithm is O(m log n).

Theorem 2.2.8: [13] Let G1 and G2 be any pair of equivalent graphs. Let ∆(G1,G2) denote the set
of edges in G1 that have an opposite orientation in G2. Then there exists a sequence of |∆(G1,G2)|

distinct edge reversals applied to G1 with the following properties:

• After each reversal, the resulting graph G is equivalent to G1.

• After all reversals, the resulting graph is identical to G2.

• Each edge reversed in G is an covered edge.

2.2. THE GRAPH STRUCTURE: INDEPENDENCE, DEPENDENCE AND CAUSALITY 17

2.2.3 Causality

Recall that, a Bayesian network is a model of dependencies between multiple measurements. How-
ever, we are also interested in modeling the mechanisms that generated these dependencies. Thus,
we want to model the flow of causality in the system of interest (e.g., gene transcription in our
gene expression domain). A causal network is a model of such causal processes. Having a causal
interpretation facilitates predicting the effect of an intervention in the domain: setting the value of a
variable in such a way that the manipulation itself does not affect the other variables.

While at first glance there seems to be no direct connection between probability distributions
and causality, causal interpretations for Bayesian Networks have been proposed [75, 74]. A causal
network is mathematically represented similarly to a Bayesian network, a DAG where each node
represents a random variable along with a local probability model for each node. However, causal
networks have a stricter interpretation on the meaning of edges: the parents of a variable are its
immediate causes.

A causal network models not only the distribution of the observations, but also the effects of
interventions. If X causes Y , then manipulating the value of X affects the value of Y . On the other
hand, if Y causes X , then manipulating X will not affect Y . Thus, although X → Y and X ← Y

are equivalent Bayesian networks, they are not equivalent causal networks.

A causal network can be interpreted as a Bayesian network when we are willing to make the
Causal Markov Assumption: given the values of a variable’s immediate causes, it is independent
of its earlier causes. When the casual Markov assumption holds, the causal network satisfies the
Markov independencies of the corresponding Bayesian network. For example, this assumption is a
natural one in models of genetic pedigrees: once we know the genetic makeup of the individual’s
parents, the genetic makeup of her ancestors is not informative about her own genetic makeup.

The central issue is: When can we learn a causal network from observations? This issue received
a thorough treatment in the literature [47, 75, 91]. We briefly review the results relevant for this
thesis. For a more detailed treatment of the topic, we refer the reader to [74, 19].

First it is important to distinguish between an observation: a passive measurement of our domain
(i.e., a sample from X) and an intervention: setting the values of some variables using forces outside
the causal model (e.g., gene knockout or over-expression). It is well known that interventions are an
important tool for inferring causality. What is surprising is that occasionally, some causal relations
can be inferred from observations alone.

To learn causality, several assumptions have been made. First, a modeling assumption: we
assume that the (unknown) causal structure of the domain satisfies the Causal Markov Assumption.
Thus, we assume that causal networks can provide a reasonable model of the domain. Some of the
results in the literature require a stronger version of this assumption, namely that causal networks
can provide a perfect description of the domain (that is an independence property holds in the
domain if and only if it is implied by the model). The second assumption is that there are no
latent or hidden variables that effect several of the observable variables. Unfortunately the second
assumption does not hold in our domain, thus causal conclusions from our learning procedure must

18 CHAPTER 2. BAYESIAN NETWORKS PRIMER

be treated with caution.

If we do make these two assumptions, then we essentially assume that one of the possible DAGs
over the domain variables is the “true” causal network. However, as discussed above, from obser-
vations alone, we cannot distinguish between causal networks that specify the same independence
properties, i.e., belong to the same equivalence class (see section 2.2.2). Thus, at best we can hope
to learn a description of the equivalence class that contains the true model. In other words, we will
learn a PDAG description of this equivalence class.

Once we identify such a PDAG, we are still uncertain about the true causal structure in the
domain. However, we can draw some causal conclusions. For example, if there is a directed path
from X to Y in the PDAG, then X is a causal ancestor of Y in all the networks that could have
generated this PDAG including the “true” causal model. Thus, in this situation we can recover some
of the causal directions.

2.3 Learning Bayesian Networks

The learning task deals with the following situation: We are given a training set of samples D =

{x[1], . . . ,x[M]} that are independently drawn from some unknown generating Bayesian network
G∗ with an underlying distribution P ∗. Our goal is to recover G∗. Since D is only a small noisy
sample from P ∗, we can not detect, with complete reliability, which dependencies are present in
the underlying distribution. Instead, we search for a relatively simple model, B = 〈G, θ〉 (with few
edges), that was likely to have generated the data, i.e., a B whose underlying distribution is close to
the empirical distribution of the data D.

More precisely, we search for an equivalence class of networks that best matches D. Recall that
all structures in an equivalence class represent the same dependencies and are equally close to the
empirical distribution of D. We can not distinguish between them based solely on the data D. Thus
the best we can hope for is to recover a structure that is equivalent to G∗.

The theory of learning networks from data has been examined extensively over the last decade.
In this thesis we take the score based approach to learning. We define a hypothesis space of potential
network models, introduce a statistically motivated scoring function that evaluates each network
with respect to the training data, and to search for the highest scoring network.

In this section we describe a statistically motivated score and how to find the corresponding high
scoring network. First, we assume that the graph structure G is given and describe an appropriate
score for the CPD parameters θ and a closed form solution for the highest scoring parameters.
Then, we describe an appropriate score for the graph structure itself. Finally, we describe a greedy
algorithmic approach that finds a high scoring network structure.

2.3. LEARNING BAYESIAN NETWORKS 19

2.3.1 Parameter Estimation

Maximum Likelihood Estimation

In this section we assume that the structure of the graph G is known. While this is not a reasonable
assumption for our domain, the theory of parameter estimation is a basic building block for the
structure learning described in Section 2.3.2. First we define when a Bayesian network is good, i.e.,
one that fits the data D? In the Bayesian network learning task we implicitly assume that there is
some Bayesian network B∗ that generated the data D and our goal is to use this data in order to try
to reconstruct B∗. Therefore, a good Bayesian network B is one that is likely to have generated D.
If we assume that G is already known, our task then is to find the conditional probabilities θ which
maximize the likelihood of D.

Definition 2.3.1: We define a likelihood function, L(θ : D), which measures the likelihood of the
data.

L(θ : D) =
M
∏

m=1

P (x[m] | θ)

The idea behind Maximum likelihood estimation is given a dataset D, we wish to choose param-
eters θ̂ that maximize the likelihood of the data:

θ̂ = max
θ

L(θ : D) (2.2)

Eq. (2.2) could potentially be a hard expression to optimize, due to the high dimensionality
of θ and the large number of parameters that need to be concurrently optimized. One of the big
advantages of the Bayesian network representation is that this likelihood decomposes into local
likelihood functions. Not only does this simplify the calculation of the likelihood, more importantly
it renders finding its optimal parameters tractable. Each local likelihood can be optimized in an
independent manner, thus decomposing a complex global problem into smaller sub-problems.

L(θ : D) =
M
∏

m=1

P (x[m])

=
M
∏

m=1

n
∏

i=1

P (xi[m] | paXi
[m] : θ)

=
n
∏

i=1

[

M
∏

m=1

P (xi[m] | paXi
[m] : θ)

]

=
n
∏

i=1

Li(θXi|paXi
: D)

20 CHAPTER 2. BAYESIAN NETWORKS PRIMER

where Li(θXi|PaXi
: D) =

∏M
m=1 P (xi[m] | paXi

[m] : θ) is the local likelihood function for Xi.

In the case of our table CPDs this local likelihood can be further decomposed into simple
tractable form. Suppose we have a variable X with its parents PaXi

, then we have a parameter
θx|u for each combination of x ∈ Val(X) and u ∈ Val(PaXi

). The idea behind the decomposition
is to group together all the instances in which X = x and U = u. We denote M [x,u] to be the
number of instances in which X = x and U = u and M [u] =

∑

x∈X M [u, x]. Then by rearranging
the order of the product we can write

Li(θX|U : D) =
∏

u∈Val(PaXi
)

∏

x∈Val(X)

θ
M [x,u]
x|u (2.3)

Proposition 2.3.2: The maximal likelihood estimation (MLE) for a Bayesian network with multino-
mial table CPDs is given by:

θ̂x|u =
M [x,u]

M [u]
(2.4)

We call the counts M [x,u] and M [u] sufficient statistics. Given these counts, that actual data
instances x[1] . . . x[M] themselves are no longer needed. The sufficient statistics summarize all the
relevant information from the data that is needed in order to calculate the likelihood. Notice that
the optimal parameters are based on the empirical counts observed in our data. Thus optimizing the
likelihood is equivalent to finding the best approximation for the empirical distribution constrained
to the independencies of G.

Bayesian Approach

While the MLE approach seems like a suitable score for measuring the fit of a Bayesian network to
the data, it has a number of disadvantages. Its main drawback is that it tends to overfit the model to
the particular data instance at hand. This problem is critical in our domain, in which the number of
samples is relatively small. We illustrate this problem using an example from the medical domain:
Assume we are performing a study on the effect of smoking on lung cancer. Our sample contains 30
non-smokers, none of which contracted lung cancer. MLE would construct a model that postulates
P(lung cancer=YES | smoker=NO) = 0. We believe that the correct answer is that there is a small
chance for a non-smoker to develop lung cancer, but our small sample did not contain such a case.

We therefore turn to the Bayesian approach, which formulates this concept of prior belief in
a principled manner. The idea is that in addition to the observed data D, we have some initial
distribution, P (θ) termed the prior, which encodes our beliefs regarding the domain prior to our
observations. When we have little prior knowledge of our domain this distribution is often flat and
mostly ensures that every event has some non-zero probability. On the other hand, if we do have
specific belief about our domain, this distribution can be more peaked over certain values.

After we observe some data D we update the distribution P (θ), to reflect the combination of
both our prior belief and observations. This updated distribution, denoted P (θ | D), is called the

2.3. LEARNING BAYESIAN NETWORKS 21

posterior distribution.

P (θ | D) =
P (D | θ)P (θ)

P (D)
. (2.5)

The term P (D), termed the marginal likelihood, averages the probability of the data over all possible
parameter assignments. Since it is a normalizing constant, which is independent of θ, we ignore it
in our score calculations.

Definition 2.3.3: The Gamma function Γ(x) is defined to be an extension of the factorial to real
number arguments. If n is a natural number, then Γ(n) = (n− 1)!. The Gamma function is defined
as the following integral:

Γ(x) =

∫ ∞

0
tx−1e−xdt (2.6)

In this thesis we use the Dirichlet priors [25] for multinomial distributions. A Dirichlet prior is
specified by a set of hyperparameters αx1|u, . . . αxK |u, one such hyperparameter corresponding to
each xj ∈ Val(X). The Dirichlet distribution is specified by:

P (θ) = Dirichlet(αx1|u, . . . αxK |u) =
Γ(α∗)

∏

l Γ(αxl|u)

∏

j

θ
α

xj |u
−1

xj |u
(2.7)

where Γ is the Gamma function and α∗ =
∑

j αxj |u. One can view α∗ as our effective sample size,
that is we assume that our prior is based on α∗ observations. This reflects how strongly we believe
in our prior. As we accumulate more samples in D, the effect of the prior on the posterior grows
weaker.

Dirichlet priors have a number of desirable properties; they satisfy global parameter indepen-
dence and local parameter independence. This means that the prior decomposes into a product of
independent terms in a similar manner to the decomposition of MLE.

Definition 2.3.4: A parameter prior P (θ) is said to satisfy global parameter independence if it
decomposes into the following form

P (θ) =
n
∏

i=1

P (θXi|Pai
)

Definition 2.3.5: Let X be a variable with parents U, we say the prior P (θX|U) has local parameter
independence if P (θX|U) =

∏

u P (θX|u)

We say that the prior P (θ) satisfies parameter independence if it satisfies both global and local
parameter independence.

22 CHAPTER 2. BAYESIAN NETWORKS PRIMER

In addition, Dirichlet priors are conjugate priors, that means that the posterior has the same
functional form as the prior. This property provides an intuitive interpretation for the hyperparame-
ters. One can view αx|u as imaginary counts, meaning prior to observing D we “observed” X = x

and Pax = u, αx|u times.

Proposition 2.3.6: If P (θ) is Dirichlet(αx1|u, . . . , αxK |u), then the posterior P (θ | D) is Dirichlet(αx1|u+

M [x1,u], . . . , αxK |u + M [xK ,u]) where M [x,u] is the sufficient statistics derived from D.

Even when our prior is flat, the full affect of the Bayesian approach comes to play when pre-
dicting the probability of future samples. In the Bayesian approach the probability of a future
observation is not calculated based on only one set of parameters, but using the expectation over the
entire distribution of parameters. Thus the probability of a new sample X[M + 1] is:

P (X[M + 1] | D) =

∫

P (X[M + 1] | D, θ)P (θ | D)P (θ)dθ (2.8)

When we use table CPDs and Dirichlet priors this integral has a closed form solution:

P (Xi[M + 1] = xi | PaXi
[M + 1] = u,D) =

αxi|u + M [xi,u]
∑

j αxj |u + M [xj ,u]
(2.9)

2.3.2 Structure Learning

Previously, we showed how one can learn the Bayesian network parameters given a known structure
G, but in reality, we do not know G. Our goal is to understand the structural relationships between
the variables in our domain, for instance we would like to be able to distinguish between a direct
and indirect dependency between genes. Therefore, it is exactly this graph structure which we
wish to reconstruct from the observed data. We can then use this reconstructed graph structure
to answer queries regarding the interactions between the genes in our domain and other structural
properties. We note that based on observational data alone, it is not possible to distinguish between
equivalent structures (see Section 2.2.2). Thus, at best our reconstruction procedure can reconstruct
an equivalence class of networks.

We take a score-based approach to this problem. We define a model space of candidate models
which we are willing to consider and a scoring function that measures how well each model fits the
observed data. Then we use an optimization algorithm that searches for the highest scoring model.

Bayesian Score

Our scoring function is based on the same Bayesian principles described in Section 2.3.1. The basic
principle is: whenever we have uncertainty over something, we place a probability distribution over
it. We therefore define a structure prior P (G) over the different graph structures and a parameter
prior P (θ | G) over the parameters once the graph is given. The particular choice of the priors P (G)

2.3. LEARNING BAYESIAN NETWORKS 23

and P (θ | G) determine the exact Bayesian score. Our score evaluates the posterior probability of
the graph given the data:

scoreB(G : D) = log P (D | G) + log P (G)

where P (Data | G) takes into consideration our uncertainty over the parameters and averages the
probability of the data over all possible parameter assignments to G.

P (D | G) =

∫

P (D | G, θ)P (θ | G)dθ

The Bayesian is well suited for situations in which the number of samples is small. The Bayesian
score is biased to more simple structures, but as it gets more data, it will support far more complex
structures (when the generating distribution is indeed complex). This bias is due to the integration
over all possible parameters. Structures with many parameters are penalized, unless the probability
of the true parameters is very peaked (which happens when the sample size is large). Thus the
Bayesian score inherently takes care of the problem of over-fitting a small sample to a complex
model. In the rest of this section we show how to choose good priors and demonstrate how these
priors lead to desirable properties in our score.

An important characteristic of the Bayesian score is that when we restrict ourselves to a certain
class of factorized priors [18, 46] then the Bayesian score decomposes.

Definition 2.3.7: A parameter prior satisfies parameter modularity if for any two graphs G1 and G2,
if Pa

G1
i = Pa

G2
i then:

P (θ
Xi|Pa

G1
i

| G1) = P (θ
Xi|Pa

G2
i

| G2)

that means the parameter prior depends only on the local structure of the graph.

Proposition 2.3.8: If the prior P (θ | G) satisfies global parameter independence and parameter
modularity then

P (D | G) =
∏

i

∫

θXi|Pai

∏

m

P (xi[m] | pai[m], θXi|Pai
)P (θXi|Pai

)dθXi|Pai

Therefore we can decompose the score into the local contributions of each variable (denoted
FamScore), where the contribution of every variable Xi to the total network score depends only on
the sufficient statistics of Xi and its parents Pai.

scoreB(G : D) =
∑

i

FamScoreB(Xi,Pai : D) (2.10)

As we will see in Section 2.3.2, this decomposition plays a crucial rule towards our ability to devise
efficient search algorithms for high scoring network structures.

24 CHAPTER 2. BAYESIAN NETWORKS PRIMER

In this thesis we use Dirichlet priors for table CPDs. One of the big advantages of using Dirichlet
priors is that the family score has a simple closed form formula. We present the formula itself and
a sketch of how this formula is derived.

Theorem 2.3.9: [46] Let G be a network structure and P (θ | G) be a parameter prior satisfying
parameter independence. Further assume table CPDs and Dirichlet priors with hyperparameters
{α

X
j
i
|u
} then:

FamScoreB(Xi,PaXi
: D) = log

∏

u∈Val(PaXi
)

Γ(αxi|u)

Γ(αxi|u + M [u])

∏

x
j
i
∈Val(Xi)

Γ(α
x

j
i
|u

+ M [xj
i ,u])

Γ(α
x

j
i
|u

)

(2.11)
where Γ is the Gamma function and αxi|u =

∑

j∈Val(Xi) α
x

j
i
|u

Proof: (sketch) Using the chain law we can view the Bayesian score as calculating the probability of
each data sample given the previous ones. Using parameter independence assumptions we decom-
pose the marginal likelihood into a separate term for each combination of a variable and possible
assignments to its parents. Each such term can be solved in an independent manner.

P (D | G) =
M
∏

m=1

P (X[m] | X[1], . . . , X[m− 1],G)

=
n
∏

i=1

∏

u∈Val(PaXi
)

∏

m:PaXi
[m]=u

P (Xi[m] | Xi[1],PaXi
[1], . . . , Xi[m− 1],PaXi

[m− 1],G)

By applying Eq. (2.9) and after some algebraic manipulation we get the desired formula.

A desired property is that the score reaches its optimum on the true generating structure, i.e.,
given a sufficiently large number of samples, graph structures that exactly capture all dependencies
in the distribution, will receive, a higher score than all other graphs (see for example [39]). This
means, that given a sufficiently large number of instances, learning procedures can pinpoint the
exact network structure modulo the correct equivalence class.

Definition 2.3.10: Assume our model is generated by some true model G∗. We say that our score
is consistent if as M → ∞, the following properties hold with probability asymptotic to 1 (over
possible choices of dataset D)

• The structure G∗ will maximize the score

• All structures that are not equivalent to G∗ will have a strictly lower score

Theorem 2.3.11: The Bayesian score is consistent

2.3. LEARNING BAYESIAN NETWORKS 25

Recall that given D it is impossible to distinguish between two different networks in the same
equivalence class. Thus a another desirable property in our score is that equivalent structures receive
the same score, i.e., if G1 and G2 are equivalent graphs they are guaranteed to have the same posterior
score. Such a property is called structure equivalence. In order to achieve structure equivalence,
we devise a set of hyperparameters so that our prior will not bias the score between equivalent
structures. This is achieved using a BDe prior [45]. We define a probability distribution P ′ over X
and an equivalent sample size M ′ for our set of imaginary samples. The hyperparameters are then
defined to be:

αxi|ui
= M ′ · P ′(xi, ui)

Theorem 2.3.12: [46] When the data is complete, the prior satisfies parameter independence and
parameter modularity, and Dirichlet BDe priors are used, then the score is structure equivalent.

Proof: As a consequence of Theorem 2.2.8 it is enough to prove that the score is equal for any
two equivalent graphs that differ only in the orientation of a single covered edge. Let G 1 and G2

be two such graphs and X − Y the edge that they differ on. Because the two graphs differ only
in the reversal of a single edge, the only terms in Eq. (2.10) that differ between the two graphs
are FamScoreB(X,PaX : D) and FamScoreB(Y,PaY : D). We denote U := PaG1

X . Since
X → Y is covered in G1 this means that PaG1

Y = U ∪X , PaG2

X = U ∪ Y , and PaG2

Y = U . Recall,
the hyperparameters for the BDe prior are defined to be αx|u = M ′ · P ′(x, u) where P ′ is a prior
distribution over X and M ′ is the equivalent sample size.

We denote

l(X) =
∏

x∈Val(X)

Γ(M ′ · P ′(x) + M [x])

using this notation

FamScoreInt(X,PaGi

X : D) =
l(X ∪PaX)

l(PaX)

Using these notations, in order to prove the equivalence between the two scores we need to show
that the following two expressions are equal: The contribution of X and Y to the score for G 1 is:

l(X ∪ U)

l(U)

l(X ∪ Y ∪ U)

l(X ∪ U)

whereas their contribution to the score for G2 is:

l(X ∪ Y ∪ U)

l(Y ∪ U)

l(Y ∪ U)

1(U)

The score for G1 and G2 is equal.

26 CHAPTER 2. BAYESIAN NETWORKS PRIMER

Search Algorithm

Once the score is specified and the data is given, learning amounts to finding the structure G that
maximizes the score. This problem is known to be NP-hard [12]. Thus, we resort to a heuristic
search. We define a search space where each state in this space is a network structure. We define
a set of operators that take us from one structure to another. This defines a graph structure on
the states: neighboring states are those which are one operator away. We start with some initial
structure (usually the empty graph) and using the operators traverse this space searching for high
scoring structures.

A natural choice of neighboring structures are a set of structures that are identical to the base
structure except for local modifications. We use the following operators that change one edge at
each move:

• Add an edge

• Remove an edge

• Reverse an edge.

Note we only consider operations that result in legal networks. That is a-cyclic networks that satisfy
any other constraints we specify (e.g. maximal indegree constraints).

A local search procedure can efficiently evaluate the gains made by adding, removing or revers-
ing a single edge. The decomposition of the score is crucial for the efficiency of this procedure. Due
to the score decomposition, we only need to re-evaluate those components of the score that involve
the variables affected by our local step. For instance, if we add an edge to the variable Xi, we only
have to recalculate Xi’s family score, the family scores for all other variables remain unchanged.

We use a greedy hill-climbing algorithm for our search procedure: At each step we evaluate
all possible local moves and perform the change that results in the maximal gain, until we reach
a local maximum. (The pseudo-code for such an algorithm appears in Figure 2.5) Although this
procedure does not necessarily find a global maximum, it does perform well in practice. A number
of heuristics can be included to overcome some of the local maxima: these include random restarts
and Tabu search. Examples of other search methods that advance using single edge changes include
beam-search, stochastic hill-climbing, and simulated annealing.

Any implementation of these search methods involves caching of computed counts to avoid
unnecessary passes over the data. This cache also allows us to marginalize counts. Thus, if M [X,Y]

is in the cache, we can compute M [X] by summing over values of Y . This is usually much faster
than making a new pass over the data. One of the dominating factors in the computational cost of
learning from complete data is the number of passes actually made over the training data.

2.3. LEARNING BAYESIAN NETWORKS 27

Input:
D // A data set
G0 // Initial network structure

Output:
G // Final network structure

Greedy-Structure-Search
Gbest = G0

repeat // apply best possible operator to G in each iteration
G = Gbest

foreach operator o // (each edge addition, deletion or reversal on G)
Go = o(G) // apply o to G
If Go is cyclic continue
If scoreBDe(G

o : D) > scoreBDe(Gbest : D)
Gbest = Go

until G == Gbest // no change in structure improves score

Figure 2.5: Outline of Greedy search algorithm

Chapter 3

Bayesian Network Models for Biological
Interactions

3.1 Overview

Molecular pathways form a complex web of interacting proteins, genes, and small molecules. The
type of interactions is varied and includes signal transduction and processing, regulation of gene
expression and metabolism. Our goal is to directly infer the fine structure of such interactions from
raw experimental data such as gene expression profiles. In this chapter we employ Bayesian network
learning techniques to reconstruct models of biomolecular systems from the observed measurements
with a goal to gain insight into the structure of molecular interactions. We hope to answer questions
such as: is the effect of an effector gene on a target gene direct, or is it mediated by other genes?
And which genes mediate between them?

We adopt a systems perspective of the cell and its components. Our goal is to estimate the
joint probability distribution over gene expression and understand its structural features from data.
Our reconstruction of pathway structure is based on the following idea: molecular interactions
between the genes generate corresponding statistical dependencies between the random variables
that represent them. We model statistical dependencies using Bayesian networks. Our learning
algorithm detects consistent dependencies and reconstructs a Bayesian network that best explains
the observed data. Our approach is global in that: we fit a model to data by studying the joint
probability distribution over the entire gene set.

Note that a true biological network is not a Bayesian network: for instance Bayesian networks
are acyclic while cyclic and feed-back loops are central in biological networks and their regula-
tory mechanisms. Still, using Bayesian networks as a first order approximation, many interesting
molecular interactions emerge.

The key advantage of using Bayesian networks is they model the joint distribution over a num-
ber of variables at once. Most standard methods for analyzing gene expression focus on pairwise
relations between genes (e.g. correlation). However, biological interaction is seldom this simple

28

3.2. ILLUSTRATIVE EXAMPLE 29

A

B

E

D

C

Figure 3.1: An Bayesian network representing a pathway with 5 genes

and often includes chains of mediators between two genes. By exploring multi-variate interactions,
we can infer more structure in the relationship between genes. We will focus on conditional inde-
pendence: for example, if X and Y are co-regulated by Z , then while Y correlates with X , given
the value of Z , Y might become independent of X . In this case, we say that Z separates between
X and Y .

Several important issues arise when learning a Bayesian network model in the gene expression
domain. Most of the difficulties in learning from expression data revolves around the following cen-
tral point: contrary to most situations where learning a models is attempted (in particular Bayesian
networks), expression data involves transcript levels of thousands of genes, while currently avail-
able data sets contain at most a few hundred samples. This paucity of data raises issues with both
computational complexity of the learning algorithm and the statistical significance of the resulting
networks. It is generally believed that genetic regulation networks are sparse in the sense that, for a
given gene, it is assumed that no more than a few dozen genes directly effect its transcription. Since
Bayesian networks are especially suited for learning in such sparse domains , we believe that it is
appropriate to them in our context.

3.2 Illustrative Example

In this section we demonstrate how we can use a Bayesian network to model a molecular pathway
and provide some intuition as to how such a model might be inferred from the data. Our example
pathway consists of five genes, A,B,C,D,E; and the Bayesian network model contains five random
variables representing the expression of each of these genes (see Figure 3.1) that can be in one of
three states: down regulated, no change, and up regulated.

Gene A is a transcription factor that activates B, and in most cases when A is up-regulated so is
B. If A activates B we expect the data to express a dependency between the values of A and B and
we indicate this dependency by drawing a directed edge from A to B. The expression of A and B
are statistically dependent, thus, knowing the value of A provides information that can help predict
the value of B.

In addition, gene B is a transcription factor that activates gene C, generating an edge from B

30 CHAPTER 3. BAYESIAN NETWORK MODELS FOR BIOLOGICAL INTERACTIONS

to C in our network model. Based on pairwise data correlations, we expect the expression of C
to be correlated not only with its direct regulator (B), but also by its indirect regulator (A). In our
example, if we know the value of B, A does not provide additional information that can improve our
predictions for C, and we say “the effect of A on C is mediated through B”. In Bayesian network
terms “A and C are conditionally independent given B”. We might infer such mediation using knock-
out data, i.e, while under normal conditions A and C are correlated, when gene B is deleted, this
correlation disappears.

Gene A also activates gene D. This provides us with another example of conditional indepen-
dence. Taking a pairwise view, D is a good predictor of B’s expression - we reason that D’s up-
regulation might be caused by A’s up-regulation and therefore B is more likely to be up-regulated as
well. Notice, that in this chain of reasoning, A explained the correlation between the expression of
B and D. It is exactly this type of explaining away that we hope to achieve by using a multivariate
view of the data. How might we infer this directly from the data? For instance, D might be up-
regulated from causes other than A’s up-regulation. Thus, we hope to find that A is a much more
reliable predictor for B than D.

Finally, gene E inhibits gene B. Thus, B has two different genes that control its regulation. These
are B’s parents in the Bayesian network. This leads us to the second component in the Bayesian
network: each gene has a local conditional probability model that describes the probability for each
of its states conditioned on its parents values. The probabilistic nature of the function between B
and its parents has several advantages:

1. The biological processes involved are inherently stochastic.

2. Our measurements are noisy.

3. There might be other unknown factors not included in our measurements that effect the ex-
pression of B, a probabilistic function can treat such an uncertainty.

Of course, real life is not that simple - a molecular pathway is far more complex, consisting of
thousands of interacting genes. Current gene expression datasets are very noisy, and automatically
inferring such a model directly from data is very challenging task. The biggest complication stems
from the fact that the gene expression is effected by countless other factors other than the expression
of other genes. These factors are not included in our observed measurements.

3.3 Extracting Features

Given a dataset of expression profiles, we use a learning algorithm to search for the Bayesian net-
work G that best explains the data (see Section 2.3). The simple minded approach would be to
accept G as a correct model of our domain. Then we could use G to infer structural relations be-
tween genes (e.g. gene A directly effects gene B). Such anaysis would rely on the assumption that
the network G correctly represents the interactions in the underlying domain, but how reasonable is

3.3. EXTRACTING FEATURES 31

E

R

B

A

C

E

R

B

A

C

E

R

B

A

C

E

R

B

A

C

E

R

B

A

C

E

R

B

A

C

E

R

B

A

C

E

R

B

A

C

E

R

B

A

C

E

R

B

A

C

��� � � � � � � � 	
 �� ��� � � � � � � � 	
 �� 	 ��� � � � � � � � 	
 �� � ���� � � � � � � 	
 �� � ��� � � � � � � � 	
 ��

�� �� �� �� ��

Figure 3.2: An ensemble of high scoring networks: Presented are five different Bayesian networks.
The score of the network with respect to the dataset D is listed below each network. While G3 is
the highest scoring network, the other networks are almost as likely. The edge A→ C exists in G3,
but it is absent from all other high scoring networks. On the other hand, all five networks agree on
the edge E → A.

this assumption? A sufficiently large number of samples would (almost) guarantee that it is certain
that the network we learn is a good model of the data [39]. However, given only a small number
of training instances, there may be many models that explain the data almost equally well among
themselves.

Figure 3.2 shows five high scoring networks in relation to dataset D. While the structure of
the networks significantly vary, their scores are almost the same. In our example, G3 is the highest
scoring network, but by removing the first sample from D, G4 becomes the highest scoring network.
A simple minded approach, we would infer a direct interaction between the genes A and C (since
the edge A → C exists in G3). But, the edge is absent from the other high scoring networks.
Therefore, it is more likely that the dependence between A and C is a spurious artifact in D. Thus,
we cannot depend on a one single network to provide an accurate description of the relations in our
biological domain.

Instead of querying a single structure, we search for common features which most of the high
scoring network structures agree on. For example, the ensemble of high scoring networks in Fig-
ure 3.2 all agree on the edge E → A. Therefore, it is highly likely to represent a real biological
signal. We find such features by examining the posterior probability of the feature given the data.
A network feature is a property such as “X → Y is in the network” or “d-sepG(X;Y | Z) is in the
network”. We associate the feature f with an indicator function, f(G), that has the value 1 when G
satisfies the feature and value 0 otherwise. The posterior probability of f is defined as:

P (f(G) | D) =
∑

G

f(G)P (G | D). (3.1)

This probability reflects our confidence in f , given D.

32 CHAPTER 3. BAYESIAN NETWORK MODELS FOR BIOLOGICAL INTERACTIONS

The straingt forward way of calculating Eq. (3.1) is by enumerating all high scoring networks.
Unfortunately, the number of such networks can be exponential in the number of variables, so exact
computation of the posterior probability is not feasible. Instead, we can estimate this posterior
by sampling representative networks and then estimating the fraction that contain the feature of
interest. Ideally, we would like to sample networks from P (G | D) and use the sampled networks to
estimate this quantity. The general solution to this problem is to build a Markov Chain Monte Carlo
(MCMC) sampling procedure, such as that suggested by Friedman and Koller [35]. Unfortunately,
this sampling procedure is also computationally costly.

Instead, we choose to use an effective, and relatively simple bootstrap method [29] as an approx-
imation of the posterior probability. Our networks are generated using non-parametric bootstrap as
suggested by Friedman and Goldzmidt [34]. The main idea behind the bootstrap is simple: We
generate “perturbed” versions of the original data set and learn a Bayesian network structure from
each of them. In this way we collect many networks, all of which are fairly reasonable models of
the data. These networks reflect the effect of small perturbations to the data on the learning process.
We use the following procedure:

• For i = 1 . . . m.

– Construct a dataset Di by sampling, with replacement, M instances from D.

– Apply the learning procedure on Di to induce a network structure Gi.

• For each feature f of interest calculate

conf(f) =
1

m

m
∑

i=1

f(Gi)

We refer the reader to Section 3.7.1 for an evaluation of this bootstrap approach on simulated
data. These simulation experiments show that features induced with high confidence are rarely false
positives, even in cases where the data sets are small compared to the system being learned. We
note that the rate of false negatives is high. Thus, the fact that we do not detect high confidence for
a feature, does not mean it does not exist, but rather that the data does not strongly support it.

3.4 In Silico Experiment

In this section we present our overall framework for analyzing gene expression data with Bayesian
networks. We illustrate our method using two datasets derived from the Compendium [51] expres-
sion profiles. Figure 3.3 provides an overview of our analysis method.

The first step is to preprocess the expression data. This includes selecting the relevant genes and
distcretizing their expression values. We use two complementary approaches to gene selection. One
method chooses genes that are highly variant in the data, based on the reasoning that such genes
display potentially interesting behavior. The second approach is to focus on a specific biological

3.4. IN SILICO EXPERIMENT 33

D resample

resample

resample

D1

D2

Dm

.
.
.

Learn

Learn

Learn

E

R

B

A

C

E

R

B

A

C

E

R

B

A

C

E

R

B

A

C

E

R

B

A

C

Expression
Dataset

Ensemble�
of�networks

Extract�
Features

����������������������������
� ����������� � �� ����������� � �

Edge�features���
+�Confidence

Figure 3.3: Outline of Bayesian network analysis of gene expression data

process of interest (e.g. mating) and choose genes that are associated with that process. After
gene selection, each gene is discretized into one of three values: down regulated, no change, or up
regulated. Our methods for discretization are dataset dependent.

We apply the non-parametric bootstrap described in Section 3.3 to the dataset of discretized
gene expression measurements derived above to learn an ensemble of networks which represent
potential models of the interactions between genes. We developed the Sparse Candidate algorithm
(SPC) in order to deal with the computational complexity of learning Bayesian networks over many
variables. Each time Bayesian network learning is invoked, we use the sparse candidate algorithm
and convert the resulting network G into its associated PDAG P . Details of SPC algorithm are
provided in Section 4.1.

We use the ensemble of Bayesian networks which we learned in order to extract statistically con-
fident features involving relationships between pairs and triplets of genes. Finally, we statistically
identify significant subnetworks that are dense in high-confidence features. Identifying subnetworks
will be described in Section 3.6.

As a case study, we apply our framework to the Rosetta Inpharmatics Compendium [51] of
expression profiles from Saccharomyces cerevisiae. This dataset is compiled from 300 full-genome
expression profiles obtained from 276 deletion mutants, 11 tetracyclin regulatable alleles of essential
genes, and 13 chemically treated S. cerevisiae cultures, each compared to a baseline wild type or
mock-treated culture. This dataset is well suited for our methods because the different deletions and
treatments perturb the data, thus creating a wide variety of different cell states. This diverse set of
samples captures which genes remain dependent on each other across many different conditions and
how these dependencies behave.

The variance-oriented dataset is composed of 565 genes and includes the mutated genes, as well
as genes which showed a significant change in at least 4 profiles (this dataset was used in Pe’er

34 CHAPTER 3. BAYESIAN NETWORK MODELS FOR BIOLOGICAL INTERACTIONS

et al. [76]). The discretized dataset is available at URL. Since the samples in the dataset include
mutations and the gene set includes the mutated genes, we used a correction to the scoring function
that takes these mutations into account. When a gene is mutated, it is disassociated from its natural
regulatory mechanism. Instead, an external mechanism controls the expression of the gene. This
event is specified in our model by disconnecting the edges between the mutated gene and its parents
in the Bayesian network structure G. (see Section 4.2.

The subnetworks constructed from the variance-oriented dataset include parts of the mating and
amino acid metabolism pathways. To evaluate how well our approach is capable of reconstructing
these processes, we created a new dataset from the compendium profiles. The process-oriented
dataset is composed of 947 genes, including mating and amino acid metabolism related genes, as
well as genes which showed significant change in at least 4 profiles. The genes in this dataset had
less variance across samples. The discretization procedure used for the variance-oriented dataset
would classify many of these genes as unchanged across all samples, erasing all information on
their behavior. Thus, we used a different discretization procedure to overcome this problem, the
discretized dataset is available at URL. Since modeling the mutations require more intensive com-
putation, we used the standard BDe score for this dataset, ignoring the mutations. The benefit of
modeling mutations comes into play when asking causal queries and in this analysis of this dataset
we mostly evaluated undirected pairwise relations.

We applied a 100-fold bootstrap resulting in an ensemble of 100 learned networks for each
dataset. The networks learned from the variance-oriented dataset contained an average of 1243
edges each (an average of 2.2 parents for each gene). The networks learned from the process-
oriented dataset contained an average of 2652 edges each (an average of 2.8 parents for each gene).
While the learned networks are relatively rich in interactions, as we will see in Section 3.5, rela-
tively few of them remained consistent across many networks. In the following sections we provide
an analysis of those interactions that remained consistent across networks. Interestingly, they corre-
spond well with known biology.

3.5 Biological Features

In this section we focus on the following question: How can our analysis elucidate the nature of
interaction between genes? We consider several types of “features” that can be identified from G
and P and discuss possible biological interpretations of such features.

3.5.1 Gene Mates

The first type of feature is gene mates, also called Markov relations in [34, 36, 76]. This feature
focuses around the question: Do X and Y directly interact in our network. We answer this by
querying G to test whether X and Y are Markov neighbors [73]. Markov neighbors are variables
that are not separated by any other measured variables in the domain, i.e. no subset of variables in

3.5. BIOLOGICAL FEATURES 35

the domain render them independent. They include parent-child relations (e.g. one gene regulating
another), or spouse relations (e.g. two genes that co-regulate a third). Note that two gene mates are
directly linked in the sense that no variable in the model mediates the dependence between them.
It remains possible that an unobserved variable is an intermediate in their interaction. Since our
domain involves many factors that are not modeled into our network (e.g. protein activation), many
of the resulting gene mates represent two genes that are regulated by a third latent [32] factor. Note,
that while gene mates is a pairwise relation, it is based on multivariate analysis. Before the learning
procedure assigns a gene mate relation to a pair X and Y , it searches for a subset Z so that given
Z, the genes X and Y become conditionally independent. Thus, to derive a gene mate relation, a
series of statistical tests involving a larger set of variables is performed. The relations reported here
often included statistical queries involving 3 to 8 different variables.

We can query whether the edge X → Y appears in P . Recall, that this implies that X and Y

are Markov neighbors (parent-child type) and that the edge between them is directed in all networks
in the equivalence class of G. The existence of such a directed edge might suggest that X is a direct
cause of Y . One must treat causal conclusions derived from a Bayesian Network with caution as
they involve a number of assumptions that do not always hold in our domain (See [74, 19] for the
connection between Bayesian networks and causality).

Biological analysis of individual high confidence gene mate relations indicates that many are
supported by previous biological findings. To understand the resulting gene mates, we ask the ques-
tion “What biological relation(s) can lead to a direct statistical dependency between two genes in the
expression data?” There are a variety of biological interactions that can create such a direct statis-
tical dependency, thus gene mates do not have unique biological semantics. Gene mates can repre-
sent different regulatory relations between genes (both direct and indirect), co-regulation, physical
protein-protein interactions (such as signaling cascades and complexes) and metabolic links. Often,
these links are mediated through one or more hidden factors, unobserved in expression data.

We will illustrate some of the different types of gene mates, providing an example for each from
our analysis of the process-oriented dataset. For each gene mate, we calculate the confidence (i.e.
the percent of the networks in which the relation exists) and the Pearson correlation between the
raw expression profiles.

Regulation: Perhaps the simplest type of interaction is a transcription factor X that regulates a
target Y . We found 6 such relations, for example: Met28 → Sul2 (confidence=0.83, Pearson cor-
relation=0.72). Met28 is a transcriptional activator of sulfur amino acid metabolism that regulates
Sul2, a sulfate transporter.

Signalling: Surprisingly, four of the gene mates involved signalling proteins. For example,
Slt2→ Crh1 (confidence=0.98, Pearson correlation=0.56). Slt2 is a MAP kinase that activates cell
wall related processes and it indirectly regulates Crh1, a cell wall protein. Slt2 is known to activate
Rlm1, which in turn is known to bind to Crh1, thus the correct biological regulatory chain would
be Slt2 ↪→ Rlm1 ↪→ Crh1. At first, one might think that our method should have captured that
Slt2’s effect on Crh1 is “mediated” via Rlm1, but this is a good example of the limits of expression

36 CHAPTER 3. BAYESIAN NETWORK MODELS FOR BIOLOGICAL INTERACTIONS

data. Slt2 regulates Rlm1 post-translationaly, an event that is “hidden” in our domain. When post-
translationally activated, Rlm1 does not show any observable change in its expression level.

Co-Regulation: Many gene mates are simply pairs of co-regulated genes. For instance, Scw11
– Dse2 (confidence=0.98, Pearson correlation=0.86). Both Scw11 and Dse2 are genes involved in
cytokinesis: The process of finishing cell separation, resulting in two physically separated cells.
Both genes are known to be regulated by Ace2, a transcription factor involved in G1-specific tran-
scription in mitotic cell cycle. Thus the correct biological network would be Scw11 ←↩ Ace2 ↪→

Dse2. Again, one could question why Ace2’s role in the network was missed. While Ace2 is tran-
scribed in the G2 phase of the cell-cylce, it is only found in the nucleus in late M and early G1
phases, and therefore only then active. The post-translational regulation of Ace2’s location is not
observed in the gene expression data. Since the change in Ace2’s regulatory status is undetectable in
the gene expression data, there is no variable that can explain away the dependency between Scw11
and Dse2. When Ace2 is active the expression of both Scw11 and Dse2 react in the same fashion
and are thus dependant on each other.

Metabolic Step: There are 29 gene mates whom are close to each other in a metabolic pathway,
often only one metabolic step away, i.e., they share a common metabolite. Many of these pairs
are co-regulated by general metabolic regulators (e.g. Gcn4), thus we could simply categorize
these pairs as co-regulation. Still, the number of pairs which are proximately very close along
a metabolic pathway is a striking phenomenon. For example, Met3 – Met14 (confidence=0.96,
Pearson correlation=0.87). Met3 and Met14 are two consecutive genes along the metabolic pathway
that reduces sulfate to sulfide. We conjecture that genes which are close on the same metabolic
pathway are more closely co-regulated than a pair of metabolic genes which are less related. We
elaborate on metabolic gene mates in Section 3.7.

Complex: There are 4 gene mates that belong to the same protein complex. For example, Sdh2
– Sdh3 (confidence=0.75, Pearson correlation0.29). Sdh2 and Shd3 are both part of a four protein
succinate dehydrogenase complex involved in oxidative phosphorylation. As with the metabolic
step, we can speculate that proteins that form a complex have a tighter co-regulation mechanism
and are thus directly dependant in the Bayesian network. But, this tighter co-regulation does not
necessarily manifest itself as tighter correlation. Notice that while the confidence of this link is
high (0.75), the Pearson correlation of the expression of these two genes is very low (0.29). This
demonstrates that Pearson correlation is not always a good measure of co-regulation. In the case
of this pair, the two genes are highly correlated in their extreme behaviors (strongly up or down
regulated), but have no apparent correlation across most arrays in which the two genes are in their
basal behavior. Thus, we can speculate that these genes are tightly co-regulated only under specific
conditions when the complex needs to be closely controlled.

Related Function: Some genes mates do not have any known co-regulator, but both have a
related function or process. In this case, we assume it is likely that these genes share a common
yet unknown cause that is not necessarily a regulatory gene. Such a common cause could be an
external signal that might activate two distinct gene regulatory chains. An example of functionally

3.5. BIOLOGICAL FEATURES 37

Gene Mate Catagories

Location
9%

Metabolic�
Pathway�

18%

Unknwn�ORF
12%

Unclear
23%

Signalling�
2% Regulation

4%

Complex
2% Related�

function/Co-
regulation

30%

Figure 3.4: Categories of gene mates: Analysis of Dataset II resulted in 164 gene mates of confi-
dence > 0.75. This pie-chart represents the distribution between the different categories

related genes is Sno2 – Sno3 (confidence=0.98, Pearson correlation=0.4). Both genes are induced in
stationary phase and both participate in the processes of pyridoxine metabolism and thiamin biosyn-
thesis. As in the previous example, the Pearson correlation between genes is low and therefore while
these genes share a common function, they would not be clustered together using a typical cluster-
ing algorithm. The gene expression of this pair is only correlated under conditions in which they
are highly induced (i.e. under conditions which we believe they might be co-regulated), but have
little correlation otherwise.

Location: There is a surprisingly high number of gene mates (14) that are consecutive along
the chromosome. While some of these might be artifacts due to cross-hybridization, many of the
examples, such as YLR311C – YLR312C (confidence=0.89, Prearson correlation=0.52), have low
Pearson correlation making cross-hybridization unlikely. Thus we speculate that in a similar manner
to the regulons in prokaryotes, genes of close physical proximity along the chromosome might share
common regulatory mechanisms [7]).

In Figure 3.4 we evaluated and categorized all gene mates with confidence greater than 0.75
in the process-oriented dataset. It is evident that 2/3 of the relationships have a clear biological
explanation. Furthermore, we observe that most of the gene mates are due to some mechanism of
co-regulation and only a small portion of the gene mates are regulatory, i.e., one gene regulates the
other. Finally, the large portion of gene mates with close metabolic proximity or close chromosomal
proximity is evident.

About 1/3 of these relations had Pearson correlation less than 0.5. This shows that many genes
are co-regulated only under specific conditions. Thus, co-expression is not always a good measure

38 CHAPTER 3. BAYESIAN NETWORK MODELS FOR BIOLOGICAL INTERACTIONS

for co-regulation: illustrating the differences between our techniques and clustering methods. Our
methods are able to discover inter-cluster interactions between weakly correlated genes, while at
the same time, uncovering finer intra-cluster structure among correlated genes (e.g metabolic links,
regulatory relations, and protein-protein interactions). This assists us in understanding the roles of
genes within a richer context.

3.5.2 Separators

Gene expression data usually contains many clusters of highly correlated genes, yet in our analysis
only few confident gene-mate relations are formed. Often, correlated genes that do not pair are no
less illuminating than the genes who do pair together. When X and Y are indirectly dependent,
we can ask what other factors mediate this dependence. In the simple case, a single variable Z ,
separates X and Y in G. For example, the edges X → Z → Y or the undirected edges X—Z—Y

appear in P . In the former, X effects Z , which in turn effects Y ; while in the latter, Z might be a
common cause of both X and Y . The most interesting cases are those in which the same variable Z

consistently separates X and Y in many of the high scoring networks. When this occurs, we define
Z to be a separator between X and Y .

To illustrate the concept of a separator and its underlying context within the molecular architec-
ture of pathways, we present two examples from the variance-oriented dataset: The first separator,
Kar4, is a mating transcriptional regulator of karyogamy (nuclear fusion) genes. Kar4 separates
several pairs of cell fusion genes (e.g. Aga1 and Fus1). From the semantics of the Bayesian net-
work we conclude that the gene expression of Aga1 and Fus1 is correlated because they have a
common regulator, Kar4. This is not a perfect match with the biological literature, in which Kar4
is known to regulate nuclear fusion. Since only a small part of the biology is currently known, we
allow ourselves to make the hypothesis that Kar4 might have an additional role in the regulation of
cellular fusion.

Sst2 is a post-translational negative regulator of the G-protein in the mating signaling pathway.
In our inferred networks, Sst2 separates the mating response genes Tec1 and Ste6. Moreover, a high
confidence directed edge (in P) was discovered from Sst2 to Ste6, providing further support for the
causal direction of the relationship. In this case our method captured a signalling regulator which
explains the dependency of the expression of the genes it regulates. Thus, our inference has recon-
structed the regulatory role in the correct molecular and functional context for both transcriptional
and post-translational regulators.

In more complex cases, X and Y may be more distant in the graph structure (e.g Z is a com-
mon grandparent of both X and Y) and there might be more than one variable that mediates their
interaction (e.g X is parent of Z1 and Z2, who in turn are both parents of Y). In these cases we
must employ a global approach, searching for a set of variables Z, such that Y is independent of X

given Z. We test that X and Y are independent given Z using d-separation, i.e., no path between X

and Y can “pass” information when the value of Z is known (See Section 2.2.1 for the precise defi-
nition). The complexity of computing d-separation for every pair of variables in the network, even

3.5. BIOLOGICAL FEATURES 39

by a single variable, is O(n3). For a large domain, this calculation is time and memory consuming.
We note however, that when two variables are far from each other in the network, the dependence
between them diminishes. Thus, in practice, we only check for single variable d-separators between
variables along paths of length at most six.

When applying this procedure to the high scoring structures of the variance-oriented dataset,
we found 120 d-separator triplets (a d-separator and the two genes it separates). Strikingly, in 35
of the resulting 120 interactions, the d-separator was either a transcriptional or a post-translational
(signaling) regulator1 . Such genes were considerably less frequent in the role of the separated genes
(29/240 genes). These results are consistent with a regulatory role of the mediating gene.

When applying this procedure to the process-oriented dataset, we found that the d-separator
was a regulator in less than 1/10 of the triplets. We attribute this qualitative difference to the fact
that the networks created from the variance-oriented dataset used an algorithm that incorporated
mutations existing in the data to aid causal discovery. We speculate these mutations yielded extra
causal information, enabling the algorithm to place the regulators in their correct role. Since the
edges in the Bayesian network do not have clear biological semantics, interpretations for separator
relations require further study.

3.5.3 Hubs

A global view of the separator triplets reveals that the same separator often appears in many triplets.
These multi separators, called Hubs, form a star-like structure: a central separator gene connected
to a set of genes that are rarely connected amongst themselves. When evaluating such a hub in
its entirety, a clearer biological story often emerges. We illustrate this using a few examples from
process-oriented dataset.

The first example is Slt2, which encodes the MAP kinase of the cell wall integrity pathway. At
a confidence level greater than 0.4, Slt2 interacts with 12 gene mates. These have no interactions
amongst themselves. The genes in the Slt2 hub include 6 cell wall and cell membrane proteins
(Crh1, Yps1, Yps3, Yps6, Sed1 and Prm5), and 2 signalling proteins associated with cell wall
pathways (Ptp2 and Rga1). Ptp2 is a protein phosphotase responsible for inactivating the MAPK
osmolarity pathway which Slt2 activates. In addition, the hub contains two genes related to DNA
metabolism (Srl3 and Ypr078c) and two uncharacterized genes (Ybr005w and Yhr209w). Cluster
analysis [51] puts the cell wall genes and the uncharacterized genes in the same cluster, while
Srl3 and Ypr078c are assigned to a different cluster. Thus, at first glance, Srl3 and Ypr078c seem
unrelated to Slt2. DNA location analysis [62] reveals that Rlm1, one of Slt2 target transcription
factors, binds to Srl3, supporting its inclusion in the hub.

Hub structures sharpen the difference between clustering and the Bayesian network approach. A
typical clustering algorithm would cluster together 10 of the hub genes (see Figure 3.5.3) forming a

1The 8 transcriptional regulators include general repressors (Isw1 (2 relations), Top1(1), Sin3(5)), specific transcrip-
tion factors (Mth1(1), Rgt1(1), Imp2(1)), and putative transcriptional regulators (Yfl052w(1), Ypr015c(1)). The 7 sig-
naling molecules are Kss1(1), Mfa2(3), Ras1(6), Rho1(6), Ste11(1), Tfs1(3), Ykl161c(2).

40 CHAPTER 3. BAYESIAN NETWORK MODELS FOR BIOLOGICAL INTERACTIONS

����

����

� � ��

	
 � �

����

 � � �
� � � �

� � � �

� � � �

���� � � �

����

����

� � ��

	
 � �

����

 � � �
� � � �

� � � �

� � � �

���� � � �

Figure 3.5: A clustering representation of the Slt2 hub: Each pair of genes in the cluster are con-
nected. No gene has a distinct role.

����

����

���������	

�
� �

� � � 	� � � � �
� � � � � � �

� � � � ���� � � � 	
 � � � �	
 � � � � � � � � �

Figure 3.6: A Bayesian network representation of the Slt2 hub: A clearer interpretation emerges.
Slt2 explains away the dependencies between its targets. Additional genes join the hub (Slr3).

dense network with no clear interpretation. In the Bayesian network, an explanation emerges: a set
of cell wall genes are co-regulated by a common MAP kinase signaling protein (see Figure 3.5.3).
Bayesian networks also provide a “cleaner picture”. On one hand, while the Slt2 hub which contains
almost solely cell wall genes, the Slt2 cluster contains many genes that are not related to cell-wall.
On the other hand, related genes which are included into the hub (e.g. Srl3), are not identified by
clustering. Within the context of a hub, we can confidently assign previously uncharacterized genes
(Ybr005w and Yhr209w) with a putative effector function in cell wall integrity.

Another hub example is Ste2: the first step in the mating pathway in which the mating pheromone
binds to its receptor. Ste2 is the pheromone receptor for the alpha factor. Ste2 is interacts with 6
gene mates (none of which interact with each other), Figure 3.5.3 depicts the known molecular path-
way associated with these genes. These include 5 genes which are directly involved with mating
factors (Ste4, Ste6, Mfa1, Mfa2 and Bar1) and Far1. All 6 effector genes are known to be involved
with mating signalling. The hub gene activates this response after detecting the incoming signal (al-
pha mating factor). In a signalling cascade, Ste2 directly activates Ste4 via a direct protein-protein
link. All hub genes are known to be transcriptionally regulated by this pathway via the transcription
factor Ste12. Ste6, Mfa1 and Mfa2 are involved in creating and secreting the a-factor mating signal.
Bar1 inactivates the alpha factor. Finally, Far1 is a cell cycle protein important for mating, through

3.6. SUBNETWORKS 41

Ste6 Mfa1 Ste3

Far1Ste4Ste2

Ste12

Bar1

Transcription
Post-transciption
Binding
Transport
Indirect�activation

Ste6 Mfa1 Ste3

Far1Ste4Ste2

Ste12

Bar1

Transcription
Post-transciption
Binding
Transport
Indirect�activation

Transcription
Post-transciption
Binding
Transport
Indirect�activation

Figure 3.7: Molecular interactions associated with Ste2 hub compiled from the literature: Ste2 is
activated by the alpha mating factor. It triggers a signalling pathway that activates Ste12, which in
turn transcribes the genes in the hub. Furthermore, many of the hub genes are directly interact with
each other. Genes with a solid border belong to the hub, while genes with a dashed border do not.

which haploid cells of opposite mating type synchronize their cell cycles so that they can fuse and
become a diploid. In summary, all genes captured in the hub are closely involved with a response
triggered by Ste2.

Above, we provided examples in which two hub genes, each at the top of its respective signalling
cascade, explained away the dependence and correlation between their effector genes. In the case
of Slt2, which activates a number of transcription factors, we captured a broad response. For Ste2,
we reconstructed a very precise and focused response. This demonstrates the success of Bayesian
networks in inferring both broad and specific responses.

Unfortunately, not all hubs are easy to interpret. For instance, Lys1, a protein involved in lysine
biosyntheses, is a hub gene that interacts with 14 gene mate at confidence > 0.42. The genes associ-
ated with Lys1 are involved in a wide variety of amino acid related processes: hisidine biosynthesis
(His7, His3, His5), metionine metabolism (Hom3), lysine biosythasis (Lys20), and mitocondrial
related (Ilv2, Yhm1). We have no explanation, neither for Lys1’s central role, nor for the logic
behind this particular mixture of metabolic genes. Such a metabolic hub could hold some yet to be
discovered insight into the cross-talk between metabolic pathways or it could simply be an artifact
of the computational method.

3.6 Subnetworks

In the previous section we saw that while gene mate and separator features provide us with important
insights, hubs that bring together multiple relations offer a broader perspective. Combining features
in concert provides two key advantages:

2Unlike the previous examples, this is not a perfect hub: 12 of the possible 81 gene mate relations exist between
Lys1’s mates.

42 CHAPTER 3. BAYESIAN NETWORK MODELS FOR BIOLOGICAL INTERACTIONS

1. A richer more structured context for exploring the molecular interactions represented by our
network.

2. More importantly, by combining a multitude of features, we can gain a more confidence.

When examining relations between two or three genes we limited ourselves to confidence >

0.75 (see Section 3.7.1 for justification). This approach can be overly cautious, discarding correct
features whose confidence is below our threshold. On the other hand, in our analysis of hubs, we
found most relations with confidence as low as 0.4 to be biologically correct. These features, while
not significant in isolation, gained confidence based on the other features around them.

In this section we extend the concept of a hub to more general graph structures. We hypothesize
that if we can find a subnetwork that contains a “surprising concentration” of high confidence gene
mates, then our estimate of features in this region will be more reliable. Thus, while a full-scale
network is currently of insufficient quality, self-contained subnetworks can be reconstructed based
on individual features of high confidence. Indeed, such subnetworks often correspond to a coherent
biologically process or response.

3.6.1 Constructing Subnetworks

A subnetwork is a weighted graph representing a subset the gene mate relations. While this graph
encodes structural relations between variables in X , it no longer follows the formalism of Bayesian
networks.

Definition 3.6.1: We define a t-Markov Graph of an ensemble of Bayesian networks, denoted MGt

as follows: The vertices correspond to the random variables X1, . . . , Xn. An edge exists between
Xi and Xj iff they participate in a gene mate relation with confidence greater than t. The edge (i, j)

is weighted with the confidence of the relationship between Xi and Xj .

Our goal is to search for an induced sub-graph of MGt which is “significant”. We evaluate this
significance in terms of the edge weights in the sub-graph. We define a measure of “surprise” for
a sub-graph induced by subset of variables: Let F (c) be the probability of randomly choosing an
edge of weight ≥ c from MG0. We estimate this probability by computing the observed fraction of
gene mates with confidence ≥ c among the

(n
2

)

possible gene pairs in our domain. Consider a set
of k variables, U ⊂ X , and the subgraph they induce in MGt. This subgraph contains the edges
e1, . . . , el with weights c1 ≥ c2 ≥ · · · ≥ cl ≥ t, respectively. We evaluate the significance of
this subgraph by bounding the expected number of subgraphs with similar weight or higher that we
expect to find under a null-hypothesis model. Our null model assumes that the confidence of each
edge is sampled independently from the distribution F .

The probability of sampling l edges with weights c1, . . . , cl or higher, is
∏l

i=1 F (ci). Given k

variables, there are
(K

l

)

(where K =
(k
2

)

) ways to choose l edges between the K possible pairs
of variables. Thus, the probability of randomly sampling a subgraph with k variables having at

3.6. SUBNETWORKS 43

least l edges with weights better than c1, . . . , cl is at most
(K

l

)
∏

i F (ci). We search for a subgraph
H ⊂MGt over all possible subsets of size k in X , thus the expected number of occurrences of such
a subgraph is at most

S(H) =

(

n

k

)(

K

l

)

∏

i

F (ci) (3.2)

We use Eq. (3.2) as a scoring function to measure the significance of a subgraph. We call a high
scoring subgraph a subnetwork. Given our scoring function, we devise an algorithm to find high-
scoring subnetworks in MGt. Our approach begins with a seed, a small set of variables S ⊂ X

and tries to expand the seed into a high scoring subnetwork. A seed can be a set of functionally
related genes manually defined by a biologist. A more automated definition of a seed is a connected
component with at least d variables in MGts where ts > t.

A radius based approach can be used to expand a seed by defining the subnetwork as all variables
within a sphere of radius l around S in MGt.

Definition 3.6.2: A sphere radius of l around S in MGt is the set of all variables X for which
∃s ∈ S s.t. there is a path between X and s of lenght < l in MGt.

The rational behind this approach is that genes in close proximity of the seed in MGt are more likely
to belong to the same process or pathway. We then score the resulting subnetwork using Eq. (3.2)
and keep it if it scores better than a pre-specified threshold tE. In practice we use tE = e−5,
t = 0.5, ts = 0.8, d = 3, and l = 2.

A more systematic approach to search for high scoring subnetworks, would be by employing a
greedy hill-climbing algorithm. This search starts with a candidate seed and at each step considers
adding or removing a single variable. The algorithm selects the operation that leads to the largest
increase in score. Once we reach a local optimum, we keep the subnetwork if its scores higher than
our threshold tE. After systematically expanding all candidate seeds we can filter out subnetworks
with high similarity and return a unique set of different subnetworks.

The hill-climbing approach has a number of advantages: It selectively includes only vari-
ables that increase the significance of the subnetwork. Thus, it can expand the network in an a-
symmetrical manner, only in directions which increase the score. It also continues to expand the
subnetwork until a local maximum is reached. Due to this increased sensitivity, we use the hill-
climbing approach on MG0.3 (verses MG0.5 for the radius based approach).

While the hill-climbing approach finds higher scoring subnetworks, in some cases the radius
based procedure achieves results with better biological coherence. When using a seed of genes
annotated with the same biological process, a bounded radius is more likely to result in a subnet-
work that remains related to that same process. When using the greedy approach, the subnetwork
sometimes gets drawn into a higher scoring neighboring processes (in MGt) which are not neces-
sarily functionally related to the process represented by the seed. Thus, different insights can be
gained by applying both the radius based and the greedy procedure in search of highly significant
subnetworks.

44 CHAPTER 3. BAYESIAN NETWORK MODELS FOR BIOLOGICAL INTERACTIONS

Kar4

Aga1Prm1Tec1

Sst2

Ste6

Kss1Ndj1

Fus3Aga2

Yel059w

Tom6 Fig1Ylr343w

Ylr334c Mfa1

Fus1

Kar4

Aga1Prm1

Kar4

Aga1Prm1Tec1

Sst2

Ste6

Kss1Ndj1Tec1

Sst2

Ste6

Kss1Ndj1

Fus3Aga2

Yel059w

Tom6 Fig1 Fus3Aga2

Yel059w

Tom6 Fig1Ylr343w

Ylr334c Mfa1

Fus1

Ylr343w

Ylr334c Mfa1

Fus1

Signaling pathway
regulator Two b ranches:

• C ell f usion
• O utgoing M ating Signal

Transcriptional regulator
of nuclear f usion

Figure 3.8: Mating subnetwork: The mating subnetwork reconstructed from variance-oriented
dataset. The thickness of each edge in the network corresponds to the confidence of the gene mate
relation. An edge is directed if it is directed in more than 50% of the PDAGs. Genes with a dotted
border were mutated in some samples in the dataset.

3.6.2 Biological Subnetworks

The full power of our approach becomes apparent when exploring subnetworks. Applying the radius
based approach to the variance-oriented dataset resulted in 6 well-structured subnetworks, each rep-
resenting a coherent molecular response: mating response, low osmolarity cell wall integrity path-
way, stationary phase response, iron homeostasis, amino acid metabolism along with mitochondrial
function, and citrate metabolism. Of 87 top scoring gene mates, 61 relations appeared within one
of these subnetworks. Our score based approach to constructing subnetworks produced 5 highly
significant networks, capturing 4 of the 6 partially hand-crafted networks.

While Hughes et al [51] identify some of these responses (amino acid metabolism, iron home-
ostasis, and mating) using clustering, our reconstructed networks provide a much richer context for
regulatory and functional analysis. We use the mating response subnetwork, shown in Figure 3.8,
to demonstrate the power of our method to reconstruct a coherent biological tale and raise novel
biological hypotheses. We discern two distinct branches, one for cell fusion and the other for out-
going mating signaling. In our network, the cell fusion response branch is mediated by Kar4 and
includes several known cell membrane fusion genes (Fus1, Aga1, Aga2, Prm1 and Fig1) as well as
two genes previously unassociated with this process (Tom6 and Yel059w). The multitude of high
confidence relations strongly suggests a putative role to Kar4 in regulating not only nuclear fusion
but also cell membrane fusion. Another branch in this network is directed from Sst2, a mating
signaling pathway regulator. Since an Sst2 mutant has been incorporated in the compendium, we
could determine edge direction and identify Sst2 as a prime regulator of several other genes (Tec1,
Ste6, Mfa1, Kss1) previously shown to be transcriptionally regulated by the mating pathway.

Some puzzling discrepancies exist in our network. The first is the absence of Ste12, the main

3.6. SUBNETWORKS 45

Met14
Met3

Met10

Met16

Met22

Met17

Met14
Met3

Met10

Met16

Met22

Met17

Methionine
m eta b ol is m

Arg5
Arg3

Arg8Arg1

Arg4

Arg7

Arg5
Arg3

Arg8Arg1

Arg4

Arg7

A r g inine
m eta b ol is m

Correct�relation
Incorrect�relation
Missed�relation

Correct�relation
Incorrect�relation
Missed�relation

Figure 3.9: Amino Acid Metabolism fragments: AA metabolism fragments reconstructed from
process-oriented dataset. Each fragment represents a connected component in MG0.75.

transcription factor of the pathway. This is most likely due to loss of information by our discretiza-
tion procedure. The second is the marginal position of the pathway’s MAP kinase, Fus3. Despite the
knockout mutation in Fus3 we have failed to identify directed regulation. We believe that a larger
number of repetitions for each mutation will enhance our framework’s capabilities to discover such
regulatory relations.

The subnetworks resulting from the process-oriented produced a similar set of molecular re-
sponses: AA Metabolism, methionine and sulfur metabolism, lipids metabolism, phosphate metabolism,
carbohydrate metabolism (especially glycogen), oxidate phosphorylation, iron metabolism, mating
response, stationary phase response, and cell wall integrity response. One of the largest subnetworks
is the amino acid metabolism subnetwork. While the entire subnetwork consists of a wide range of
amino acid metabolism processes, we discern finer sub-components of higher confidence. Connec-
tions within each such component are of very high confidence, while the edges between components
are of lower confidence. Figure 3.9 illustrates two such components: sulfate-methionine metabolism
and uera cycle-arginine metabolism. Both components correspond very closely to the correct archi-
tecture of the metabolic pathway. Indeed, most edges represent metabolic steps, i.e. two genes
that share a metabolite. We provide a systematic study on the accuracy of the Bayesian network
reconstruction of metabolic pathways in Section 3.7.

In addition to systematically reconstructing molecular pathways, subnetworks can aid the func-
tional annotation of uncharacterized genes. An example is the gene mate Pry2 – Svs1 (0.88,0.79).
At the time of analysis, Pry2 was annotated as protein expressed under starvation and Svs1 was
annotated as serine- and threonine-rich protein required for vanadate resistance. Therefore, this pair
fell under the category of unclear/wrong gene mates (see Figure 3.4). A subnetwork of MG0.7

around this pair is given in Figure 3.10. In this subnetwork we see that Pry2 and Svs1 appear in
the midst of cell wall proteins and osmosensors suggesting a cell wall role, perhaps under osmotic

46 CHAPTER 3. BAYESIAN NETWORK MODELS FOR BIOLOGICAL INTERACTIONS

Pry2

Msb2

Svs1

Csi2

Scw10

Cis3

Sim1�

Membranal
osmosensor,�
HOG�pathway

Cell�wall�structural�
protein;�important�for�
radiation�resistance�
and�other�stresses

Cell�wall;�heat�and�
starvation�response;�

cell�cycle;� Cell�wall�protein,�
perhaps�part�of�the�

chitin�synthase complex

Glucosidase,�cell�
wall�biogenesis

0.880.81

0.75

0.95

0.92

0.77

Pry2

Msb2

Svs1

Csi2

Scw10

Cis3

Sim1�

Membranal
osmosensor,�
HOG�pathway

Cell�wall�structural�
protein;�important�for�
radiation�resistance�
and�other�stresses

Cell�wall;�heat�and�
starvation�response;�

cell�cycle;� Cell�wall�protein,�
perhaps�part�of�the�

chitin�synthase complex

Glucosidase,�cell�
wall�biogenesis

0.880.81

0.75

0.95

0.92

0.77

Figure 3.10: Functional annotation using Bayesian networks: A subnetwork around gene mates
Svs1 and Pry2 from process-oriented dataset. This includes a ball of radius 1 around this pair in
MG0.75. Each edge is labeled with the confidence of the gene mate pair. Annotation from literature
labels each of the surrounding genes.

stress. A recent paper [95], that did not exist at the time of our initial analysis, indicates that both
Pry2 and Svs1 are indeed cell wall proteins. This confirms both our hypothesis and their coupling
as gene-mates, suggesting that perhaps other unclear and unknown gene-mates represent correct
relationships. Clustering is one of the standard methods used to assign functional annotation to un-
characterized genes. In the clustering of Hughes et al. [51]), while Pry2 and Svs1 do indeed fall into
the same cluster along with Cis3 and Msb2, the cluster is not annotated as cell-wall. The entire clus-
ter consists of a mixture of annotations dominated by cell-cycle and stress, and therefore does not
facilitate the correct annotation of these genes as cell-wall proteins. Functional annotation based on
the Bayesian network is potentially more reliable. We attribute this reliability to the high statistical
significance of each relation included in the network and the finer context of these relations.

3.7 Systematic Evaluation

In Section 3.5 and Section 3.6 we gave many examples that demonstrated the ability of Bayesian
networks to correctly reconstruct portions of molecular pathways. While including a large and
comprehensive set of examples, with the exception of Figure 3.4, the analysis was anecdotal. In
this section we analyze the statistical robustness of the reconstructed networks and systematically
evaluate of the correspondence between the inferred relations and known biology. Together, these
provide a more objective measure on the quality of Bayesian network analysis for gene expression
data.

3.7. SYSTEMATIC EVALUATION 47

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

T

Fe

at
ur

es
 w

ith
 c

on
fid

en
ce

 >
 T

Distribution of feature condidence

Expression Data
Random Data

Figure 3.11: Comparison of feature confidence distribution between random and real data. The
randomized dataset containing the highest feature confidence was chosen for this comparison.

3.7.1 Statistical Robustness

We performed a number of tests to examine the robustness and statistical significance of our learn-
ing procedure. One of the most important issues is: Which confidence levels represent reliable
gene mate relations? We estimate which confidence levels are statistically significant using both
randomization studies, where we permute the expression of genes across experiments and simu-
lation studies, where we generate training sets from a known synthetic network and evaluate how
accurately we reconstruct this network [34, 36].

To assess the number of spurious relations in our data, we ran the entire process on three random-
ized datasets. We created each random dataset by randomly permuting the order of the experiments
independently for each gene. Thus, for each gene the order of arrays was random, but the compo-
sition of the series remained unchanged. In such a dataset genes are independent of each other and
there are no “real” dependencies. The random data has no feature with confidence above 0.74, 0.61

and 0.44 respectively for each dataset. We compare the distribution of confidence estimates between
the biological data set and the randomized set, Figure 3.11 plots this comparison. As expected, the
gene mate relations in the random dataset have significantly lower confidence. This leads us to
believe that features inferred from the biological dataset with confidence above 0.75 originate from
true signals in the data. Note, while we have demonstated that gene mates represent true signals,
this analysis does not provide any support for our interpretation of this signal.

A big concern regarding our approach is whether it is possible to correctly infer relations be-
tween so many variables given so few samples. To test this, we created a synthetic model. To
simulate a distribution similar to that observed in the real data, we used one of the networks learned
from the real data as our synthetic network. We sampled 300 random data instances from this syn-
thetic network and applied our entire process to the resulting dataset. Since the generating network

48 CHAPTER 3. BAYESIAN NETWORK MODELS FOR BIOLOGICAL INTERACTIONS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

 o
f F

al
se

 P
os

iti
ve

s

Confidence

Entire network
Subnetwork edge

Figure 3.12: False positive rate in synthetic dataset

was known, we could accurately evaluate our false positive rate (see Figure 3.12). The graph shows
that the false positive rate is close to 0 for confidence levels almost as low as 0.6. While the synthetic
model represents a distribution similar to the empirical distribution, reconstruction of the synthetic
model is a substantially easier task. Contrary to real data, the synthetic model contains discrete data
(verses discritization of a continuous signal), no noise, no hidden variables and no feedback loops.
Therefore, we take a more conservative threshold and along with the results from the randomization
studies adopt confidence 0.75 as a reliable threshold for gene mate relations.

In addition to gene mate relations, we evaluated the statistical significance of subnetworks. We
applied our greedy subnetwork procedure to features learned from the randomized dataset. Indeed,
none of the resulting subgraphs scored above our threshold. Furthermore, we used our synthetic
dataset to test if feature confidence within a subnetwork is more significant than the confidence of an
isolated feature. An subnetwork edge is defined as a markov feature between two genes participating
in the same significant (S(H) < e−5) subnetwork. We believe that subnetworks correspond to a
true signal in the data. Therefore, a subnetwork edge is more likely to be correct than an isolated
edge. We computed the false positive rate of subnetwork edges (see Figure 3.12). Indeed, the false
positive rate within the subnetworks is significantly lower, affording us assurance for features with
confidence as low as 0.4.

Finally, since the analysis was not performed on the entire S. cerevisiae genome, we also tested
the robustness of our analysis to the addition of more genes. We compared gene mates relations
and their confidences resulting from the analysis of 2 datasets over the same samples, one set ex-
tending the gene set of the other. The first dataset contained 200 genes annotated with amino acid
metabolism and related processes. The second dataset extended the first set with an additional 200
genes whose expression was highly correlated to the genes in the first set. Figure 3.13 compares
feature confidence between the two datasets. The figure demonstrates a strong correlation between

3.7. SYSTEMATIC EVALUATION 49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Confidence in 200 gene set

C
on

fid
en

ce
 in

 4
00

 g
en

e
se

t

Specific gene mate
x=y

Figure 3.13: Comparison of feature confidence in the 200 gene set and the 400 gene set

feature confidence levels. As expected, the confidence in the larger dataset is usually lower due to
new relations which form in the larger set: a gene from the small set finds a “better” mate in the
larger set.

3.7.2 Comparison to Literature

While the statistical analysis presented in Section 3.7.1 provides some indication that our Bayesian
network procedure might be capable of reconstructing molecular interactions, a more important
question is “How closely does the automated reconstruction correspond to the true biological net-
work?” Unfortunately, the true biological network is not known. Instead, we construct a partial
picture of the biological ground truth based on the current biological literature and databases.

Our validation procedure focuses on two biological processes: the mating response (signalling)
and amino acid (AA) metabolism. Both processes correspond to subnetworks automatically re-
constructed from the variance-oriented dataset3 for which there is an extensive knowledge base. We
used information from SGD [11], YPD [21], and KEGG [59] along with published literature to hand
curate a reference network for each process. First, we compiled a list of genes associated with each
process, resulting in 99 mating genes and 185 amino acid metabolism genes4. We then compiled a
comprehensive listing of all known interactions between these genes. We included a diverse set of
molecular interactions: transcriptional regulation, post-transcription regulation, post-transcriptional
signalling, protein-protein binding and metabolic links. We combined these interactions to create
undirected reference networks for both mating and AA metabolism. We note that the resulting

3Whose genes were chosen solely based on the variability of their gene expression in the Compendium [51] experi-
ments

4Since the full AA metabolism network is too large, genes were selected as an extension of the gene set in the
AA subnetwork of the variance-oriented dataset by building plausible pathways around them (based on databases and
literature) and adding the associated genes

50 CHAPTER 3. BAYESIAN NETWORK MODELS FOR BIOLOGICAL INTERACTIONS

networks significantly extend the classic textbook pathways of these processes. We believe these
networks constitute the closest approximation of the biological truth available at the time of their
construction. Therefore, we treated these reference networks as the ground truth and compared our
automated reconstructions to them.

We use the gene mate features reconstructed from the process-oriented dataset for this compari-
son. The gene set contains all mating and AA metabolism genes in the reference networks, together
with all genes whose expression correlates well with these genes. In addition, we included genes
whose expression had large variation across samples. There are a number of criteria by which we
compare to the reference network, each representing a different degree of detail. At the finest de-
gree we ask: What fraction of the gene mates exactly correspond to an interaction in our reference
network? This measures how many gene mates represent a true direct molecular interaction. We
can relax this criteria and ask which gene mates appear “close” in the reference network? At a much
coarser level we can ask what fraction of the gene mates are connected via a path in the reference
network. Since the process-oriented dataset contains ≈ 1000 genes, even success in this coarse test
is significant.

Initially, we evaluated our ability to correctly reconstruct direct molecular interactions. We
limited our evaluation only to gene mates for which both genes belonged to the same pathway (our
reference networks provided no information regarding other types of interactions). We calculated
what fraction of these inferred interactions correspond to an edge in our reference network. In
addition, we assigned a p-value to this fraction using the hyper-geometric distribution. In a nutshell,
this measures the probability of achieving k successes (number of correct pairs) out of n trails
(number of inferred gene mates) assuming that the genes in each pair were chosen uniformly at
random. Given the parameters K (number of correct interactions in our network) and N (number
of possible pairs), the probability of a single “success” is K/N . For the mating network, we tested
all gene mates with confidence > 0.4 and found 3/21 (pvalue 0.03) direct interactions. When
applying the same procedure to a smaller dataset containing only the mating genes, we were more
successful and captured 7/49 (p 0.002) direct interactions5 . Since there were many AA metabolism
gene mates, we used a 0.5 confidence threshold. We found 10/46 (p 2.0× 10−6) direct interactions
of which 1 was regulatory and 9 were metabolic steps.

Next, we tested our inference at a coarser scale. We tested all pairs in which at least one gene
belonged to the reference pathway (relaxing the requirement of both genes). A pair is marked a
success if there is a path in the reference network that connects that pair. Even at this coarser level
we attempted to capture structure that is finer than simple co-regulation. Since many genes in the
pathway are co-regulated by transcription factors such as Ste12 and Gcn4, we limited a connecting
path between genes to contain at most one regulatory relation. Using the same confidence thresholds
as before: For the mating response we found 18/55 (p 4.2 × 10−16) connected genes mates. For
AA metabolism we found 37/70 (p 1.2× 10−47) connected gene mates.

This evaluation establishes that the correspondence between our reconstructed network and the

5Only one of the seven relations is regulatory.

3.7. SYSTEMATIC EVALUATION 51

“biological truth” is statistically significant. The quality of our inference is beyond anecdotal. We
note the following observations:

While the ability of our method to reconstruct direct molecular interactions is statistically signif-
icant, our method is more successful at reconstructing closely related but not physically interacting
genes. Direct interactions are missed for two central reasons: The noise in gene expression data
along with the statistical difficulties involving a small sample size impedes the correct detection of
direct physical interactions. This can be partially remedied by collecting larger datasets. In addition,
many direct interactions are missed because the true activity of many genes is simply not observ-
able in gene expression data and thus hidden from our analysis. This is an intrinsic problem of gene
expression data.

Our method is fairly weak at capturing regulatory relationships. While our first naı̈ve hope
might have been that direct transcriptional relations exhibit the strongest dependencies in gene ex-
pression data, this does not seem to be the case. The activation of many transcription factors is
post-translational and thus hidden in expression data. Furthermore, many transcription factors are
expressed in relatively small quantities, making them more vulnerable to noise. Therefore, de-
pendency of co-regulated genes is often stronger. Reconstruction of regulatory relations based on
dependencies will perhaps be more successful when protein expression data becomes available.

Finally, the ability of a Bayesian network to capture metabolic pathways at such fine detail
is intriguing. We speculate that close metabolic links have a stronger co-regulatory mechanism.
This mechanism might not manifest itself in the transcriptional network itself and instead might
be driven by other mechanisms. For instance, genes that share the same transcription factor might
have different binding affinities in their promotors. The binding affinities of closely related genes
might be more similar, leading to more finely tuned co-regulation, which can be detected by our
analysis. Another mechanism that could be responsible for this tight co-regulation might be based
on metabolites shared by these genes. This topic merits future research.

3.7.3 Comparison to Other Methods

In Section 3.7.2, we showed that our inferred gene mates correspond with known biological path-
ways in a statistically significant manner. But, this significance was measured relative to random
pairs. In this section we demonstrate that our technique not only out performs choosing pairs at
random, it is also superior to other analysis methods. We compare our method to three others:
clustering, correlation and ranked correlation.

The reference networks described in Section 3.7.2 are used as the ground truth. A false positive
represents a pair of genes which are not connected in the reference network. A true positive is a pair
connected by a path of length at most l, we compare at two degrees of correspondence: l = 2 and
l = 6. In this analysis we did not limit paths to contain only one regulatory relation and thus some
of the pairs may represent co-regulation.

The question that arises is how can we compare the different methods? Each has an inherently
different set of parameters. These parameters lead to different trade-offs between the number of

52 CHAPTER 3. BAYESIAN NETWORK MODELS FOR BIOLOGICAL INTERACTIONS

0 50 100 150 200 250 300
0

50

100

150

200

250

300
Mating: distance < 7

false positives

tru
e

po
si

tiv
es

Bayesian network
ranked correlation
clustering
Pearson correlation

0 50 100 150 200 250 300
0

50

100

150

200

250

300

false positives

tru

e
po

si
tiv

es

Mating: distance < 3

Bayesian network
ranked correlation
clustering
Pearson correlation

Figure 3.14: ROC curves for mating network

correct verses incorrect relationships. For example: At rank one, correlation contains 100 false
positives and 25 true relations. At confidence 0.85, there are only 13 gene mates of which 4 are
correct. Which is better? How one compare these results? A standard solution is to compare the
methods across a wide range of thresholds. A plot of the resulting ratio between true positives and
false positives at the different thresholds is termed a ROC curve. Thus, we can choose a specific
number of true positives and compare the number of false positives between methods. If the curve
for method A is consistently above the curve for method B, we can conclude that method A is better
than method B.

The following describes how we defined thresholds for each of the methods:

• Gene mates: We test all pairs at confidence > t, incrementally lowering t.

• Pearson correlation: We test all pairs with absolute Pearson correlation > t, incrementally
lowering t.

• Ranked correlation: For each gene, we calculate a ranked list of genes most strongly cor-
related with it. For a given reference gene, a gene of rank one means that no other gene in
the data has higher correlation to the reference gene. Rank five means there are exactly four
such genes. We rank a given pair with the lower of the two possible ranks. A pair can have
low absolute correlation but low rank if there are no genes with higher correlation. A pair
can have high rank but high absolute correlation if there are many other genes well correlated
with each of the genes in the pair. We test all pairs with rank < t, incrementally raising t.

• Clustering: We clustered the genes using Eisen’s hierarchical clustering algorithm [30]. This
creates a hierarchy of clusters. For each depth in the hierarchy, we test all gene pairs that
appear in the same cluster, incrementally decreasing the depth.

The resulting ROC curves for the mating pathway are presented in Figure 3.14 and for AA metabolism
in Figure 3.15.

3.7. SYSTEMATIC EVALUATION 53

0 50 100 150 200 250 300
0

50

100

150
Metabolism: distance < 7

false positives

tru
e

po
si

tiv
es

Bayesian network
ranked correlation
clustering
Pearson correlation

0 50 100 150 200 250 300
0

50

100

150

false positives

tru
e

po
si

tiv
es

Metabolism: distance < 3

Bayesian network
ranked correlation
clustering
Pearson correlation

Figure 3.15: ROC curves for AA metabolism network

Before comparing the different methods, it is interesting to notice how the performance of the
Bayesian network differs between the datasets. While AA metabolism was clearly superior to mat-
ing in the range of high confidence relations (see Section 3.7.2), the performance of mating signif-
icantly gains on AA metabolism for the middle and low confidence relations. We attribute the loss
of performance in AA metabolism to two factors. First, unlike the mating pathway, our reference
network for AA metabolism contains less than half the AA metabolism genes. Therefore, many
true relations are missing in our network and labeled as false positives. We believe the performance
would have improved had we constructed the full metabolic network. Second, AA metabolism is
part of a very large cluster of highly correlated genes. The multitude of correlated genes along
with the noise in gene expression data possibly obscures the correct reconstruction for all but the
strongest signals.

All four ROC curves establish that Bayesian networks are substantially superior in reconstruc-
tion of molecular pathways. Ranked correlation is always the second best method. Notice, rank one
already contains many false positives, while for Bayesian networks, thresholds with few false posi-
tives exist. For AA metabolism, pairwise correlation performed significantly better than clustering.
This strengthens our observation that metabolic genes whom are closely related in the metabolic
pathway are more strongly correlated in their expression than more distant metabolic genes. On the
other hand, for the mating response, pairwise correlation was inferior to clustering. Indeed, most
of the edges in the reference mating network have low correlation (average correlation of betweens
genes sharing an edge in a mating network is very low). Therefore, correlation is less suited for re-
constructing the mating response. We speculate that clustering (which is also based on correlation)
gained robustness over pairwise correlation by requiring correlation between a set of genes over the
same conditions.

Having demonstrated superiority of the Bayesian network approach, we ask: Which component
of our method is responsible for its success?

One difference is that we used mutual information between discretized expression profiles,

54 CHAPTER 3. BAYESIAN NETWORK MODELS FOR BIOLOGICAL INTERACTIONS

verses correlation between the raw expression values used by the other methods. As noted in Sec-
tion 3.5.1 about 1/3 of the gene mates have low correlation and are therefore less likely to be de-
tected by correlation based methods. The key advantage to discretization is that it focuses on the
conditions in which significant changes occurs. This concentrates most of the score on this set of
significant conditions, while mostly ignoring spurious correlation under the typically large number
of basal conditions in the data. On the other hand, discretization comes with a cost. While many
correct gene mates are only detected due to the discretization, many other correct gene mates are
lost due to bad discretization. We believe a more principled approach that automatically finds the
correct trade off between discretization and raw signal can lead to improved results.

Another crucial factor leading to our success is the bootstrap analysis employed (see Figure 3.11
and Figure 3.12 for the relation between feature confidence and false positive rate). The importance
of bootstrap is further supported by the inferior performance of the single highest scoring Bayesian
network. Comparing to paths of length ≤ 2 in the reference network gives poor results: Mating -
40 true positives verses 206 false positives and AA metabolism- 61 true positives verses 354 false
positives. Thus, without bootstrap, we have a high number of false positives and little confidence in
our results.

Another key factor is our multivariate approach. Bayesian networks take a global viewpoint,
evaluating sets of variables. In this approach, when one gene “explains” the behavior of another,
other genes which provide a similar “explanation” become redundant. This feature is behind the
sparsity of our network and leads to structures such as separators and hubs. One can view the ranked
correlation as a simplistic version of the principle of explaining away. After a gene is “explained”
by its d most highly correlated genes, no others are added. The relatively good performance of the
ranked correlation method suggests that “explaining away” is an important factor in our success.

Unlike ranked correlation, a Bayesian network offers a principled approach to determining if
a gene is redundant given another. How important is this principled approach? Testing the rank
of all gene mates inferred with confidence > 0.75 reveals that most are rank one in respect to
mutual information. Only 12 out of 138 gene mates (mostly metabolic) are an exception. This
finding suggests that for this particular dataset, a method that applies bootstrap analysis to a simpler
procedure based on ranking (either using mutual information or correlation) can lead to results of
similar quality. We believe the capability of Bayesian networks to detect combinatorial regulation
might come into play for more suitable datasets (e.g. more data, higher organisms or proteomic
data).

3.8 Discussion

In this chapter we presented an approach for analyzing gene expression data that builds on the
theory and algorithms for learning Bayesian networks. We described how to apply these techniques
to gene expression data. The primary contribution of this approach is an automated methodology for
finding detailed subnetworks of interacting genes. We demonstrated the use of this tool by analyzing

3.8. DISCUSSION 55

the Compendium data of S. cerevisiae mutations [51]. Both regulatory, metabolic, and signaling
components are identified, showing the potential of our approach to uncover the three major types
of molecular networks. In addition, we provide a systematic evaluation, demonstrating that the
automatically reconstructed interactions do indeed correspond to known molecular pathways.

The biological motivation behind our approach was similar to previous work on inducing genetic
networks from data [89, 1, 99]. At the time of publication, our method contributed two central nov-
elties. First, the models we learn have probabilistic semantics. This better fits the stochastic nature
of both the biological processes and the noisy experimental data. Second, our focus is on extracting
features that are pronounced in the data, in contrast to previous genetic network approaches that
attempt to find a single optimal model over all genes. To our knowledge, the global deterministic
approaches were never successful on real data.

Our approach is quite different than clustering [3, 30, 51], it attempts to learn a much finer struc-
ture from the data. Our analysis illustrates the differences between our techniques and clustering
methods. On the one hand, we are able to discover inter-cluster interactions between weakly corre-
lated genes. On the other hand, we can uncover finer intra-cluster structure among correlated genes.
This assists us in understanding the roles of genes within a richer context

While this thesis presents some encouraging results, reconstruction of molecular pathways from
genome-wide data remains a difficult and unsolved problem. We list a number of drawbacks. First,
our failure to reconstruct regulatory relations from gene expression data. In Chapter 5 and Chap-
ter 6 we present extensions of Bayesian networks which are more suited towards reconstructing
regulation from gene expression.

Another disappointment is that our analysis did not seem to utilize the full power of the Bayesian
networks and could possibly have been achieved using much simpler add-hoc methods (see Sec-
tion 3.7.3). Nevertheless, we feel that the full Bayesian network approach remains with merit. It
provides a principled framework that can be further extended, tailored and developed towards the
task of molecular pathway reconstruction. Many such developments have already been published:
incorporating DNA binding data into the Bayesian network reconstruction [44], models that focus
on reconstruction of regulation [77, 82], adapting Bayesian networks to E. coli time series data [72],
or using more sophisticated local probability models [70]. We believe that many future successes in
pathway reconstruction can and will be based on the foundations of Bayesian networks.

Chapter 4

Computational Methods for Learning
Bayesian Networks

In this chapter we will present technical developments that solve two practical difficulties that arise
when adapting Bayesian networks to the gene expression domain.

First, we present the Sparse Candidate Algorithm, an efficient heuristic search over Bayesian
Network structures. In this thesis we address the optimization problem of finding a Bayesian net-
work structure using a greedy hill climbing heuristic search, that is capable of handling the massive
number of variables (genes) typically encountered when learning “genetic networks”. When there
are many variables, the search space is extremely large and standard search techniques can spend
most of the time examining candidates that are extremely unreasonable. In Section 4.1 we introduce
an algorithm that achieves quicker learning by restricting the search space to more likely candidates.

Second, we present a scoring function that takes genetic mutations into account. Some gene
expression datasets [51, 53] include profiles of mutated genes. When a gene is mutated, it is dis-
associated from its natural regulatory mechanism. Instead, an external mechanism controls the
expression of the gene. In Section 4.2 we present a modification to the Bayesian scoring function
that deals with mutations.

4.1 The “Sparse Candidate” Algorithm

In this section we outline the framework for our Sparse Candidate algorithm [38]. In Section 2.3,
we formulated learning structure of Bayesian networks as an optimization problem in the space of
directed acyclic graphs. The number of such graphs is super-exponential in the number of vari-
ables. As we consider hundreds and possibly thousands of variables, the search space becomes
prohibitively large. For such domains an efficient search technique is crucial.

We facilitate efficient learning by focusing the attention of the search procedure on more promis-
ing regions of the search space. In a nutshell, we identify a relatively small number of candidate

56

4.1. THE “SPARSE CANDIDATE” ALGORITHM 57

Input:

• A data set D,

• An initial network G0,

• A decomposable score score(G : D) =
∑

i FamScore(Xi,PaG
i : D)

• A parameter k.

Output: A network structure G.

Loop for n = 1, 2, . . . until convergence

Restrict: Based on D and Gn−1, select for each variable Xi a set Cn
i (

|Cn
i | ≤ k) of candidate parents. This defines a directed graph Hn = (X , E),

where E = {Xj → Xi|∀i, j,Xj ∈ Cn
i }. (Note that Hn is usually cyclic.)

Maximize: Find an acyclic network Gn maximizing score(G : D) among
networks that satisfy Gn ⊂ Hn (i.e., ∀Xi, PaGn

i ⊆ Cn
i).

Return Gn

Figure 4.1: Outline of the Sparse Candidate algorithm

parents for each gene based on simple local statistics (such as pairwise mutual information). We
then Restrict our search to networks in which only these candidates of a variable can be its parents.
This results in a much smaller search space in which we attempt Maximize the score of learned
network. Our approach is iterative and uses the learned network to select better candidates for the
next iteration.

4.1.1 Outline of Algorithm

Our procedure is comprised of two basic steps: In the Restrict step, we choose a set of variables
CX = {Y1, . . . , Yk} that are the most promising candidate parents for X . In the Maximize step we
search for a high scoring network constrained so that for every variable X we have PaX ⊆ CX .

A possible pitfall of this approach is that once we choose the candidate parents for each variable,
we are committed to them. Thus, a mistake in this initial stage can lead us astray into finding an
inferior scoring network. We therefore iterate the basic procedure, using the constructed network
to guide the selection of better candidate sets for the next iteration. The resulting procedure has the
general form shown in Figure 4.1.

Before we go on to discuss the details of each step, we address the convergence properties
of these iterations. Clearly, at this abstract level, we cannot say much about the performance of
the algorithm. However, we can easily ensure its monotonic improvement. We require that in
the Restrict step, the selected candidates for Xi’s parents include Xi’s current parents, i.e., the
selection must satisfy PaGn

i ⊆ Cn+1
i for all Xi. This requirement implies that Gn, the network

58 CHAPTER 4. COMPUTATIONAL METHODS FOR LEARNING BAYESIAN NETWORKS

chosen in the nth iteration, is a legal structure in the n+1 iteration. Thus, if the search procedure at
the Maximize step also examines this structure, it must return a structure that scores at least as well
as Gn. Immediately, we get that score(Gn+1 : D) ≥ score(Gn : D). Thus, the score improves
with each iteration. In the following sections, we elaborate on each of the Restrict and Maximize
steps.

4.1.2 Choosing Candidate Sets

Greedy hill-climbing search procedures for Bayesian network structure examine all possible local
changes (e.g. edge addition, removal or reversal) and apply the one that leads to the biggest improve-
ment in score. There are O(n2) possible changes, where n is the number of variables. It seems,
however, that most of the candidates considered during the search can be eliminated in advance.
For example, if X and Y are almost independent in the data, we might decide not to consider Y as
a parent of X1. More generally, we use statistical cues from the data to restrict the set of networks
we are willing to consider. We use measures of dependency between pairs of variables to focus our
attention during the search. For each variable X , we find a set of variables, Y1, . . . , Yk, that are
the most promising candidate parents for X . The intuition is that if there is a strong dependency
between two variables X and Y , then they should be “near” each other in the network. Thus, instead
of having n− 1 potential parents for a variable, we only consider k possible parents, where k � n.

The general outline of the restrict step is shown in Figure 4.2. We assign each Xj some score
of relevance to Xi. As the candidate set of Xi, we choose those variables with the highest score.
One could consider several possible scores to measure relevance of a potential parent Xj to Xi.
In Friedman et al. [38] we examine alternative scores and compare their performance. Based on
our experiments, one of the most successful measures, denoted MScore(Xi, Xj : G), is simply the
improvement Xi’s local score if we were to add Xj as an additional parent. In the following, we
discuss the rationale behind this score, by reviewing weaknesses of simpler scores that lead us to
using MScore(, :).

We first consider a simple and natural measure of dependence, which is mutual information:

II(X;Y) =
∑

x,y

P̂ (x, y) log
P̂ (x, y)

P̂ (x)P̂ (y)
(4.1)

Where P̂ denotes the observed frequencies in the dataset. The mutual information is always
non-negative. It is equal to 0 when X and Y are independent. The higher the mutual information,
the stronger the dependence between X and Y (see [22] for more details).

While in many cases mutual information is a good criterion for the candidate parents, there are
simple cases for which this measure fails.

1This is a heuristic argument, since X and Y can be marginally independent, yet have strong dependence in the
presence of another variable (e.g., X is the XOR of Y and Z). We assume such cases are rare.

4.1. THE “SPARSE CANDIDATE” ALGORITHM 59

Input:

• Data set D

• A network G,

• parameter k.

Output: For each variable Xi, a set of candidate parents Ci of size k.

Loop for each Xi i = 1, . . . , n

• Calculate MScore(Xi, Xj : G) for all Xj 6= Xi such that Xj 6∈ PaG
i

• Choose x1, . . . , xk−l with highest ranking , where l = |PaG
i |.

• Set Ci = PaG
i ∪ {x1, . . . , xk−l}

Return {Ci}

Figure 4.2: Outline of the Restrict step

]t

C

A

B

D

Figure 4.3: Network for Example 4.1.1

Example 4.1.1: Consider a network with 4 variables A,B,C , and D illustrated in Figure 4.3. We
can easily select parameters for this network such that II(A;C) > II(A;D) > II(A;B). If we select
only two candidates for A, based on mutual information, we would select C and D. These two,
however, are redundant since once we know C , D adds no new information about A. Moreover,
this choice does not take into account the effect of B on A, and would therefore fail to find this true
parent of A.

This example shows a general problem in pairwise selection, which our iterative algorithm attempts
to overcome. After we select C and D as candidates, a good learning procedure only sets C as a
parent of A. Given that C is a parent of A, we must reestimate the relevance of B and D.

Which score can correctly reestimate the relevance? Recall that in a Bayesian network, Xi’s par-
ents shield it from its non-descendants (see Section 2.1.2). This suggests that we measure whether
the conditional independence statement “Xi is independent of Xj given Pai” holds. Equivalently,
we can estimate how strongly this statement is violated. The natural extension of mutual information

60 CHAPTER 4. COMPUTATIONAL METHODS FOR LEARNING BAYESIAN NETWORKS

for this task, is the notion of conditional mutual information:

II(X;Y | Z) =
∑

Z

P̂ (Z)
∑

X,Y

P̂ (X,Y |Z) log
P̂ (X,Y |Z)

P̂ (X|Z)P̂ (Y |Z)
(4.2)

This measures the error we introduce by assuming that X and Y are independent given different
values of Z . When G is the empty network, this measure is equivalent to II(X;Y). Note that
although shielding can remove X’s ancestors from the candidate set, it does not “shield” X from its
descendants.

A deficiency of this measure is that it does not take into account the cardinality of various
variables. For example if both Y and Z are possible candidate parents of X , but Y has two values
(one bit of information), while Z has eight values (three bits of information), we would expect that
Y is less informative about X than Z . On the other hand, we can estimate P (X|Y) more robustly
than P (X|Z) since it involves fewer parameters.

Such considerations lead us to define a score which penalizes structures with more parame-
ters: The more complex the model is, the easier we are misled by the empirical distribution. In
order to design such a score, we reexamine the shielding property. Using the chain rule of mutual
information:

II(Xi;Xj | Pai) = II(Xi;Xj ,Pai)− II(Xi;Pai) (4.3)

That is, the conditional mutual information is the additional information we get by predicting X i

using Xj and Pai, compared to our prediction using Pai alone. Since the term I(Xi;Pai) does not
depend on Xj , we don’t need to compute it when we compare the information that different Xj’s
provide about Xi. Thus, II(Xi;Xj ,Pai) is an equivalent measure to conditional mutual information.

Now, if we consider the score used in learning Bayesian network structure (see Section 2.3.2)
as cautious approximation of the mutual information with a penalty on the number of parameters,
we get the score measure;

MScore(Xi, Xj : G) = FamScoreB(Xi, Xj ∪Pai : D) (4.4)

This simply measures the score when adding Xj to the current parents of Xi. This completes the
motivation behind the derived score.

4.1.3 Learning with Small Candidate Sets

In this section we examine the problem of finding a constrained Bayesian network attaining a max-
imal score. Formally, we attempt to solve the following problem:

Definition 4.1.2: Maximal Restricted Bayesian Network (MRBN)
Input:

• A set D of instances

4.1. THE “SPARSE CANDIDATE” ALGORITHM 61

• A directed graph H of bounded in-degree k

• A decomposable score S

Output: A network structure G so that G ⊆ H , that maximizes S with respect to D.

Proposition 4.1.3: MRBN is NP-hard.

This follows from a slight modification of the NP-hardness of finding an optimal unconstrained
Bayesian network [12]. Therefore, we resort to using the greedy hill-climbing algorithm described
in Section 2.3.2. The only difference being that we restrict the “Add” operator to the candidate
parent sets.

If MRBN remains computationally hard, what do we gain by using the sparse candidate algo-
rithm? Our gain is two-fold: First, when limiting the possible parents of each variable, the search
space becomes considerably smaller, thus with the same number of steps we sample a larger portion
of the space. Furthermore, the computational cost of each such step is significantly reduced. We
elaborate on these points.

The number of possible Bayesian networks is extremely large. Assume we limit each variable
to at most k parents, then there are O(

(n
k

)

) possible parent sets. If the choice of parents for each
variable were independent, there would be O(

(n
k

)n
) possible networks to search over. Of course,

acyclicity constraints disallow many of these networks, but removing cyclic networks from consid-
eration does not have a significant effect on the number of networks. On the other hand, in MRBN,
we have only O(2k) possible parent sets for each variable. Thus, while the search space for MRBN
remains exponential in size, it is an order of a magnitude smaller than the search space for Bayesian
networks with a bounded in degree.

Examining the time complexity for each iteration also points in favor of MRBN. When uncon-
strained, the initial iteration of greedy hill climbing considers all possible directed edges between
any pair of variables in X , calculating the score for each of these O(n2) initial edge additions to the
network. After that, each iteration requires calculation all O(n) possible edge additions, removals
and reversals for the variables whose family changed in the previous iteration. In comparison, for
MRBN we begin with O(kn) initial calculations after which each iteration only requires O(k) cal-
culations.

Finally, A large fraction of the learning time involves collecting sufficient statistics from the
data. Such statistics are needed for each combination of variable and parents considered during the
learning. We gather these counts from the input data instances, often reading them over many times.
Here again restricting to candidate sets saves time. When k is reasonably small, we can compute the
statistics for {Xi} ∪Ci in one single pass over the input. All the statistics we need for evaluating
subsets of Ci as parents of Xi can then be computed by marginalization from these counts. Thus,
we can dramatically reduce the number of statistics collected from the data.

62 CHAPTER 4. COMPUTATIONAL METHODS FOR LEARNING BAYESIAN NETWORKS

A Divide and Conquer Paradigm

In this section we show how can the combinatorial properties of the candidate graph H be utilized
in order to efficiently find the maximal scoring network. Evidently, what makes MRBN hard is
the acyclicity constraint. Otherwise, we would have selected, for each variable Xi, the parents that
attain maximal weight.

“Divide and Conquer” is one of the most effective paradigms for designing algorithms. We
apply this paradigm to MRBN as follows: first, we decompose the graph into components, so that
their solutions efficiently combine in a acyclic manner. Next, given such a decomposition, we find
acyclic solutions in each component and combine them into a global solution. This reveals another
key advantage of MRBN over regular Bayesian network optimization, which is that the sparse nature
of the candidate graph H often allows efficient decompositions of this sort.

The simplest such decomposition of this form is one that disallows intercomponent cycles, i.e,
strongly connected components.

Definition 4.1.4: [20] Given a directed graph H = (V,E), a subset of vertices A ⊆ V is strongly
connected if for each X,Y ∈ A, H contains a directed path from X to Y and a directed path from
Y to X . The set A is maximal if there is no strongly connected superset of A.

It is clear that two maximal strongly connected components must be disjoint, and there cannot
be a cycle that involves vertices in both of them (for otherwise their union would be a strongly
connected component). Thus, there is a unique partition of the vertices in H into maximal strongly
connected components. Every cycle in H will be contained within a single component. Thus, once
we ensure acyclicity of a chosen solution subgraph “locally” within each component, we get an
acyclic solution over all the variables. This means we can search for a maximum on each component
independently.

In order to decompose strongly connected graphs, we must consider potential cycles between
the components. Therefore, our goal is to find small “bottlenecks” through which these cycles must
go. We then consider all possible ways of breaking the cycles at these bottlenecks. The separators
defined below are such bottlenecks.

Definition 4.1.5: A separator2 of a directed graph H = (V,E) is a set S ⊆ V of vertices so that:

1. H \ S has two components H ′
1 and H ′

2 with no edges between them. For j ∈ {1, 2} let
HS

i = H ′
i ∪ S. (We omit the superscript where it is clear from context)

2. For each Xi,∃j ∈ {1, 2} so that {Xi ∪Ci} ⊆ Hj

2The standard definition of an undirected graph seperator requires only the first of the two items in the definition. The
second item is specific to our use of the term

4.1. THE “SPARSE CANDIDATE” ALGORITHM 63

The second property ensures that, for each variable, we can search for the optimal choice of
parents in only one component (H1 or H2). In the divide and conquer algorithm for MRBN we
search for two optimal acyclic solutions G1 ⊆ H1 and G2 ⊆ H2 independently. Unfortunately, the
combined graph G = G1 ∪ G2 might be cyclic. The first property of separators ensures that the
source of potential cycles in G involve at least two vertices in the separator S.

This suggests a way of ensuring that the combined graph will be acyclic. If we force some
order on the vertices in S and require both G1 and G2 to respect this order, then no cycles can
form. Given a small separator S, our approach considers all |S|! possible orders. For each order, we
independently find the optimal G1 and G2 that respect this order. We finally choose the order that
maximizes the score of G = G1 ∪G2.

We can recursively decompose H using separators. A cluster tree, defined below, is a repre-
sentation of such a recursive decomposition. The idea is similar to those of standard clique-tree
algorithms used for Bayesian network inference (e.g., [57]).

Definition 4.1.6: A Cluster Tree of H is a pair (U, T), where T = (J, F) is a tree and U = {Uj |j ∈

J} is a family of clusters, subsets of {X1, . . . , Xn}, one for each vertex of T , so that:

• For each Xi, there exists j ∈ J such that {Xi ∪ Ci} ⊆ Uj .

• For all i, j, k ∈ J , if j is on the path from i to k in T , then Ui ∩ Uk ⊂ Uj . This is called the
running intersection property.

Definition 4.1.7: [8] The treewidth of a graph H is the size of the largest cluster (in number of
vertices) in the cluster tree of H .

In [38] we present a recursive dynamic program that uses cluster tree decomposition to search
for the optimal Bayesian network constrained by H . Overall, the algorithm has the following com-
plexity:

Theorem 4.1.8: Given a candidate graph H with a bounded indegree of k (number of candidates
for each variable). If c is the treewidth of H and l is the number of clusters, then MRBN can be
solved in O(2k · (c + 1)! · l).

In summary, the algorithm is linear in the size of the cluster tree but worse than exponential in
its treewidth. Furthermore, if there is a small (i.e. size of largest cluster is bounded by a constant)
cluster tree, then it can be found in polynomial time [8]. Thus, MRBN has a polynomial time
solution for all graphs of bounded treewidth.

64 CHAPTER 4. COMPUTATIONAL METHODS FOR LEARNING BAYESIAN NETWORKS

4.1.4 Empirical Results

In this section, we validate the effectiveness of the Sparse Candidate algorithm by comparing it to
standard greedy hill climbing (with no restriction to candidate parents). We compare these search
procedures based on both their performance in the task at hand, and their computational cost.

For this comparison, we devised synthetic dataset. We used the cell cycle expression data of
Spellman et al. [90]. This data set contains 76 gene expression profiles that measure six time series
each using a different cell cycle synchronization method. Spellman et al. [90] identified 800 genes
whose expression varied during cell-cycle. We learned a Bayesian network over these 800 genes
and then sampled 5000 instances from the learned network.

In the reported experiments we use this same implementation of the greedy hill-climbing pro-
cedure both for the Maximize phase of the sparse candidate algorithm, and as a search procedure
by itself. Thus the only difference is the restriction of the local changes to the candidate parent set.
In all of our experiments we use the BDe score of [46] with a uniform prior. At each iteration, the
procedure examines the change in the score for each possible move, and applies the one that leads
to the biggest improvement. These iterations are repeated until convergence. In order to escape
local maxima, the procedure is augmented with a simple version of TABU search. It keeps a list of
the N last candidates seen, and instead of applying the best local change, it applies the best local
change that results in a structure not on the list. Note that because of the TABU list, the best allowed
change might actually reduce the score of the current candidate. We terminate the procedure after
some fixed number of changes failed to result in an improvement over the best score seen so far.
After termination, the procedure returns the best scoring structure it encountered.

We evaluate the quality of the networks found by each algorithm based on their score. The cost
is evaluated based on both the running time and the number of sufficient statistics computed from the
data. We report running times on a Pentium II 300MHz machine running Linux. To minimize the
number of passes over the data we use a cache that allows us to use previously computed statistics
and to marginalize them for obtaining the statistics of subsets. We report the number of actual de
novo computation of statistics that were required by the algorithms.

The results are reported in figure 4.4. First, we note that while the first iteration of the algorithm
finds reasonably high scoring networks, subsequent iterations improve the score. Thus, the re-
evaluation of candidate sets based on our score does lead to important improvements. As we can
see, the Sparse Candidate algorithm achieved significantly higher scores in much less time. The
greedy hill-climbing search stopped because of lack of memory to store the collected statistics. At
that stage it was far from the range of scores achieved by Sparse Candidate algorithm.

4.2 Modeling Mutations

In this section we present a scoring function that is suited for expression profiles of mutated strains
and we discuss how gene expression profiles of mutated strains enhance learning causality. To

4.2. MODELING MUTATIONS 65

-650

-600

-550

-500

-450

-400

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
co

re

Time

Greedy HC
Disc 5

Disc 10
Score 5

Score 10
-650

-600

-550

-500

-450

-400

0 100000 200000 300000 400000 500000 600000

S
co

re

Collected Statistics

Greedy HC
Disc 5

Disc 10
Score 5

Score 10

Figure 4.4: Comparison of the Sparse Candidate Algorithm with standard greedy hill-climbing.
The greedy Hill-Climbing curve is significantly inferior to all the SPC curves. Score 5 and 10
represent the Sparse Candidate algorithm as presented in Section 4.1.2 with 5 and 10 candidate
parents, respectively. Disc represents a slightly different score for re-estimating the candidates in
each iteration.

develop this scoring function, we treat our Bayesian network as a causal network. Causal networks
model not only the underlying probability distribution, but also the causal mechanism responsible
for the observed behavior. Causal networks have a stricter interpretation w. r .t the meaning of
edges: the parents of a variable are its immediate causes. The main difference between causal and
Bayesian networks comes to play when we try to predict the outcome of an interventional query:
What would happen if we mutate gene X?

4.2.1 Modeling an Intervention

One of the uses of microarrys is to measure the affect of a genetic mutation. In such an experiment,
a gene (or set of genes) is either deleted or over-expressed and the global effect of this mutation on
the expression of all genes is measured. Typical analysis [49, 51] takes a pairwise approach and tests
the expression of which genes displays a significant change between the wild-type and the mutated
strains. The list of differentially expressed genes is then inferred to be affected by the mutated gene,
creating a list of relations: mutated gene X affects the expression of gene Y . In the following, we
describe a principled method to incorporate expression profiles of mutated strains into learning of
causal networks. Our approach leads to the inference of causal relations in a more global context.

Samples of mutant strains contradict a basic assumption made by our Bayesian network learning
algorithm (Section 2.3), which is that each data instance was sampled from the same underlying
distribution. For instance, by knocking out gene X , we replace the original molecular control on
X’s expression (its regulating parents) by an external one. Thus, any consequent measurement (in
which X’s value is constantly set to 0), will behave differently than X’s conditional distribution on
its parents in the wild type strains. Therefore, it is important to explicitly model this mutation into
our learning algorithms.

66 CHAPTER 4. COMPUTATIONAL METHODS FOR LEARNING BAYESIAN NETWORKS

�

� ��������

�

Figure 4.5: Example of ideal intervention: Assume the variable X is mutated in G. We construct
the corresponding Gdo(X=x) by removing all edges incoming from PaX (red edges)

Formally, we model a mutation, denoted do(X=x), as an Ideal Intervention [74] which deter-
ministically sets the expression of gene X to value x. This intervention disables the natural causal
mechanisms that affect X and replaces them with an external deterministic mechanism. In addi-
tion, we assume that the intervention only affects X’s causal mechanism and leaves intact all other
causal mechanisms in the model, i.e., all other variables behave according to their respective con-
ditional distribution. More formally, given a causal network G, an ideal intervention defines a new
causal network Gdo(X=x), identical to the G, except that all incoming edges into X are removed.
In Gdo(X=x), X becomes a root node associated with the probability distribution Pr(X = x) = 1

(See Figure 4.5 as an example). Note that X’s outgoing edges are not affected by such an interven-
tion. When a number of different variables are mutated in the same sample, we remove the edges
incoming to each of these variables.

By modeling mutations, they can be used for causal inference. We illustrate this point with the
following thought experiment. Consider the following pair of networks: X → Y and Y → X .
As Bayesian networks, the two are equivalent and can not be distinguished based on observational
data alone (without mutations). Assume that we mutate X (do(X = 0)), then as causal models,
we expect each of the two models to respond differently. If the causal model is X → Y , then
Y ’s causal mechanism remains intact. Therefore, the same conditional distribution measured in
both the mutated and wild-type samples (P (Y | do(X = x)) = P (Y | X = x)). On the other
hand, if Y → X is the causal model, the mutation disables the causal mechanism responsible
for the dependency between the two variables. When X is mutated the variables X and Y become
independent (P (Y | do(X = x)) = P (Y)). Therefore, we expect to measure a different conditional
distribution in the mutant and wild-type samples. While we could not distinguish between the two
models using observations (wild-type samples) alone, a mutation differentiates between them.

Note, in typical analysis of mutant strains the differentially expressed genes are inferred to be
the downstream targets of the mutated gene. In contrast, the global nature of our reasoning allows
us to reach a causal conclusions upstream of the mutation. In the above example, if we mutate X

and observe a different conditional distribution between the wild-type and mutated samples (P (Y |

4.2. MODELING MUTATIONS 67

do(X = x)) 6= P (Y | X = x)), we infer that the causal mechanism between X and Y has been
disrupted. Since a mutation in X disrupts the mechanism of its direct incoming causes, we infer
that Y causes X , or in our terminology, Y regulates X .

4.2.2 Scoring with Mutations

The scoring function described in Section 2.3.2 assumes that all samples are drawn from the same
network structure. We adapt that score to properly handle samples from different mutant strains
(under the model of an ideal intervention). In such datasets, the underlying Bayesian network
associated with each sample differs based on the mutated genes in the sampled strain.

Similarly to [17], we make the following set of assumptions:

• Our samples are independent random samples from a causal network. This causal network
represents both the probability distribution sampled and the causal relationships in the data.

• Each mutation is an ideal intervention, i.e., it disables the normal causal mechanism of the
mutated gene and an independent causal mechanism deterministically sets its value. Further-
more, this intervention does not directly affect the causal mechanism of any other gene.

• The data is complete, there are no missing or hidden variables.

• Global and local parameter independence (see Definition 2.3.4 and Definition 2.3.5).

• Parameter modularity (see Definition 2.3.7).

• The prior distribution of all parameters is Dirichlet.

One of the key properties of the Bayesian scoring function is that the score decomposes into a
product of local entities, each depends only on X and PaX (see Proposition 2.3.8). Unfortunately,
when D contains mutations, the instances are not associated with a single structure. Therefore, at
first glance, such a decomposition might seem problematic. We shall now show how this problem
can be overcome.

We define the following notations. DenoteM[m] to be the set of mutations occurring in the mth
sample. LetM be the collection of all sets of mutations occurring in D (We use the notationM[D]

when the dataset is not clear from the context). We donate by GM the set of all graphs derived from
G based on the mutations occurring inM, i.e., GM = {Gdo(M[m])}

M
m=1. Following the Bayesian

approach, the appropriate intervention score would be:

scoreInt(G : D) = log P (D | G,M)P (G)

= log P (G)
∫

P (D | G,M, θ)P (θ | M,G)dθ

Given that the instances are independently sampled from some causal model (some instances
being observations and others ideal interventions), we decompose the likelihood by samples. The

68 CHAPTER 4. COMPUTATIONAL METHODS FOR LEARNING BAYESIAN NETWORKS

probability of each sample is calculated using the appropriate graph, Gdo(M[m]). Given the assump-
tion of complete data, the likelihood decomposes further as follows.

P (D | G,M) = log

∫

P (θ | M[m],G)
M
∏

m=1

P (X [m] | M[m],Gdo(M[m]), θ)dθ

= log

∫

P (θ | M[m],G)
M
∏

m=1

n
∏

i=1

P (Xi[m] | M[m],Pa
Gdo(M[m])

i , θ)dθ

Our assumptions of parameter independence and parameter modularity allow us to calculate the
contribution of each variable independently with out being affected by the choice of parent sets for
other variables. Thus, the expression for each variable Xi decomposes as a separate integral that
depends only on its parents in Gdo(M[m]) and the associated parameters. The key point to notice is
that while GM might contain many different graphs, if we focus our attention to a single variable,
Xi, we find only two possible sets of parents: PaG

i for samples where Xi in not mutated and Xi is a
root in samples where it is mutated. Furthermore, the parameters of Xi in the non-mutated samples
are independent of the mutated samples.

P (D | G,M) =
n
∏

i=1

∫

P (θi | M[m],PaG
i)

M
∏

m=1

P (Xi[m] | M[m],Pa
Gdo(M[m])

i , θi)dθ

=
n
∏

i=0

∫

P (θi | M[m],PaG
i)
∏

M0
i

P (Xi[m] | M[m],PaG
i , θi)dθ

∫

P (θi | M[m])
∏

M1
i

P (Xi[m] | M[m], ∅, θi)dθ

WhereM1
i = {m | Xi ∈ M[m]} andM0

i = {m | Xi /∈ M[m]}. Notice that in the samples
where Xi ∈M[m], the value of Xi is deterministically set to x. Therefore:

∫

P (θi | M[m])
∏

M1
i

P (Xi[m] | M[m], ∅, θi)dθi = 1

According to our assumptions, for each variable Xi, both the likelihood and structure prior
depends only on Pai

G and θi. Thus, similarly to the case of observational samples alone, the scoring
function decomposes into local functions associated with each variable. We therefore define:

scoreInt(G : D) =
n
∑

i=1

log P (Pai
G)

∫

P (θi | M[m],PaG
i)
∏

M0
i

P (Xi[m] | M[m],PaG
i , θi)dθ

(4.5)

4.2. MODELING MUTATIONS 69

and denote the individual contribution of Xi’s family by: FamScoreInt(Xi,PaG
i : D)

When assuming Dirichlet priors this leads to the same closed form formula derived in Eq. (2.11).
The only difference being that the counts M [U] and M [xj

i ,u] are tallied only over the samples
Xi 6∈ M[m].

FamScoreInt(Xi,PaXi
: D) = log

∏

u∈Val(PaXi
)

Γ(αxi|u)

Γ(αxi|u + M [u])

∏

x
j
i
∈Val(Xi)

Γ(α
x

j
i
|u

+ M [xj
i ,u])

Γ(α
x

j
i
|u

)

(4.6)

4.2.3 Inferring causality with mutational data

The score of Eq. (4.5) is not structure equivalent: The score of two equivalent graphs, G and G ′ is
no longer guaranteed to be the same. This should not come as a surprise, the score was derived in
an intent to use mutational data to differenciate between equivalent graphs. We use the equivalent
graphs X → Y and X ← Y to demonstrate this point

Example 4.2.1: Assume our domain contains the variables (X,Y) and we measure the following
samples:

D = {(0, 0), (0, 1), (1, 1), (1, 1), (1, 0), (0, 0), (do(X = 1), 1),

(do(X = 1), 1), (do(X = 1), 0), (do(X = 0), 0)}

For this data, the score for the graph structure X → Y is -6.46. In contrast, the score for the graph
structure Y → X is : -6.78. Since the score for X → Y is better, we conclude that it is more likely
that X causes Y .

While mutations help determine the causal direction of some edges, usually mutations only help
orient part of the edges, leaving the causal direction of the others undetermined. This motivates
developing a notation of equivalence suited for the mutational setting.

Definition 4.2.2: For a set of interventionsM, we say that the graphs G1 and G2 areM-equivalent,
if for any set of mutations m ∈ M (always including m = ∅) the graph structures G 1

do(m)
and

G2
do(m)

are equivalent.

Using the empty set of mutations, M-equivalence implies equivalence as defined in Defini-
tion 2.2.4. The notion ofM-equivalence is more restrictive refinement of Definition 2.2.4 in which
a larger set of edges are compelled.

Definition 4.2.3: We say that an edge X → Y in G isM-compelled for a set of interventionsM if
all graphs that areM-equivalent to G contain the directed edge X → Y .

70 CHAPTER 4. COMPUTATIONAL METHODS FOR LEARNING BAYESIAN NETWORKS

Y

Z

X

�

Y

Z

X

�

Y

Z

X

������ � �

Y

Z

X

������ � �

Y

Z

X

����

Y

Z

X

����

Y

Z

X

����

Y

Z

X

����(a) (b) (c) (d)

Edge�in�Bayesian�Network
Compelled�edge�in�PDAG
Edge�in�Bayesian�Network
Compelled�edge�in�PDAG

Figure 4.6: v–structures in Gdo(m) are compelled: (a) G does not have a v-structure. (b) Y → X is
removed in Gdo(X=x) creating a v-structure. (c) The edge X → Z is adjacent to a mutated variable
and thus compelled by Theorem 4.2.4. (d) The edge Y → Z is compelled by the second propagation
rule in Figure 2.4

.

Theorem 4.2.4: The following edges areM-compelled in G.

1. All edges participating in a v-structure in G.

2. For each set of mutations m ∈ M, all edges entering or leaving any variable X mutated in
m.

3. All edges compelled by the repeated application of the propagation rules specified by Fig-
ure 2.4.

Proof:

1. Using m = ∅, all graphs must be equivalent to G and therefore contain the same v-structures.

2. Assume X is mutated in m and the edge X → Y ∈ G. Then the skeleton of Gdo(m) contains
the edge X − Y . For any graph G ′ with the edge X ← Y , the skeleton of G ′do(m)

does not
contain the edge X − Y . Therefore Gdo(m) and G′do(m)

are not equivalent. The reasoning for
an edge X ← Y ∈ G is similar.

3. Using the same reasoning as explained in Section 2.2.2, if these edges would not be com-
pelled, a new v-structure not in G or Gdo(m) would form.

Note that the set of rules specified in Theorem 4.2.4 also compels all v-structures in Gdo(m).
The only way a new v-structure can form in Gdo(m) is if G contains the edges X → Z , Y → Z

and Y → X and in Gdo(m) the edge Y → X is removed. This happens only if X is mutated in m,
therefore X → Z is compelled based on the second rule of Theorem 4.2.4. This forms the structure
X → Z − Y , then the second propagation rule in Figure 2.4 compels the edge Y → Z .

Corollary 4.2.5: TheM-equivalence class of G can be represented using a PDAG, P , in which all
M-compelled edges are directed.

4.2. MODELING MUTATIONS 71

Theorem 4.2.6: For anyM-equivalent graphs G1 and G2 and any dataset D, s.t. M[D] ⊆ M, the
following holds:

scoreInt(G
1 : D) = scoreInt(G

2 : D)

We note that our definition of M-equivalence is sound but not complete. While all graphs in
aM-equivalence class are score equivalent, our definition ofM-equivalence does not necessarily
include all score equivalent graphs.

We begin with a number of lemmas that aid the proof of Theorem 4.2.6.

Lemma 4.2.7: Let G1 be a DAG containing the edge X → Y and G2 be a DAG identical to G1

except that X → Y is replaced with X ← Y . Then G1 and G2 areM-equivalent iff X → Y is a
covered edge in G1.

This is variation of Theorem 2.2.8, adjusted to the concept ofM-equivalence.

Lemma 4.2.8: Let G1 be a DAG containing the edge X → Y and M be a set of interventions
s.t. neither X nor Y are mutated inM. Let G2 be a DAG identical to G1 except that X → Y is
replaced with X ← Y . If X → Y is a covered edge in G1 then for any m ∈M the graphs G1

do(m)

and G2
do(m)

are equivalent.

Proof: (of Lemma 4.2.8) Using Lemma 4.2.7 it is enough to show that G1
do(m)

and G2
do(m)

are
identical except for the orientation of the edge between X,Y and that X → Y is a covered edge in
G1

do(m)
. The construction of Gdo(m) involves removing from G1 all edges incoming into mutated

variables. The parent sets of every variable Z ∈M[m] are equal: PaG1

Z = PaG2

Z ⇒ the exact same
set of edges is removed in both graphs ⇒ the graphs remain identical apart from X − Y . Since

neither X nor Y are mutated, their parent sets remain untouched, therefore PaG1

X = Pa
G1

do(m)

X and

PaG2

Y = Pa
G2

do(m)

Y . Thus if X → Y is covered in G1, it is also covered in G1
do(m)

.

Lemma 4.2.9: Let G1 and G2 be any pair of M-equivalent graphs for a set of mutations M.
Then there exists a sequence of |∆(G1,G2)| distinct edge reversals applied to G1 with the following
properties:

• After each reversal, the resulting graph G isM-equivalent to G2.

• After all reversals, the resulting graph is identical to G2.

• Each edge reversed in G is an covered edge.

72 CHAPTER 4. COMPUTATIONAL METHODS FOR LEARNING BAYESIAN NETWORKS

Proof: This lemma is simple consequence of Theorem 2.2.8 which provides us with a sequence of
covered edges X1 → Y1, . . . , Xk → Yk that define a sequence of single edge reversals between
equivalent structures G1, . . . ,Gk = G2. For i = 1, . . . , k we have Xi → Yi ∈ ∆(G1,G2) ⇒

therefore the edge is not M-compelled ⇒ neither Xi nor Yi are mutated in M (since all edges
incident to mutated variables are M-compelled). Using Lemma 4.2.8 we conclude that for each
m ∈M the graphs G

i−1,do(m) and G
i,do(m) are equivalent, therefore by definition, the graphs Gi−1

and Gi areM-equivalent.

We are finally ready to prove Theorem 4.2.6:

Proof: As a consequence of Lemma 4.2.9 it is enough to prove that the intervention score is equal
for any two M-equivalent graphs that differ only in the orientation of a single covered edge. Let
G1 and G2 be two such graphs and X − Y the edge that they differ on. Since all edges adjacent
to mutated variables are compelled, neither X nor Y are in M. In this case the proof follows
identically to regular notation of equivalence, see Theorem 2.3.12.

4.2.4 Empirical results

We chose the S. Cerevisiae Galactose dataset [53] to empirically compare between the BDe score
and the Intervention score. This dataset was created to study the biochemical pathway of galactose
utilization and its regulation. The dataset is well suited for testing the potential advantages of the
intervention score since it includes perturbations of all the genes in a small and well studied pathway.
These perturbations include deletions of both metabolic and regulatory genes, all whom participate
in the Galactose pathway. Furthermore, this is the only public dataset with 8 samples measured for
each mutant strain (most datasets contain 1-3 samples per strain).

Galactose utilization converts galactose (transported into the cell by GAL2) into glucose-6-
phosphate though a series of enzymes (GAL1, GAL5, GAL7 and GAL10). The regulatory genes
GAL3, GAL4, and GAL80 exert tight transcriptional control over the pathway genes, and to a
certain extent each other. The relations in the pathway are depicted in Figure 4.7. GAL4 is a DNA-
binding factor that strongly activates transcription of the GAL genes. In the absence of galactose,
GAL80 binds GAL4 and inhibits its activity. When galactose is present in the cell, GAL3 binds to
GAL80 and represses its activity, thus freeing an active form of GAL4.

The Galactose dataset [53] measures the expression profiles of wild-type and nine genetically
altered yeast strains, each such strain containing a deletion of a single GAL gene. Each strain
is measured in two different growth conditions: galactose rich and galactose absent, resulting in
20 different conditions related to the galactose pathway. Four samples were measured from each
condition, resulting in a dataset with 80 samples. We constructed a dataset composed of the nine
galactose genes discretized into two values (the dataset is available at URL). We added an extra
variable corresponding to the medium type (galatose rich or depleted). We re-sampled the data using
a 200-fold bootstrap and applied our Bayesian network learning algorithm twice to each sampled
dataset, once using the BDe score and once using the intervention score.

4.2. MODELING MUTATIONS 73

GAL2 GAL1 GAL7 GAL5

GAL10

GAL4

GAL3
GAL80

GAL6

Transporter

G l y col y sis enz y m es

Transcription
F actor

P ost-transcriptional
I nh ib itors

Post-transcriptional�inhibition
Transcriptional�activation
Metabolic�step

Figure 4.7: Galactose utilization pathway.

We compared gene mate features with confidence > 0.7 and edge features with confidence
> 0.5 between the two scores. The intervention score has a considerably larger number of features
in both categories: 20 verses 9 gene mates and 16 verses 4 edge features. Histograms comparing the
distribution of feature confidences between the two scores appears in Figure 4.8. Since the equiva-
lence class for the intervention score orients many more edges, it is not surprising the intervention
score has 4 times as many edge features. We speculate that the preference in edge orientations leads
to a narrowing of the set of paths searched and thus the larger number of gene mates. Furthermore,
the graphs inferred using the intervention score are typically denser, with an average of 2.3 parents
per variable verses an average of 1.6 parents per variable for the BDe score.

In our comparison we used a strict definition for “correct” gene mates: a pair of genes connected
by an edge in Figure 4.7. We did not count relations with the medium variable as it was not included
in our reference graph. The BDe score captured 4/7 correct gene mates: two transcriptional links
(GAL4 – GAL10, GAL4 – GAL3) and two metabolic steps (GAL7 – GAL10, GAL7 – GAL5). The
intervention score captures all the gene mates inferred by the BDe score (with at most 1% difference
in the confidence level) and a few more giving it 8/15 correct gene mates. The gene mates (as well
as edge features) for each score can be examined in Figure 4.9

The big advantage of the intervention score comes into play when comparing the edge relations.
The BDe score captures only one correct feature GAL4 → GAL3 and three incorrect edges from
GAL10 to (GAL1, GAL3 and GAL80). Using the intervention score, almost all correct gene mates
are also correctly oriented edge features, with the exception of (GAL4 – GAL5) which is not ori-
ented in any direction. More striking, contrary to the BDe score, the intervention score captures
almost all of the transcriptional edges from GAL4 to its targets. There is a high confidence directed
edge from GAL4 to each of GAL1,GAL2,GAL3,GAL7,GAL10,GAL80, and only a link to GAL6
is missing.

GAL3 and GAL80 both have a regulatory role and indeed we found a number of outgoing

74 CHAPTER 4. COMPUTATIONAL METHODS FOR LEARNING BAYESIAN NETWORKS

Markov�features

0

2

4

6

8

10

12

14

0.5 0.6 0.7 0.8 0.85 0.9 0.95

Feature�confidence

N
u

m
b

er
�o

f�
fe

at
ur

es

Bayesian�Score

Intervention�score

Edge�features

0

1

2

3

4

5

6

0.5 0.6 0.7 0.8 0.85 0.9 0.95

Feature�confidence

N
u

m
b

er
�o

f�
fe

at
ur

es

Bayesian�Score

Intervention�Score

Figure 4.8: Comparison of feature distribution between the Bayesian and the intervention scores

edges from these regulators: (GAL80→ GAL10, GAL80→ GAL7, GAL80→ GAL3 and GAL3
→ GAL2). While their regulatory effect is indirectly mediated through GAL4, this is mediation
is executed in a post-transcriptional manner. The post-transcriptional protein-protein interactions
between GAL4 – GAL80 and GAL80 – GAL3 are not observed in gene expression measurements.
Therefore, the regulation of each GAL gene should be a logical function of the gene expression of
GAL3,GAL4 and GAL80. We might expect the correct graph structure to contain 3 parents (GAL3,
GAL4 and GAL80) for each GAL gene, but 80 samples are not enough to learn so many parameters.
It is interesting to note that the strength of signal correlates well with the distance in the molecular
chain of events, GAL3→ GAL80→ GAL4→ target. In our inferred network, GAL4 with 6 targets
has the largest number of regulatees, next is GAL80 with 3 targets and GAL3 has one target.

Both scores consistently made the “mistake” of inferring that GAL10, an enzyme in the metabolic
pathway, regulates other genes. Since the “mistake” is consistent, it is possible that this indeed cor-
relates with a real biological signal. Looking back at the raw expression profiles of the GAL10
mutant strain, indeed in the presence of galactose, the expression of the genes inferred to be reg-
ulated by GAL10 (GAL1, GAL3, GAL7, GAL80) significantly changes. GAL10 is an enzyme
responsible for processing Gal-1-P and the metabolite accumulates in its absence. The analysis
done by Ideker et. al. [53] reached similar predictions for GAL10’s regulatory role. They hypoth-
esized that the build up of Gal-1-P triggers some other regulatory mechanism which affects the
expression of the GAL genes. They performed an experiment with a double mutant of GAL1 and
GAL10 in which Gal-1-P does not build up. Consistent with their hypothesis, the expression of
the GAL genes did not change in this double mutant. This is yet another demonstration that care
must be taken when interpreting networks constructed from expression profiles. It is indeed true
that GAL10 indirectly regulates the GAL genes, by causing Gal-1-P accumulation.

4.2. MODELING MUTATIONS 75

GAL2 GAL1 GAL7 GAL5

GAL10

GAL4

GAL3
GAL80

GAL6

Correct�edge�feature
Incorrect�edge�feature
Correct�gene�mate
Incorrect�gene�mate

GAL2 GAL1 GAL7 GAL5

GAL10

GAL4

GAL3
GAL80

GAL6

Transcriptional�edge
Post-transcriptional�edge
Metabolic�edge
Incorrect�edge�feature
Correct�gene�mate
Incorrect�gene�mate�

Transcriptional�edge
Post-transcriptional�edge
Metabolic�edge
Incorrect�edge�feature
Correct�gene�mate
Incorrect�gene�mate�

Figure 4.9: The gene mate and edge features inferred for the BDe score (top) and intervention score
(bottom). The gene mates that do not have a corresponding edge relation are draw as a dashed line,
all edge relations are also gene mates. The arrow type corresponds to the biological interpretation
of the edge.

76 CHAPTER 4. COMPUTATIONAL METHODS FOR LEARNING BAYESIAN NETWORKS

4.2.5 Discussion

While our proposed intervention score might be a first step in modeling genetic mutations within
the framework of Bayesian networks, it suffers from a number of serious drawbacks. First, most
gene expression datasets contain very few samples of each mutation. When the number of genes
and samples is very large and the number of samples for each mutation is small (e.g. in the Com-
pendium [51] dataset there only one sample per mutation for 276 mutations), ignoring the mutation
causes only a minor change in the intervention score. This is contrary to the fact that a mutation
is a very significant event. Our biological assumption is that the mutation is the cause for a large
part of the differential expression observed in the mutated sample. This very strong assumption
is currently not modeled into our intervention score. It is important to develop new methods and
scores that give the mutation its key role in explaining the sample. A possible approach is to search
for networks which “prefer” a causal path from the mutated gene to each of the significantly differ-
entially expressed genes. Recent work by Yeang [102] suggests a model and algorithm along these
lines.

The second drawback is that an ideal intervention is not a realistic model for a biological muta-
tion. The cell is a very robust system which remains fit while withstanding many mutations. When
one gene fails (e.g. gene mutated) the molecular network usually has back-up genes or back-up
pathways that replace its role. This feature, called genetic buffering, is central to the proper func-
tioning of the cell. One example of such a backup system is izozymes. These are formed when
gene duplication creates two copies of a gene and evolotion differentiates their regulation, function
or both. While these genes might have evolved into separate role, they remain close enough to
substitute for each other. Another more concrete example (in S. Cerevisiae) is Dig1 and Dig2, both
inhibitors of invasive growth by binding Ste12. Roberts et. al. [79] show that a double mutation is
needed for a pronounced change in phenotype.

Mutations behave even less “ideally” in the case of over-expression. Membranes separate the
cell into many different compartments. When a protein is significantly over-expressed, it often
begins accumulating in cellular compartments from which it is absent under normal conditions. In
these compartments it can now interact with proteins from which it is separated from under normal
conditions. To our knowledge there is no network learning algorithm that takes genetic buffering
into account.

In this section we presented the importance of modeling mutations into the network learning al-
gorithms. We provided both theoretical motivation and empirically showed the advantage of taking
the mutations into account. We used the Galactose dataset [53] to show that when using the standard
BDe score most of the regulatory relations in the galactose pathway are missed. We demonstrated
that even a simple adjustment to the score leads to the reconstruction of GAL4’s regulatory role for
almost all GAL genes from the same dataset. Our simplistic score and the strong assumptions asso-
ciated with it are only a first step in properly modeling genetic mutations for the task of molecular
pathway reconstruction.

Chapter 5

Focusing on Regulation - MinReg

In this chapter we demonstrate how we adapt the foundations of Bayesian networks to focus on the
learning of regulatory relations between genes. In Section 5.1, we provide motivation and define a
simplified network model for gene regulation: MinReg In Section 5.2, we describe the learning of
such models from data. Section 5.3 provides technical details of our algorithm including theoretical
guarantees on its performance. In Section 5.4, we present an automated methodology to interpret
the resulting model and in Section 5.5, we demonstrate this on Saccharomyces cerevisiae gene
expression data. Section 5.6 offers a more systematic evaluation of our the algorithm’s performance.

5.1 A Regulation Graph

The common approach adapted by many computer scientists to the construction of gene networks
is to attempt useing gene expression data to reconstruct a detailed graph in which the parents of
each gene are the transcription factors that directly regulate it. In Chapter 3 we provided rationale
why this goal is impractical: when learning a network model over a large number of variables,
the number of possible solutions is prohibitively large. Not only is it computationally infeasible
to search for the optimal model, even given the optimal solution, it is bound to overfit the data
and contain many spurious artifacts. Furthermore, many transcription factors are activated post-
transcriptionally, therefore their activity levels are not observed in gene expression data. Indeed,
many researchers do not believe it is possible to reconstruct regulation from gene expression data
alone.

In Chapter 3 we presented a Bayesian network methodolgy that reconstructs biological relations
between genes and applied it to Saccharomyces cerevisiae gene expression data. Contrary to our
expectations, only 4% (see Figure 3.4) of the inferred relations involved a transcription factor and
its target gene. Are there so few regulatory relations because our specific model and learning algo-
rithms are unsuited for the task, or, is there an inherent problem to capture regulatory events from
gene expression data?

The space of possible Bayesian networks is so vast that even if regulatory signals exist in gene

77

78 CHAPTER 5. FOCUSING ON REGULATION - MINREG

expression data, detecting them is like finding a needle in haystack - the existing regulatory sig-
nal often gets lost among many spurious and non-regulatory relations. To develop an algorithm
that focuses on regulatory relations, we invoke a number of biologically-motivated restrictions that
simplify the model and significantly reduce the space of possible networks. A good model should
be simple enough to be robustly inferred from the number of samples at hand, while capturing the
essence of the true regulatory signal.

Our first restriction exploits prior biological knowledge to limit the possible parents in the net-
work to a set of candidate regulators C, i.e., PaX ⊂ C. The chosen candidate set consists of known
and putative regulators in the organism being studied. Thus, our inference focuses on finding which
candidate regulators are actively regulating other genes in the data, instead of finding which genes
function as regulators. Unlike previous approaches [93], which limit themselves to transcription
factors, we expand our set of candidates to proteins involved in different aspects of regulation,
namely transcription factors, signal transducers and protein kinases. While this restriction may miss
“unknown” regulators, it is justified because it enhances the possibility to find regulatory relations.

To justify our use of signal transducers and protein kinases, we stress that in order to capture
a regulation event in gene expression data, we must observe changes in the expression of both the
regulator and the regulatee (target gene). Unfortunately, while transcription factors directly con-
trol transcription, the factors themselves are frequently regulated post-transcriptionally, and their
expression levels are often too low to allow reliable detection with microarrays. In such cases, we
cannot observe the change in their regulatory activity in gene expression profiles. On the other hand,
Signaling molecules, are expressed at significantly higher levels and may be regulated transcription-
ally. Thus, we can capture regulatory relations indirectly, by the change in the expression levels of
the signaling molecule and its indirect target regulatee genes.

The next restriction constrains the structural properties of the regulation graph. We seek a
regulation model (Bayesian network) in which only a limited number of genes have an outdegree
greater than zero. Given the set of candidate regulators, we wish to find a small sub-set of active
regulators which are globally predictive of the gene expression observed in the data. This is based
on both biological and statistical motivation:

1. Given gene expression dataset, only a small fraction of the genome is directly involved in
regulating transcription, and each such “master regulatory gene” may affect the transcription
of many genes.

2. Only when a gene consistently scores high as a parent for many genes, do we believe it
indicates a true signal. An occasional high score as a parent of a single gene is attributed to
spurious chance.

A regulation graph is a Bayesian network with the above restrictions on its structure. The
regulators of gene X (denoted PaX) are its parents in the graph. Thus, each edge connects a
regulator to its regulatee. We now formally define our model of gene regulation:

5.2. LEARNING 79

Gat1 Uga3 Dal80

Tat12

Gap1

Opt2

Tat1

Asp3

Gap1

Opt2

Tat1

Asp3

Bap1

Dal3

Dal2

Dal7

Bap1

Dal3

Dal2

Dal7

Agp5

His5

Arg80

Agp5

His5

Arg80

Met13

Nit1

Regulators

Targets

Figure 5.1: Two layer regulation graph. The top layer is associated with the regulators and the
bottom layer is associated with regulatees. The key concept behind the regulation graph is a small
number of regulators, each with many targets. Note, the illustrated GATA regulation was automati-
cally inferred by our algorithm

Definition 5.1.1: Given a set of genes - X , a set of candidate regulators- C and the constants d and
k, we define a regulation graph, G to be a Bayesian network over X so that:

• All regulators (parents) belong to the candidate set: ∀X,PaX ⊂ C.

• The number of regulators for each gene (indegree) is bounded by d: ∀X, |PaX | ≤ d.

• The total number of regulators in the model is bounded by k: Denote R to be the set of all
regulators in the network, then |R| ≤ k.

The graph structure is best visualized as a two layer graph: in the top layer, a small set of
regulators (chosen from a large set C) and in the bottom layer, all other genes (see Figure 5.1). In
our experiments, d ranges between 3 to 5, k ranges between 20 to 50, |C| is in the order of hundreds,
and |X | is in the order of thousands

5.2 Learning

In this section we present MinReg, a greedy algorithm that reconstructs a regulation graph (Defini-
tion 5.1.1) from gene expression data. Recall, Bayesian networks (Definition 2.1.1) consist of two
components, one structural and one mechanistic component: the expression level of each regulatee
gene is a probabilistic function of its regulators. Our learning algorithm is based on this mechanistic
component: given a training set D = {x[1], . . . ,x[M]} of independent instances of X , our goal is
to find a regulation graph that best explains the data. A good model is one in which the regulators
predict the expression level of their targets.

80 CHAPTER 5. FOCUSING ON REGULATION - MINREG

5.2.1 Optimization Problem

Since a regulation graph is a Bayesian network, the straightforward approach to learning the graph
structure would be to use the heuristic greedy hillcimbing search (see Section 2.3.2) typically used
for this task. This involves traversing the space of legal models in a greedy fashion using local
operators such as adding, removing or reversing a single edge. At each step, the operation that best
improves the score is chosen.

Unfortunately, this approach could fail, because the limited number of regulators specified by
the regulation graph would be quickly used up. Consider the following scenario: We wish to search
for a regulation graph over 2000 genes, limited to 30 regulators. We begin with the empty graph
and in a greedy fashion add the optimal edge at each iteration. In many of these iterations, a new
regulator is added to the regulator setR. Therefore, after little over 30 iterations, no new regulators
could be added toR and all subsequent legal steps would only involve adding edges from regulators
already in R. While these regulators might be the best parents for a small set of genes, thousands
of other genes remain unexplained in the model.

Contrary to learning regular Bayesian networks, the choice of regulators for a gene X is no
longer independent of the regulators chosen for other genes. Since the total number of regulators
in the model is limited to k, choosing a regulator for one gene can limit the choice of regulators
for other genes. A regulator should be added to R only when it is a good choice for many genes
concurrently.

To our advantage is that when the regulator set R is given, finding the optimal regulation graph
constrained to R is polynomial, and for most practical cases efficient. First, for any given variable,
there is a small number of possible parent sets: There are only

(k
d

)

options for PaX : when d ranges
between 3 to 5 and k ranges between 20 to 50, it is quick to calculate the local score for all possible
parents sets and choose the highest scoring set.

PaX = argmaxP⊂R,|P |≤dScore(X;P) (5.1)

While R is not given, the MinReg algorithm will use this property to efficiently search of a good
set of regulators. In comparison, there are

(n
d

)

possible parent sets for Bayesian networks bounded
by an indegree of d. Typically n >> k, thus optimizing the local score when there is no candidate
set is significantly more expensive.

Definition 5.2.1: We define the utility, F (R) of a regulator set R as:

F (R) =
∑

X∈X

max
P⊂R,|P |≤d

Score(X;P) (5.2)

Calculating the utility of a regulator set R is quick and it closely approximates (upper bound) the

5.2. LEARNING 81

score of the optimal network constrained to R. It scores a graph structure resulting from indepen-
dently choosing the optimal parents for each variable, but this structure may contain cycles. A high
scoring Bayesian network can be constructed by transforming this structure into an a-cyclic graph
with minimal effect to the score. Cycles can form only between the genes inR, therefore, acyclicity
can be resolved within a subgraph involving only k nodes. The complexity of solving this problem
is constant in n, though exponential in k. In most practical cases, only a few short cycles form and
the optimal solution can be easily found. In comparison, cycles can form among any n variables in
a Bayesian network, thus, resolving cyclicity can be exponential in n. While 2k is feasible, 2n is
not (k << n).

In our typical setting where k ranges between 20 to 50 and n ≥ 2000, the difference in score
after breaking the cycles is negligible. With high probability this difference would not change our
choice of regulating set R. Therefore, for the remainder of this section we ignore the issue of
cyclicity. We treat F (R) as a scoring function that measures the quality of regulator sets. This
implies a new optimization problem to find a small set of regulators, R, which maximize this score:

Definition 5.2.2: The Best Regulator Set problem: Given a set of genes X , a dataset D, a set of
candidate regulators C, and the constants d and k, we wish to find

R = argmaxR|R⊂C,|R|≤kF (R) (5.3)

This problem is conceptually similar to the Set Cover problem, a classical hard problem. The
challenge is that the regulator set R needs to chosen from a much larger candidate set C and there
are

(|C|
k

)

possible regulator sets. While there does not seem to be any efficient algorithm to find an
optimal solution, in Section 5.2.2 we present an efficient algorithm that finds a model whose score
is close to optimal.

What makes the problem hard is also what makes our solution robust. Consider the following
thought experiment: A regulator r regulates genes X1, . . . , X50. A typical training set consists of
only a small number of noisy gene expression profiles. Therefore, due to spurious signal, Yi 6= r

might be the highest scoring regulator for Xi, i = 1 . . . 50. While r’s score is inferior to Yi, it is
often not far behind. The basic principle behind our approach is that instead of choosing the top
scoring candidate for each single gene, we choose a candidate that scores high for many genes. We
believe a high score with many genes most likely originates from real biological signal in the data.

Scoring Function

Denote by RG the set of regulators in the structure G. Recall, the score of an entire regulation graph
G, decomposes into sum over the local scores for each variable.

score(G : D) = F (RG) =
∑

i

Score(Xi;PaXi
) (5.4)

82 CHAPTER 5. FOCUSING ON REGULATION - MINREG

In previous chapters we used the BDe score (see Section 2.3.2) to score a set of regulators (parents)
for a given gene. A key benefit of the BDE score is that it strongly penalizes the number of param-
eters in a model, thus, limiting the complexity of the optimal model. In Section 4.1.2 we argued
that the BDe score is simply a cautious approximation of mutual information, that also penalizes
the number of parameters.

The complexity of a regulation graph is inherently limited by its definition: Each gene is re-
stricted to at most d regulators, limiting the number of parameters in the model accordingly. There-
fore, we simply use mutual information for our scoring function.

Score(X;PaX) =
∑

x,u

P (x,u) log
P (x,u)

P (x)P (u)
(5.5)

By maximizing the mutual information between regulators and regulatees, we are minimizing the
conditional entropy of the regulatees. Thus, given the values of the regulators, we minimize our
uncertainty when predicting the values for the rest of the genes.

5.2.2 MinReg Algorithm

We now propose a greedy algorithm that searches for the best regulator set and its corresponding
regulation graph: Begin with an empty set of regulators and an empty graph structure. At each itera-
tion, for each possible candidate, we construct an increment regulator set by adding that candidate to
the current regulator set. We calculate the score for each of the increment regulator sets and choose
the one that gives the largest gain. Each time R is updated, we calculate the optimal regulation
graph restricted to the current regulator set R. We continue to iterate until no candidate contributes
a significant gain to the score. A sketch of the MinReg algorithm is presented in Figure 5.2.

A crucial point is to correctly define the gain of a given regulator at each iteration. Note, we
calculate mutual information between a variable and its regulating set. When considering a new
candidate regulator c as a parent for a regulatee gene X , we measure not how much information
c holds on X , but how much additional information c holds. Thus, each of the regulating parents
provide a distinct contribution to the score.

Definition 5.2.3: We define the marginal utility of adding a regulator set C to an already chosen
regulator set R as

F (C|R) = F (C ∪R)− F (R) (5.6)

Using this terminology, at each iteration, we add the candidate regulator with the largest marginal
utility. In order to sharpen the distinction between utility and marginal utility we provide Exam-
ple 5.2.4 below.

Example 5.2.4: We wish to choose two optimal regulators for X between three candidates, Y1, Y2, Y3

5.3. TECHNICAL DETAILS 83

(In realistic cases we would have many more candidates). The table below lists their observed dis-
cetized expression over 16 samples.

Array # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Gene X 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0
Reg Y1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
Reg Y2 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0
Reg Y3 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 0

The pairwise mutual information between X and each of the candidate regulators is: Score(X;Y1) =

0.439, Score(X;Y2) = 0.358, Score(X;Y3) = 0.157. A greedy algorithm would first choose
Y1, the highest scoring regulator. A simple minded approach would then choose Y2, since its
mutual information is second best. Our algorithm works differently. It calculates the mutual
information between X and Y1, Y2 together (same for Y1, Y3). The resulting calculations give
Score(X;Y1, Y2) = 0.532 and Score(X;Y1, Y3) = 0.778. Our algorithm chooses the regulator
that holds most additional utility, in our case Y3. While Y2 had higher mutual information, this
information is overlapping with Y1, both genes explain almost the same set of microarrays. On the
other hand, Y3 provides information on a different set of microarrays.

5.3 Technical Details

5.3.1 Performance Guarantee

MinReg is a greedy algorithm. In each iteration, it chooses the best single regulator according to
some local criteria and adds it to the model. But, this greedy approach does not necessarily lead to a
global optimum. Can we characterize the situations in which the MinReg algorithm is lead astray?
Consider the case where Score(X;A) + Score(X;B) is significantly less than Score(X;A ∪B).
In this situation, neither A nor B would be attractive enough to get selected by themselves in any
of the greedy steps, where as their joint contribution may be significantly higher than any other
combination of regulators. Thus, the greedy algorithm is mislead to choose an inferior regulator set.

In this section we argue that this characterizes the only situation in which our algorithm fails.
We show that if we can bound the severity of such effects, we can derive a worse case error bound
on the algorithm’s performance: in this case, MinReg is an approximation algorithm guaranteed to
find a solution which is not too far from the optimal. To formally prove this guarantee, we introduce
the notation of a-modular functions.

Definition 5.3.1: [63] A function f is α-modular (α ≥ 1) if and only if ∀Z,A,R the following
holds:

f(A ∪ Z|R) ≤ f(A|R) + αf(Z|R)

84 CHAPTER 5. FOCUSING ON REGULATION - MINREG

Note that this is a generalization of sub-modular functions, (f is sub-modular for α = 1). One
might consider α as some measure on the convexity of f over the space of subsets from X . For
larger α, more “synergy” can be gained by joining sets together. We will show that if we can
bound the amount of “synergy” between regulators, we can bound the error of our greedy algorithm
accordingly.

Lemma 5.3.2: The following are equivalent definitions of α-modular functions: ([63])

1. For any S ⊆ T and X /∈ T we have f(X|S) ≥ αf(X|T).

2. For any S ⊆ T we have f(V|S) ≥ αf(V|T).

3. f(A) + αf(B) ≥ f(A ∪B) + αf(A ∩B)

These equivalent formulations offer us another perspective: α-modular functions are “almost” (up
to a factor of α) monotone decreasing. This fits our intuition that as R grows larger, the utility of
adding new regulators diminishes.

Theorem 5.3.3: If F is an α-modular and monotone increasing function, then the MinReg algorithm
(presented in Figure 5.2) is a polynomial time approximation algorithm for the Best Regulator Set:
Denote by OPT, the score of the optimal solution and by GRD, the score of the solution found by
the MinReg algorithm, then

(α + 1)GRD ≥ OPT (5.7)

Proof: Our proof is by induction. For k = 1, the optimal solution is the best single regulator and
therefore GRD = OPT. We assume that (α + 1)GRD ≥ OPT for k − 1 and prove it for k.

Denote by S the regulator set of size k that achieves the optimal solution for F . Set J =

argmaxI∈CF (I), the best single regulator in C and J ′ = argmaxI∈SF (I), the best single regulator
in S. Note, J is the first regulator chosen by the greedy algorithm.

We define the following sub-problem imitating the behavior of the greedy algorithm. Let
F ′(Y) = F (Y ∪ {J}) − F (J), our goal is to find a set of k − 1 regulators that optimize F ′

on C \ {J}. This is exactly what MinReg does after it chooses J in the first iteration. We denote by
OPT′ and GRD′ the scores for optimal and greedy solutions respectively to this new sub problem.
It is easy to see that F ′ is a α-modular function and that our induction holds for F ′ as well.

By the inductive hypothesis, it suffices to show that the increment is α-modular, i.e.:

OPT−OPT′ ≤ (α + 1)(GRD −GRD′) = (α + 1)F (J) (5.8)

Since OPT′ is at least as good as any solution of size k − 1, by definition:

OPT′ ≥ F ′(S \ {J ′}) = F (S \ {J ′} ∪ {J})− F (J) (5.9)

5.3. TECHNICAL DETAILS 85

By α-modularity:
OPT = F (S) ≤ F (S \ {J ′}) + αF (J ′) (5.10)

Subtracting these two bounds give:

OPT−OPT′ ≤ [F (S \ {J ′})− F (S \ {J ′} ∪ {J})] + [αF (J ′) + F (J)] (5.11)

Monoticity of F implies that F (S \ {J ′}) ≤ F (S \ {J ′} ∪ {J}), therefore, the first bracket gives a
negative contribution. Maximality of J implies that F (J) ≥ F (J ′), therefore the second bracket is
≤ (α + 1)F (J).

It remains to show that F is α-modular. Recall, F is a sum of local scoring functions that
measure the mutual information between a gene and its regulators. If mutual information was an α-
modular function, than F as a sum of α-modular functions would be α-modular function too. While
mutual information is always monotone, it is not necessarily α-modular. Specifically, since synergy
(the opposite of α-modularity) is known to play an important role in biological regulation, we do
not expect mutual information to be α-modular in the gene expression domain. Fortunately, while
regulators are synergistic for specific targets, F is a sum over thousands genes. Even if the synergy
between two regulators is very high, this synergy would need to hold for many targets, otherwise
it would average out when summing over all of X . We empirically tested the synergy between
regulators and groups of regulators for our dataset. In practice, by joining regulators together, the
worse factor we encountered was 1.2, thus, we safely assume α-modularity of F with α = 2 in our
dataset.

5.3.2 MinReg Implementation

A general overview of the MinReg algorithm was presented in Section 5.2.2. Several details in
MinReg’s implementation lead to substantial speed-up of the naı̈ve algorithm. Our implementation
can generate a model over thousands of genes within minutes.

First, we define a function fX for each gene X , fX(R) = maxP⊂R,|P |≤d Score(X;P), this is
the optimal contribution of X to F , restricted to a regulator setR. Thus, we have 3 levels of scoring
functions: Score, for a particular pair of gene and its regulators, fX , the optimal score of a single
gene, and F (R) =

∑

X∈X fX(R).

The naı̈ve greedy algorithm has k iterations. In each iteration, F (c|R) is calculated for all
c ∈ C. Each calculation of F (c|R) requires calculating fX(c|R) for all X ∈ X , thus, fX is
calculated k|C||X | times. Calculation of fX requires calculating Score for each of the

(k
d

)

possible
sets of parents, while this is constant in k and d, in practice k could be large. We devise a number
of heuristics based on α-modularity to reduce the number of times we need to calculate each of the
3 functions F , fX , and Score.

We employ a branch and bound approach to F (c|R): the idea is to use the α-modularity of
F to filter out candidates with little potential. In the first iteration, for all c ∈ C we calculate

86 CHAPTER 5. FOCUSING ON REGULATION - MINREG

MinReg Algorithm
set R = ∅, F = 0
do (i = 1 . . .) set F ′ = F {

//For each iteration find c∗ = argmaxc∈CF (c | R)
foreach c ∈ C { set R′ = R ∪ c, F ′′ = 0

foreach X ∈ X { set PX = ∅
//greedily approximate maxP⊂R′,|P |≤d Score(X;P)

for j = 1 . . . d {
PX = PX ∪ argmaxp′∈R′\PX

Score(X;PX ∪ p′) }

F ′′+ = Score(X;PX) }
if F ′′ > F ′ set c∗ = c , F ′ = F ′′ }

R = R ∪ c∗, F = F ′ }
until ∀cF (c | R) < threshold

Figure 5.2: Overview of the MinReg algorithm. The algorithm consists of two nested greedy loops.
The external loop finds the optimal set R of k regulators. For each X ∈ X an internal loop finds an
optimal set of parents PaX .

Util(c) = F (c) =
∑

X∈X Score(X; c). We organize the candidate regulators in a heap sorted by
Util(c). At any given time, Util(c) = F (c|A), for some A ⊆ R. The α-modularity of F ensures
that αUtil(c) ≥ F (c|R) (see Lemma 5.3.2). In most cases, we expect the regulator with the highest
marginal utility to be towards the top of the heap.

Once a new regulator is added to R, the marginal utilities change and need to be recalculated.
In each subsequent iteration, we traverse down the heap and only re-evaluate candidates for whom
α ∗Util(c) is greater than the best marginal valuation found thus far, denoted c∗. Each time F (c|R)

is calculated, we use this value to update Util(c) in the heap. Once we reach a candidate so that
α∗Util(c) < F (c∗|R) we stop traversing the heap, α-modularity ensures that none of the candidates
beyond this point can be better than c∗. While this branch and bound does not change the worst case
complexity, for most practical cases only the few topmost candidates are examined in each iteration.

While the previous speed-up came at no loss in the quality of the final solution, the next two
heuristics reduce accuracy. These heuristics are based on the assumption that Score is almost α-
modular (though probably by a larger factor than F). While regulation is sometimes synergistic,
functions such as XOR are rare in biology. We expect that even when synergy exists, it is bounded by
a reasonable constant. More importantly, we expect the synergistic pairs are themselves uncommon.
We assume the probability that two small randomly chosen sets of regulators are highly synergistic
in relation to a random target is very small. Thus, as a close approximation, we treat Score as
α-modular.

Similarly to how Util(c) approximates F (c|R), we cache UtilX(c) as an approximation of
fX(c|R). Whenever F (c|R) is calculated, we do so only approximately: F (c|R) =

∑

X∈X UtilX(c).
In the first iteration we initialize UtilX(c) = fX(c), for each c ∈ C and X ∈ X . In subsequent

5.4. ANNOTATING REGULATORS 87

iterations, we only recalculate fX(c|R) (and update UtilX(c)) for those X’s whose parent set PaX

changed in the previous iteration. This is especially effective in later iterations where PaX rarely
changes.

Finally, instead of calculating fX exactly, we approximate it using a greedy algorithm similar to
Figure 5.2. We start with no parents and at each iteration add best parent, argmaxc∈RfX(c|PaX)

to PaX . This only requires d|R| calculations of Score instead of
(|R|

d

)

. Assuming α-modularity
of Score, by applying the same proof used for Theorem 5.3.3, this greedy algorithm is a α + 1

approximation of fX .

5.4 Annotating Regulators

Learning a high scoring model is only the first step when analyzing data. Once a model is inferred,
an interpretation that associates the abstract model with biological meaning is no less important. In
this section we describe an approach to extract biologically meaningful features from the resulting
regulation graph. We employ local features (e.g. Gene 1 regulates Gene 2) to deduce global ones
(e.g. Gene 2 regulates cell wall organization). By using multiple local relationships, we devise a
method to answer questions on the global role of regulators, such as “What is the biological process
or molecular function that a gene regulates?”.

While the basic building block of our model is the local regulated relationship, the main power
of our framework lies in its global interpretation. Individual local relations must be treated with
caution: they may only indicate spurious artifacts or co-regulation. As an alternative, we gain
robustness by annotating each regulator according to prominent features of its entire regulatee set.
For instance, if Gcn4, a activator of amino acid (AA) metabolism, is a regulator in our model.
If the reconstruction is good, we expect Gcn4 to be the regulator of many of its AA metabolism
targets. Therefore, the regulatee set of Gcn4’s targets should be enriched with genes involved in
AA metabolism, relative to a random selection of genes from X . Reversing this logic, had Gcn4’s
role been unknown and we observe a significant enrichment of AA metabolism genes among its
regulatees, we can deduce that Gcn4 regulates AA metabolism.

More formally, we denote by Xr the set of regulatees of a regulator r. We map r with spe-
cific biological processes (e.g. cell wall organization) and molecular functions (e.g. amino acid
transporter) that are over represented in Xr. For a regulator r and an annotation A, we calculate
the fraction of genes in Xr associated with A and use the hypergeometric distribution to calculate
a p-value for this fraction. In a nutshell, assume k out of n regulatees are associated with A. The
hypergeometric p-value measures the probability of randomly drawing k genes annotated with A

based on their fraction in the entire gene set X . If there is a significant bias towards a certain pro-
cess or function, we conjecture that r regulates that process. This process of annotating regulators
is illustrated in Figure 5.3.

We devise a fully automated methodology based on the Gene Ontology(GO). The Gene On-
tology [16] provides a controlled vocabulary for the annotation of molecular function, biological

88 CHAPTER 5. FOCUSING ON REGULATION - MINREG

Gene 1

GCN4

Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7Gene 1

GCN4

Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7

AA metabolism TF
AA metabolism

gene

Other gene

AA metabolism
gene

Other gene

GCN4 Regulatees

All genes in model

AA metabolism genes

GCN4 Regulatees

All genes in model

AA metabolism genes

(a) (b)

Figure 5.3: Annotating regulators. (a) We expect GCN4’s targets to be enriched with AA
metabolism genes. (b) Graphic representation of hypergeometric p-value. If the intersection be-
tween the set of all GCN4 regulatees and all genes annotated with AA metabolism is surprisingly
large, GCN4 is annotated as regulating AA metabolism.

process and cellular location. These ontologies are embedded in hierarchy that permits queries at
different levels of granularity: For example, one can find all the gene products that are involved
in signal transduction, or one can zoom in on all the receptor tyrosine kinases. The GO terms are
carefully defined, and the relationships between the terms are also detailed. An important quality of
this structured ontology is that any gene annotated as a receptor tyrosine kinase will automatically
be annotated with signal transduction as well. Furthermore, the Saccharomyces Genome Database
(SGD) [11] has associated most characterized S.cerevisiae genes with one or more GO terms.

For a set of interest we systematically traverse all the nodes in the GO hierarchy down to a pre-
defined depth, assigning a pvalue to each GO term. We perform a Bonferroni correction for multiple
independent hypotheses and associate a regulator with its significant annotations. This functional
annotation determines both the biological process regulated by the gene and the molecular mecha-
nisms that are employed in the regulated process.

The automated method and calculated p-value provide an important improvement over the man-
ual, time-consuming, anecdote-prone approach that was previously employed for this type of anal-
ysis. Note, in current databases many known annotations are missing and many genes are not
annotated at all. Had these annotations existed in the database, not only would the p-values for
existing associations be considerably higher, but also additional associations would be revealed. As
our knowledge base grows and the quality of databases improve, we expect this automated approach
will become even more effective.

Additional attributes can be tested for enrichment in the regulatee set. For example, we use
motif detection methods to associate each regulator with a putative regulatory motif which occurs
abundantly in the regulatory sequences upstream of the genes in Xr.

Furthermore, we identify the logic (activation or inhibition) of regulation. Recall, the regula-
tion model also has a mechanistic element which assigns each gene with a probabilistic function.
Utilizing this function, we annotate each individual relation with one of 3 logic values: activation,
inhibition or unknown. We assume a regulator exerts a coordinated effect on the subset of regulatees
involved in the same process. Therefore, rather than characterizing individual regulatory relations,

5.5. BIOLOGICAL RESULTS 89

we focus on the regulation of an entire process or response. As before, we use the hypergeometric
distribution to look for regulatees of the same GO class enriched with of a particular logic.

5.5 Biological Results

We evaluated our algorithm on a dataset containing 358 samples combined from the Compendium [51]
and stress [40] datasets. These datasets measure S. cerevisiae expression profiles under a wide vari-
ety of cellular conditions1 .

We automatically filtered non-informative genes and kept a subset of 3755 genes which dis-
played a significant change in gene expression in at least 15 samples. The data was normalized
and discretized to 3 values: down-regulated, no change and up-regulated. We compiled a set C of
466 candidate regulators whose SGD [11] or YPD [21] annotations suggest a potential regulatory
role in the broad sense: transcription factors, signal transducers and protein kinases that may have
transcriptional impact. We also included genes described to be similar to such regulators. We ex-
cluded global regulators whose regulation is not specific to a small set of genes or processes. (see
http://robotics.stanford.edu/ erans/module nets/candidate regulators.html for full list).

We applied the MinReg algorithm to this dataset and continued to add regulators until no can-
didate significantly improved the score. Our current implementation of the MinReg algorithm re-
quired 19 minutes on an Intel III 1GHz processor. MinReg chose a set R of 45 regulators out of
466 candidates

We applied the regulator annotation procedure described in Section 5.4 and sorted the regulators
according the pvalue of their most signficant association. We compared our derived annotations to
those reported in the literature, indeed, our results corresponded well to previous findings, especially
for significant pvalues. The associations for 8 of the top 10 regulators provided “proof of principle”
(success or partial success, Table 5.5) by coinciding with well-known functional roles of these genes.
Of the remaining two active regulators, we were able to assign a putative role to one previously
uncharacterized gene, but failed to identify the correct role of the other2. Furthermore, we used the
significant GO terms in order to focus our attention on individual regulatees which are more likely to
represent true signal. Numerous individual regulator-regulatee relations of interest were examined,
which lent support to our global analysis. Below we provide a number of detailed examples that
demonstrate some of the abilities of our methodology.

Our functional assignment can be highly discriminative and comprehensive, providing us with
an elaborate characterization of the regulator gene based on its regulatee set. For example consider
Slt2, the MAP kinase that activates the cell wall integrity pathway. Our GO term derived annotation
correctly predicts the biological process which Slt2 regulates (cell wall organization and biogenesis),

1[51] contains 276 deletion mutants from various functional classes and [40] contains 82 samples of responses to 12
different stress conditions.

2The results for the top 20 regulators are of similar quality: the associations for 13 regulators are proof of principle, 4
regulators were uncharacterized (see table 5.2) and the associations for 3 regulators are unsupported

90 CHAPTER 5. FOCUSING ON REGULATION - MINREG

Regulator
(# regula-
tees)

Concise Annotation (YPD) SGD (S) and YPD (Y) GO anno-
tation biol process

MinReg’s derived GO terms
(score, #genes)

Verdict

Sst2 (99)
signaling

Negative regulator of the mat-
ing pheromone signaling path-
way by binding to Gpa1p and
desensitizing it to pheromone

Adaptation to mating signal (S,Y)
Signal transduction (S)

Mating (0,17) Signal transducer
(8.9e−05,7)

Success

Met28
(254) TF

Transcriptional activator of sul-
fur amino acid metabolism

Sulfur amino acid biosynthesis (S)
Transcription regulation from Pol
II promotor (S,Y)

Amino acid metabolism (0,24)
Sulfur utilization (1.2e−05,6)

Success

Gat1
(125) TF

GATA zinc finger transcrip-
tion factor that activates genes
needed to use non-preferred ni-
trogen sources

Amino-acid metabolism (Y) Other
metabolism (Y) Pol II transcription
(Y) Cell Stress (Y)

Protein biosynthesis (0,30) Amino
acid metabolism (0.000106,10)
Hydrolase, acting on carbon-
nitrogen (but not peptide) bonds
in linear amides (0.005208,3)
Nitrogen starvation response
(0.008642,2)

Success

Tea1(141)
TF

Ty1 enhancer activator of the
Gal4p-type family of DNA-
binding proteins

Pol II transcription (Y) Amino acid metabolism
(0,15) Nitrogen metabolism
(7.9e−05,5) Urea cycle interme-
diate metabolism (0.000679,4)

Novel
func-
tion

Uga3(73)
TF

Transcriptional activator for
4-aminobutyric acid (GABA)
catabolic genes

Amino acid metabolism (Y) Pol II
transcription (S,Y)

Amino acid biosynthesis
(e−06,8) Urea cycle interme-
diate metabolism (5.4e−05 ,4)
Nitrogen metabolism (7.8e−05 ,4)

Success

Apg1
(168)
Signaling

Serine/threonine protein kinase
involved in induction of au-
tophagy after nutrient limita-
tion

Autophagy (S) Meiosis (Y) Protein
degradation (Y) Vesicular trans-
port (Y)

Protein biosynthesis (0,29)
Structural protein of ribosome
(0,24) Hydrolase, hydrolyzing O-
glycosyl compounds (0.000288,6)

Partial
Suc-
cess

Slt2 (245)
Signaling

Serine/threonine (MAP) kinase
involved in the cell wall in-
tegrity (low-osmolarity) path-
way.

Signal transduction (S,Y) Cell
stress (Y) Cell wall maintenance
(Y) Protein amino acid phosphory-
lation (S)

Cell wall structural protein
(4e−06,6) Cell wall organization
and biogenesis (5.4e−05,11) Pro-
tein kinase cascade (0.017959,2)

Success

Tpk1
(603)
Signaling

Catalytic subunit of cAMP-
dependent protein kinase 1,
protein kinase A or PKA.

Signal transduction (Y) Aging (Y)
RAS protein signal transduction
(S) Pseudohyphal growth (S)

Ribosome biogenesis (7e−06,34)
Protein biosynthesis (3.3e−05,58)
Structural protein of ribosome
(0.000128,46)

Partial
Suc-
cess

Sip4 (265)
TF

Transcriptional activator of
gluconeogenic genes through
CSRE elements.

Transcription factor (S,Y) Structural protein of ribosome
(1.1e−05,28) Protein biosynthesis
(6.9e−05,31)

No
sup-
port

Tec1
(104) TF

Transcriptional activator, in-
volved with Ste12p in pseudo-
hyphal formation

Differentiation (Y) Pseudohyphal
growth (S)

Mating (3.2e−05,9) Pheromone
response (9.2e−05,6) Cell surface
receptor linked signal transduction
(0.013253,3)

Partial
Suc-
cess

Table 5.1: Functional annotation of top-10 active regulators sorted by p-value of most significant
GO term. For each active regulator, an existing annotation (adapted from YPD) and known GO
annotation (from SGD and YPD) are compared to significant GO terms within its regulatee set
(derived GO terms). Five of the derived annotation fully match known ones (Success), three match
part of the known annotation (Partial Success), one is a novel functional assignment for a previously
uncharacterized TF (novel function) and one is completely inconsistent with known functions (no
support).

5.5. BIOLOGICAL RESULTS 91

Regulator (#
regulates)

Concise annotation (YPD) Significant GO terms (score, # genes) Suggested novel annotation

Tea1 (141)
TF

Ty1 enhancer activator of the
Gal4p-type family of DNA-
binding proteins

Amino acid metabolism (0,15) Nitrogen
metabolism (7.9e−05,5) Urea cycle inter-
mediate metabolism (0.000679,4)

Regulation of amino acid
biosynthesis (nitrogen uti-
lization?)

Kin1 (292)
Sig

Serine/threonine kinase. Null
mutant is viable and shows no
obvious phenotype

Protein biosynthesis (0.000182,32) Cytoki-
nesis (0.003699,6) Budding (0.005838,8)
GTPase activator (0.019626,3) Cell cycle
(0.034484,18)

Cell cycle regulation (bud-
ding and cytokinesis)

Yol128C
(170) Sig

Protein kinase. Unknown bio-
logical process and molecular
function.

Cell communication (0.000362,14) Ni-
trogen starvation response (0.000944,3)
Response to external stimulus (0.00426,8)
Cell cycle control (0.020422,5) Cell cy-
cle (0.031847,12) Signal transduction
(0.034232,6)

Cell cycle regulation, per-
haps in response to certain
starvation signals

Kin82 (127)
Sig

Putative serine/threonine pro-
tein kinase. Biological process
unknown.

Nucleotide metabolism (0.002014,3)
Primary active transporter (0.003399,6)
Mating-type specific transcriptional control
(0.008909,2)

Potential participant in the
mating response pathway

Table 5.2: Novel functional assignment for previously uncharacterized regulators with the MinReg
algorithm. For each active regulator, significant GO terms were derived based on their regulatee set.
These served as a basis for functional annotation of the regulator. In some cases (e.g. YOL128C,
see text), the annotation was independently supported by external data.

the molecular function of the effectors (cell wall structural proteins and endopeptidases), the molec-
ular mechanism of regulation (protein kinase cascade) and associated, cross-talking modules (mat-
ing, cell-cell fusion). Inspection of individual regulatee genes further supported this annotation3 .
Most importantly, MinReg found Slt2 to regulate Rlm1, the main transcription factor of the low-
osmolarity cell-wall integrity pathway. Rlm1 is phosphorylated and activated post-transcriptionally
by Slt2 (an event that cannot be observed in expression data), and, in turn, directly mediates Slt2’s
activatory effect. Indeed, several of the aforementioned regulatees (Pst1, Crh1, Bop1, Ktr2, Gsc2,
Yps3, Prp2) are known Rlm1 targets and promoter sequence analysis of Slt2’s regulatees indicated
a highly significant Rlm1 motif (P = 2.85e−05).

Our method can also correctly piece together the joint regulation of a specific biological process
by several active regulators. For example, we detected several GATA transcription factors (Gat1,
Uga3, Dal80) that are known to participate in the regulation of the nitrogen starvation response (see
Figure 5.4). All three regulators were associated with correct biological processes (“nitrogen star-
vation response” for Gat1 and Dal80, “urea cycle” and “nitrogen metabolism” for Uga3). However,
the molecular functions they regulate only partially overlapped, highlighting their specific roles in a
common response. Thus, only Dal80 regulates allantoin pathway genes (Dal1,2,3 and 7, consistent

3Among the regulatees are known and putative structural cell wall proteins (Cis3, Sed1, Tir1, Pir3, Pir1, Bop1,
Pau1, Pau6, Pry2, Dan1, Dan3, Tir1, Crh1, Pst1), cell wall enzymes (Asp3-2, Bgl2), cell wall aspartic endopeptidases
(Yps3, Yps5, and Yps6), enzymes and other genes involved in cell wall biogenesis (Myo3, Krt2, Krt6, Gsc2, Chs1)
and transcriptional regulators known to affect cell wall maintenance (Rlm1, Ecm22, Tup1). Many of these genes were
previously reported to be transcriptionally regulated by various stress conditions, such as heat- and cold-shock or changes
in osmolarity. Most of the identified mating and cell-cell fusion genes (Aaf1, Cdc1, Prm8, Prm5, Prm10, Cmp2, Scw10,
Prp2, Gic2) are cell-wall related through biological process (budding, stress) or localization (membrane or cell wall
proteins).

92 CHAPTER 5. FOCUSING ON REGULATION - MINREG

GAT1

DAL80

UGA3

DAL1

DAL3
DAL2

DAL7

amino acid metabolism

proteins biosynthesis

allantoin pathway

urea cycle metabolism

nitrogen metabolism

nitrogen starvation response

0

e-4

0.009
e-6

5.4e-5

7.8e-5

0.02

0.001 {

Figure 5.4: Our reconstruction of GATA regulation. The arrows represent associations between
regulators and the process they regulate. Green arrows represent activation and red arrows represent
repression. The p-value of each association is noted to the left of each process.

with the specific effect of dal80-null mutant on allantoin catabolism [15]), while only Gat1 regu-
lates protein biosynthesis and ribosome biogenesis, another molecular component of the response.
Our model also correctly captured inter-regulator links: we found that Dal80 regulates Gat1, in
accordance with recent findings on exactly such direct transcriptional regulation [23].

In certain cases, our methodology allows us to assign function to previously uncharacterized
regulators (Table 5.2), or to expand the functional assignment of known ones. For example, it asso-
ciated the protein kinase YOL128C with the GO terms “Nitrogen starvation response”, “response to
external stimulus”, and “cell cycle control”. Among Yol128C’s specific regulatees we find numer-
ous cell cycle genes and regulators4 . Thus, we postulate that YOL128C acts as a cell cycle regulator
in response to starvation signals. This prediction is further supported by Yol128C’s homology to
the meiosis regulator Gsk3.

For known regulators, our method may refine or expand existing annotations. For example,
Xbp1, a transcriptional repressor induced by stress and starvation during the mitotic cycle, was
assigned both with a “stress response” term and with a “sporulation” one. The latter term suggests
an extension of Xbp1’s role to sporulation. In fact, this postulated function is consistent with a
recent report of Xbp1’s role in efficient sporulation [66].

In other cases, our functional assignment may be misleading. For example, Apg1, a signaling
molecule involved in induction of autophagy after nutrient limitation, is strongly associated with
“protein biosynthesis” and “structural proteins of the ribosome”. Although Apg1 is not known to
regulate this process, Apg1 is regulated by TOR proteins, which are known to regulate both ribo-
some biogenesis and autophagy [78]. Tor1 itself is regulated post-transcriptionally, as reflected by
its unchanged expression in most of the samples. In the absence of a TOR signal in the data, we are

4e.g. Rsc3, Cdc22, Cdc25, Net1, Kcc4, Nip29, Dmc1, Ulp1, Pcl6, Tem1, Elm1, Chs3, Spa2

5.6. SYSTEMATIC EVALUATION 93

capturing Apg1 as its “replacement” in our model, reflecting co-regulation rather than true regula-
tion. Another Tor1 target TF, Gat1, shows a similarly strong association to “protein biosynthesis”
for the same reason. Note, that Apg1’s true role in autophagy is supported by other GO terms, in-
cluding O-glycosyl hydrolases, as well as by specific autophagy genes (Aut2, Aut4) in its regulatee
set.

The regulation logic we unraveled was often consistent with that reported in the literature. For
example, we found that Met28 activates the biological processes of “threonine and methionine
amino acid metabolism” as well as “sulfur utilization”. Similarly our method correctly predicted
the activatory roles of Slt2 and Uga3. All these findings are consistent with the known roles of these
regulators (see table 5.2). Importantly, the same regulator may assume different logical roles with
respect to different processes or functions. For example, we found that Gat1 activates several amino
acid metabolic processes, but inhibits “protein biosynthesis” and “ribosome biogenesis”. This is
fully consistent with Gat1’s known role in mediating the nitrogen starvation response, which in-
volves both increase in amino acid metabolism and concomitant transcriptional down-regulation of
ribosomal proteins and other biosynthetic genes [61].

Our derived logic is particularly useful for the annotation of previously uncharacterized proteins.
For example, we found that Yol128C positively regulates the “nitrogen starvation response”, while
negatively regulating “cell cycle control”. This indicates that the gene may regulate a stress response
by inhibiting cell cycle progression under starvation conditions.

Regulatory logic must be interpreted with care, especially when the regulator is a signaling
molecule. For example, we found that Sst2 positively regulates mating and transmembrane recep-
tors, while in fact it is a negative regulator of both (Table 5.5). To explain this discrepancy, note that
Sst2 is activated by Ste12, the main mating TF, along with most of the mating pathway genes, while
it exerts its inhibitory effect on the pathway only later, after a time delay. Thus, rather than repre-
senting its own (negative) regulatory role, Sst2 serves as a representative of its fellow, co-activated
mating genes. We believe that in such cases (mostly involving signalling molecules), we cannot
reconstruct the regulatory logic from steady-state expression profiles. Nevertheless, we conclude
that correct logic may often be derived by our analysis.

5.6 Systematic Evaluation

5.6.1 Robustness and Cross Validation

One of the main concerns when using only a few hundred samples to build a model over thousands of
variables is the statistical robustness of the resulting model. Such scenarios often lead to significant
overfitting, resulting in model features that correspond to spurious signal. We would like to ensure
that our learned model indeed corresponds to real biological signal. In Section 5.5, we provided
evidence of such a correspondence by demonstrating that automated annotations derived from our
model successfully match the known biological role of the inferred regulators. This section offers
complimentary statistical evidence: We ask how well does the model generalize to unseen data?

94 CHAPTER 5. FOCUSING ON REGULATION - MINREG

Recall, in our model, each X ∈ X is associated with a probabilistic function of its regulators
(i.e. each instantiation paX defines a distribution P (X | paX)). We use the empirical counts
observed in the data to estimate these distributions.

P (X = x | PaX = paX) =
M [X = x,PaX = paX]

M [PaX = paX]

We use these distributions to evaluate the regulator’s ability to predict the expression of its
regulatees. Recall that our model contains only a small number (tens) of regulators. Given the
expression levels of only these regulators, we use the model and the probabilities P (X | PaX) to
“predict” the expression levels of all other variables. Given a data sample in which PaX = paX ,
our model “guesses” X by randomly sampling from P (X | paX).

A simple minded test would be to use MinReg to infer a model and then measure how often this
model correctly predicts each variable. Given the expression of regulators in the mth sample, we
use P (X | paX [m]) to predict the value of X in that sample. For each X , we measure how well
we can predict X by calculating :

1

M

M
∑

m=1

P (x[m] | paX [m])

However, it is not an impressive feat to correctly predict the same samples used by the algorithm
to train the model. A learning procedure can easily fit a model to the data. The resulting model
would attain excellent performance on the training data, but would perform poorly on samples not
encountered during the training process.

Our goal is to learn the underlying process that created that data, not the data itself. The real test
is: Can we use our model to correctly predict gene expression of a new sample How can we generate
such a new microarray sample? The standard trick is called cross validation: randomly partition the
data samples into two disjoint sets, a training set and a test set. The MinReg algorithm sees only the
training set when learning the model and then uses only test set to measure its performance.

We evaluated the performance of our algorithm using 5-fold cross validation. The arrays (data
samples) were randomly partitioned into five equal sized sets. We ran the MinReg algorithm 5 times
choosing a different test set each time. In each run, MinReg removed the test set from its input and
inferred a model using only the training data. For each test sample, the values of all 3755 regulatees
(genes) were predicted using the inferred model. We calculated the overall precision of the model
by comparing our predicted values with the actual measured ones.

We compared the predictive capabilities of several different models. As a baseline, we used the
marginal probability of each gene to predict its value. Since most of the genes remained unchanged
most of the time, even this simple predictor scored well (Figure 5.5, crosses). As competition to our
MinReg algorithm, we generated 45 clusters using standard k-means clustering [28] and randomly
chose from within each cluster a gene r ∈ C as its “regulator”. For each cluster we calculated
P (X | r) and used this as our predictor. While cluster representatives somewhat improved the

5.6. SYSTEMATIC EVALUATION 95

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

500

1000

1500

2000

2500

3000

Probability of correct prediction

nu
m

be
r o

f g
en

es
 w

ith
 a

cc
ur

ac
y

>
X

Entropy
Clustering
MinReg

Figure 5.5: Cross validation of the predictive capabilities of our model on test data.
The graph measures the number of genes correctly predicted at each probability.
We compare our model (triangles) to the null model (crosses) that uses the marginal
distribution of each gene and to a model based on cluster representatives (circles)

prediction (0.06 log-loss/instance, Figure 5.5, circles), our MinReg algorithm clearly provided the
best predictions (0.11 log-loss/instance, Figure 5.5, triangles).

Several important advantages of MinReg account for its predictive success over clustering.
These include capturing “mechanistic” regulation using mutual information (vs simpler co-expression
in clustering), identifying both activatory (correlated) and inhibitory (anti-correlated) regulators, and
finding combinatorial logic and non-linear interactions between a gene and its regulators (impossi-
ble in clustering where the same gene cannot belong to more than one cluster). In conclusion, our
cross-validation demonstrates that most of the information in an entire array can be captured by a
small set of master predictors (the regulators chosen by MinReg).

5.6.2 The Importance of Candidate Regulators

Supplying the MinReg algorithm with prior knowledge of potential regulators is a potent supplement
to our algorithm. In addition to focusing the algorithm onto regulatory relations, it narrows the
search space and significantly reduces the running time of the algorithm (which is quadratic in the
size of candidate set). In this section we assess how much this prior knowledge contributes to our
algorithm’s success. We ask: can the MinReg algorithm correctly reconstruct regulation without an
apriori set of candidate regulators?

To answer this question we withdrew the candidate regulator set and ran the MinReg algorithm
so that C = X , i.e., any gene could be chosen as a regulator. Since the algorithm is quadratic in
C, we reduced X by including only genes whose expression significantly changed in ≥ 18 samples

96 CHAPTER 5. FOCUSING ON REGULATION - MINREG

(verses 15 samples). This resulted in a set of 2828 genes for both X and C. It is important to note
that in our data set, the expression of many candidate regulators remains almost constant. Only 148
genes from our original candidate set of known and putative regulators were included in the 2828
genes.

The MinReg algorithm chose 35 regulators, of which only 6 genes (Ste2,Spl2,Wtm1,Rpi1,Bas1,
Phd1) are in the original candidate regulator set. We speculate that this is because the behavior of a
co-regulated gene is often at least as predictive (and sometimes even more) than the behavior of the
regulating gene itself. Therefore, when the candidate regulator set is not limited to real regulators,
most of the regulators chosen by the MinReg algorithm do not have a regulatory molecular function.
While this model might be highly predictive and even generalizes well to new data, it does not
fulfill our goal to reconstruct biological regulation. Furthermore, it is difficult to assign a biological
interpretation to such a model.

Nevertheless, while 6
35 is only a small fraction of the chosen regulators, this is a significant en-

richment compared to their fraction in the candidate set (pvalue 0.003). The fact that our procedure
results in a statistically significant enhancement of regulators is encouraging. We speculate that in
complex organisms, where combinatorial regulation most likely plays a stronger role, this approach
will be even more successful in detecting genes with a regulatory function.

5.6.3 Simulated Data

We evaluated MinReg on synthetic data. We used the regulation model generated from the data as
our synthetic network (the network contained 2828 genes and 44 regulators). We randomly sampled
10 datasets from this network, each set consisting of 358 samples (same number of samples as the
original dataset). We ran MinReg on each of these 10 synthetic datasets using the same parameters
used in Section 5.5.

Our first test was more global. We evaluated MinReg’s choice of regulators. In average MinReg
correctly reconstructed 84% (39) of the generating 44 regulators. The worse case was 80% (35)
and best case 91% (40). As for false positives, in average 74% of the reconstructed regulators were
correct (worse case 71% and best case 77%).

Next we evaluated the detailed model itself. The generating model contained 6616 individ-
ual regulatory relations and we checked how many of those were recovered. In average 70% of
these were recovered (worse case 69% and best case 72%). In each model the percent of correct
relationships was a bit higher, with an average of 74% (worse case 72% and best case 77%).

Even when we did not limit to candidate regulators (setting C = X) our reconstruction of
regulators was surprisingly good. Using the same parameters as before 42/92 of the regulators were
correct. The earlier iterations were most accurate, when using a stricter stopping criteria, 42/47 of
the regulators were correct. When using the stricter stopping criteria, %76 of the individual edges
were correctly reconstructed.

To summarize using only a small number of samples MinReg is capable of learning a model
over thousands of genes, correctly reconstructing most of the relationships.

5.7. DISCUSSION 97

5.7 Discussion

In this chapter we presented an efficient novel algorithm for inferring regulatory relationships. Our
learning succeeds in two challenging tasks:

• We succeed in predicting significant portions of a microarray based solely the values of a
small number of genes.

• We automatically associate a comprehensive functional annotation to regulators.

Our detailed analysis shows that most of our high scoring assignments are correct, and that novel
roles can be assigned to previously uncharacterized transcription factors and signaling proteins.

Our proposed method lies between molecular network modeling [36, 76, 93] and global methods
for the analysis of gene expression (e.g. clustering [30, 86] and PCA [4, 50]), and offers a number of
advantages over both approaches. On the one hand, unlike previous network modeling approaches,
MinReg can robustly produce a biologically significant regulation network over thousands of genes,
thus allowing it to scale to mammalian genomes. On the other hand, the regulation structure we learn
goes beyond clustering and PCA by capturing combinatorial logic and non-linear behavior, both of
which are important in biological systems. Indeed, MinReg’s predictive superiority over clustering
was clearly demonstrated.

The main drawback of the MinReg approach is that it does not reconstruct a detailed regulation
network, but rather a coarse abstract model of regulation. Our small regulator set only contains
regulators which have a broad affect in data, possibly missing many regulators that act on a smaller
scale. Furthermore, regulatory relations in our models represent both direct and indirect regulation
with no clear distinction between them. We note that it is this abstraction which allows MinReg to
robustly reconstruct regulation over thousands of genes from so few data samples.

Furthermore, our model should to be interpreted only at the more global scale. We do not have
high confidence in any single regulatory relation in the model as some of these are spurious. Rather,
we have confidence in the global properties of regulator sets: regulator r regulates process X verses
of regulator r regulates gene X . We note that if r is associated with process P and X is annotated
with P , than the edge r → X is more likely to represent a true relationship.

Chapter 6

Module Networks - Reconstructing
Regulatory Modules

The complex functions of a living cell are carried out through the concerted activity of many genes
and gene products. This activity is often coordinated by the organization of the genome into regu-
latory modules, or sets of co-regulated genes that achieve a common function. Such is the case for
most of the metabolic pathways as well as for members of multi-protein complexes. Revealing this
organization is essential for understanding cellular responses to internal and external signals. Clus-
tering allows the identification of groups of co-expressed genes. However, the regulatory programs
of these groups are only indirectly suggested by finding common cis-regulatory binding sites in the
upstream regions of genes within each group [90, 94].

In Chapter 3, we inferred regulation based on the statistical dependencies between regulators
and targets. This reconstruction is based on the key assumption that the regulators are themselves
transcriptionally regulated, so their expression profiles provide evidence as to their activity level.
In Chapter 5, we focus the learning on regulation by providing the algorithm with a list of genes
that potentially act as regulators and restrict the regulators in our models to these sets. By enforcing
a small number of shared regulators, our model gained in statistical robustness. In this chapter,
we take this idea one step further: genes will not only share regulators, they also share regulatory
programs. We propose Module Networks: a unified probabilistic framework that combines the best
of both clustering and network modeling. Our procedure identifies modules of co-regulated genes,
their regulators, and the shared regulation program that governs their behavior.

In Section 6.1 we describe the Module Networks framework. In Section 6.2 we explain how
Module Networks can be used to reconstruct regulatory modules from gene expression data. Sec-
tion 6.3 presents a comprehensive biological analysis of the inferred module networks. Section 6.4.2
and Section 6.5 provide technical details of formal definitions, scoring functions and algorithms. Fi-
nally Section 6.6 offers a systematic evaluation of the algorithm’s performance.

98

6.1. FROM BAYESIAN NETWORK TO MODULE NETWORK 99

6.1 From Bayesian Network to Module Network

Genes required for the same biological function or response are often co-regulated in order to co-
ordinate their joint activity. One such example is Slt2, a MAP kinase which activates the genes of
the cell wall integrity low osmolarity response pathway. In this case, Slt2 exerts a similar regula-
tory affect on each of its targets. A Slt2 hub was automatically inferred by our Bayesian network
algorithm. The learning algorithm inferred a parent-child relation between Slt2 and its targets, inde-
pendently for each target, forming the subnetwork presented in Figure 3.5.3. The Bayesian network
model did not explicitly model Slt2 as a regulator of an entire response.

An Slt2 hub was also inferred by the MinReg algorithm (Section 5.5). While MinReg explicitly
searches for regulators that are pronounced in the data and regulate an entire ensemble of genes, the
algorithm does not take the coordinated nature of the response into account. For each target, both
the fact that Slt2 regulates it and Slt2’s regulatory affect was inferred in an independent manner.
We interested in a computational model that automatically organizes Slt2’s targets into a regulatory
module and enforces a common regulatory program on all its targets.

We define a new representation called a module network, which explicitly partitions the vari-
ables (genes) into modules. Each module represents a set of variables that have the same statistical
behavior, i.e., they share the same set of parents and local probabilistic model. By enforcing this
constraint on the learned network, we significantly reduce the complexity of our model space as
well as the number of parameters.

A module network consists of two components.

1. A component that defines a template probabilistic model shared by all the variables assigned
to that model. This template includes both a set of regulating parents and the conditional
probability distribution they specify over the module genes.

2. A module assignment function that assigns each variable to one of the modules. A module
network can be viewed simply as a Bayesian network in which variables in the same module
share parents and parameters (see Figure 6.1).

Given the small number of samples in typical gene expression datasets, noise in the data makes
it extremely unlikely that such a modular structure would arise naturally from a Bayesian network
learning algorithm, even if it exists in the domain. Moreover, by making the modular structure
explicit, the module network representation provides insights about the domain that are often be
obscured by the intricate details of a large Bayesian network structure. It would be very difficult to
intepret a Bayesian network on a genome-wide scale because of its intricate circuitry over thousands
of genes.

We note that the true biological network is not a Module network. While genes in the same
module might have similar regulatory control, they do not share the exact same set of regulators and
regulatory program. Nevertheless, using module networks as a first order approximation can lead to
a more robust estimation and better generalization of unseen data.

100 CHAPTER 6. MODULE NETWORKS - RECONSTRUCTING REGULATORY MODULES

CPD 2

CPD 1

CPD 3

Far1

B m h 1

G i c 2
U s v 1

H s p 10 H s p 6 0
Module III

Module II

Module I

Module Network

Far1

B m h 1

G i c 2
U s v 1

H s p 10 H s p 6 0

B a y es i a n Network

CPD 6

CPD 3

CPD 5

CPD 1

CPD 2

CPD 4

Far1

B m h 1

G i c 2
U s v 1

H s p 10 H s p 6 0

B a y es i a n Network

CPD 6

CPD 3

CPD 5

CPD 1

CPD 2

CPD 4

(a) (b)

Figure 6.1: (a) A simple Bayesian network over gene expression variables. (b) A simple module
network; the boxes illustrate modules, whose genes share CPDs and parameters.

There are several reasons why a learned module network is a better model than a learned
Bayesian network. Most obviously, parameter sharing between variables in the same module al-
lows each parameter to be estimated based on a much larger sample. Moreover, this allows us to
learn dependencies that are considered too weak based on statistics of single variables. These are
well-known advantages of parameter sharing; but a novel aspect of our method is that we automati-
cally determine which variables have shared parameters.

Furthermore, the assumption of shared structure significantly restricts the space of possible
dependency structures, allowing us to learn more robust models than those learned in a classical
Bayesian network setting. While the variables in the same module might behave according to the
same model in underlying distribution, this will often not be the case in the empirical distribution
based on a limited number of samples. A Bayesian network learning algorithm will treat each
variable separately, optimizing the parent set and CPD for each variable in an independent manner.
In the very high-dimensional domains in which we are interested, there are bound to be spurious
correlations that arise from sampling noise, inducing the algorithm to choose parent sets that do not
reflect real dependencies, and will not generalize to unseen data. Conversely, in a module network
setting, a spurious correlation would have to arise between a possible parent and a large number of
other variables before the algorithm would find it worthwhile to introduce the dependency.

6.2 From Module Network to Regulatory Module

In this section we model of gene regulation using the module network framework. The key link
between our gene expression domain and the module network model is the regulation program.
The regulation program of a module specifies the set of regulatory genes that control the module
and the mRNA expression profile of the genes in the module as a function of the module’s regulators.

These regulation programs correspond to the conditional probability distributions. Contrary

6.2. FROM MODULE NETWORK TO REGULATORY MODULE 101

� ���	�	��

 �	�

true

rep res s o r
ex p res s i o n

� ���	�	��

 �	�

true

rep res s o r
ex p res s i o n

f a l s e

� �	�
��� �
���

f a l s e

� �	�
��� �
���

mo
du

le
gen

es
mo

du
le

gen
es

reg
ula

tio
n p

rog
ram

reg
ula

tio
n p

rog
ram

true

� �	�
��� �
���

true

� �	�
��� �
���

true

� �	�
��� �
���

���	��� � ��� ��� a c ti v a to r
ex p res s i o n

���	��� � ��� ��� a c ti v a to r
ex p res s i o n

� � �
��� �
���

f a l s e

� � �
��� �
���

f a l s e

ta rg et g en e
ex p res s i o n

i n d uc ed
rep res s ed

ta rg et g en e
ex p res s i o n

i n d uc ed
rep res s ed

U p s trea m reg i o n
o f ta rg et g en e

Context A
Basal expression
lev el

tra n s c ri p t
l ev el

U p s trea m reg i o n
o f ta rg et g en e

Context A
Basal expression
lev el U p s trea m reg i o n

o f ta rg et g en e

Context A
Basal expression
lev el

tra n s c ri p t
l ev el

�� !	" # ��! $�%

a c ti v a to r
b i n d i n g s i te

Context B
A c t iv at or
ind u c es
expression

�� !	" # ��! $�%

a c ti v a to r
b i n d i n g s i te

Context B
A c t iv at or
ind u c es
expression

rep res s o r
b i n d i n g s i te

% &�'�% &	(($�%

a c ti v a to r
b i n d i n g s i te

�� !	" # ��! $�%Context C
A c t iv at or + repressor
d ec rease expression

rep res s o r
b i n d i n g s i te

% &�'�% &	(($�%

a c ti v a to r
b i n d i n g s i te

�� !	" # ��! $�%Context C
A c t iv at or + repressor
d ec rease expression

R eg u l a tor y m od u l eR eg u l a tor y m od u l e

(a) (b)

Figure 6.2: (a) Cartoon depicting three distinct modes of regulation for a group of genes. (b) Reg-
ulation tree that represents these modes of regulation. The expression of the regulatory genes is
shown below their respective node. Each leaf of the regulation tree is a regulation context (bor-
dered by dotted lines) as defined by the queries leading to the leaf. The arrays are sorted each into
their respective context and the expression of the regulatory genes themselves is shown: each row
corresponds to a gene and each column to an array.

to previous chapters, in this chapter, we bestow CPDs with both structure and meaning. These
regulation programs are represented using a regression tree [9]. Regression trees were first used to
model gene expression by Segal et. al [83]. They [83, 80] identify modules of co-regulated genes
and their shared cis-regulatory motifs, but do not suggest regulator genes nor regulatory programs.
In contrast, our method discovers both regulatory modules and their control programs, suggesting
concrete regulators for each module, their effect and combinatorial interactions.

The following example illustrates how a regression tree models biological regulation. Consider
a group of genes that are all regulated by the same combination of activator and repressor genes,
resulting in three distinct modes of regulation (see Figure 6.2 (left)). In context A, the genes in the
module are not under transcriptional regulation and are in their basal expression level. In context B,
the activator gene is up-regulated and as a result binds the upstream regions of the module genes,
thereby inducing their transcription. In context C, a repressor gene is also up-regulated and as a
result blocks transcription of the genes in the module, thereby decreasing their expression levels.

A regulation program can represent the module’s response to the different regulatory contexts. A
context is a rule describing the qualitative behavior (up-regulation, no change or down-regulation) of
a small set of genes that control the expression of the genes in the module. These rules are organized
as a tree, where each path to a leaf in the tree defines a context via the tests on the path. This tree
is composed of two basic building blocks: decision nodes and leaf nodes. Each decision node
corresponds to one of the regulatory inputs and a query on its value (e.g., ”is Hap4 up-regulated?”).
Each decision node has two child nodes: the right child node is chosen when the answer to the
corresponding query is true, the left node is chosen when not. For a given array, one begins at the

102 CHAPTER 6. MODULE NETWORKS - RECONSTRUCTING REGULATORY MODULES

root node and traverses down the tree in a path depending on the answers to the queries in that
particular array, until a leaf is reached. We use Figure 6.2 (right) to illustrate the path for context
B: The root node’s query is “Is the activator up-regulated?”, in context B this is true so we continue
to the right child. This node contains the query “Is the inhibitor up-regulated?”, in context B this is
false so we take the left child. The resulting leaf corresponds to a regulation context in which the
genes are over-expressed, which is indeed the behavior of the module genes in context B.

Each leaf of the regulation tree is a context that specifies the behavior of a set of arrays: those in
which the tree traversal reaches the corresponding leaf. The response in each context is modeled as
a normal distribution over the expression values of the module’s genes in these arrays; this distribu-
tion is encoded using a mean and variance stored at the corresponding leaf. The model semantics is:
given a gene g in the module and an array a in a context, the probability of observing some expres-
sion value for gene g in array a is governed by the normal distribution specified for that context. For
each array, all genes in the same module follow the same normal distribution. In a context where
the genes are tightly co-regulated, the distribution will have a small variance. In a context where
the genes are not tightly regulated, the distribution may have a large variance. Thus, a regression
tree allows for expression profiles with different degrees of conservation of the mean behavior of
the module.

This notion of a regulatory program has several key advantages:

• It captures combinatorial interactions; e.g., the module is strongly up-regulated if both Hap4
and Alpha2 are up-regulated.

• It handles context specific effects and environmental conditions; e.g., Hap4 regulates the
module only in presence of respiratory carbon sources.

• It allows modules that have a conserved signature only in certain contexts; e.g., a module
may have strong coordinated response to Gat1 up-regulation, yet have diffuse behavior in
other settings.

6.2.1 Algorithmic Overview

We propose a fully automated procedure that discovers such modules directly from gene expression
profiles. For clarity, we present a very simplified overview that captures the algorithm’s essence
(more details are given in Section 6.4.2 and Section 6.5). Given a gene expression data set and a
precompiled set of candidate regulatory genes, the algorithm simultaneously searches for a partition
of genes into modules, and for a regulation program for each module that explains the behavior
of the genes in the module. Our algorithm takes an iterative approach. We begin with an initial
clustering of the genes based on their expression profiles. For each cluster of genes, the procedure
searches for a regulation program that provides the best prediction of the expression profiles of
genes in the module. After identifying regulation programs for all clusters, the algorithm re-assigns
each gene to the cluster whose program best predicts that gene’s behavior. The algorithm iterates

6.2. FROM MODULE NETWORK TO REGULATORY MODULE 103

0000

HAP4��HAP4��

0 00 0

Figure 6.3: Search step in the regression tree learning algorithm. To the left the arrays are in no
particular order. The query “is Hap4 upregulated” partitions the arrays into two distinct distributions
(right). In arrays in which Hap4 is over-expressed the module genes are strongly up-regulated. The
distribution for each of the two leaves is distinctly different.

until convergence, refining both the regulation program and the gene partition in each iteration. The
procedure outputs a list of modules and associated regulation programs.

The regulation program is learned via a combinatorial search over the space of trees. The tree
is grown from the root to its leaves. At any given node, the query which best partitions the gene
expression into two distinct distributions is chosen, until no such split exists. Figure 6.3 illustrates
how such a query can partition the arrays into two different modes of regulation. A good partition
is one that results in two distinct distributions. In our example, the module genes are all strongly
upregulated in arrays in which Hap4 is upregulated.

Given the inferred regulation programs, we determine the module whose associated regulation
program best predicts each gene’s behavior. Recall, each regulation program defines a probability
distribution over the gene’s expression levels in each array. We test the probability of a gene’s
empirical expression values in the dataset under each regulatory program as follows: for each array,
we evaluate the probability of the associated expression measurement in that array’s context as
specified by the regression tree; we then multiply the probabilities for the different arrays, obtaining
an overall probability that this gene’s expression profile was generated by this regulation program.
We then select the module whose program gives the highest probability, and re-assign the gene to
this module. We take care not to assign a regulator gene to a module in which it is also a regulatory
input, since it is not surprising that a gene can predict its own gene expression.

Our two-step iterative learning procedure attempts to search for the model with the highest score,
in each step optimizing one of the models components: regulation programs or gene partition. An
important property of our algorithm is that each iteration is guaranteed to improve the likelihood of
the model, until convergence to a local maximum of the score.

104 CHAPTER 6. MODULE NETWORKS - RECONSTRUCTING REGULATORY MODULES

6.3 Biological Results

We used an S. cerevisiae gene expression dataset consisting of 173 microarrays that measure re-
sponses to various stress conditions [40]. We chose a subset of 2355 genes which display a sig-
nificant change in gene expression under the measured stress conditions, excluding members of
the generic environmental stress response cluster [40]. We used the set of 466 genes described in
Section 5.1 as our candidate regulators. We initialized our module network procedure with 50 clus-
ters using PCluster, a hierarchical agglomerative clustering (see Section 6.5.2). We then applied
the iterative learning algorithm to refine both the gene partition and the regulatory programs. Our
procedure converged after 23 iterations1 resulting in the 50 modules we analyzed.

With few exceptions, each of the inferred modules (46/50) contained a functionally coher-
ent set of genes. Together the modules spanned a wide variety of biological processes including
metabolic pathways (e.g., glycolysis), various stress responses (e.g., oxidative stress), cell-cycle
related processes, molecular functions (e.g., protein folding), and cellular compartments (e.g., nu-
cleus) (see [82] for complete listing of modules). Most modules (30/50) included genes previously
known to be regulated by on of the module’s predicted regulators. Many modules (15/50) had a
match between a predicted regulator and its known cis-regulatory binding motif (i.e., a statistically
significant number of the module’s genes contained the known motif in their upstream regions).
Overall, our results provide a global view of the yeast transcriptional network, including many
instances in which our method discovers known functional modules and their correct regulators,
demonstrating the ability of our method to derive regulation from expression.

6.3.1 Selected Modules

We first present in detail several of the inferred modules, selected to show the method’s ability to
recover diverse features of regulatory programs.

The Respiration Module (see Figure 6.4) provides a clear demonstration of a predicted module.
It consists primarily of genes encoding respiration proteins (39/55) and glucose metabolism regu-
lators (6/55). The inferred regulatory program specifies the Hap4 transcription factor as the mod-
ule’s top (activating) regulator, primarily under stationary phase conditions, consistent with Hap4’s
known role in activation of respiration [26]. Indeed, our post-analysis detected a Hap4-binding DNA
sequence motif (bound by the Hap2/3/4/5 complex) in the upstream region of 29/55 genes in the
module (p < 2× 10−13). Note that this motif also appears in non-respiration genes (mitochondrial
genes and glucose metabolism regulators), which together with their matching expression profiles,
supports their inclusion as part of the module. When Hap4 is not induced, the module is activated
more mildly or is repressed. The method suggests that these changes are regulated by other regu-
lators, such as the protein phosphatase type 1 regulatory subunit Gac1 and the transcription factor
Msn4. Indeed, the stress response element (STRE), recognized by Msn4, appears in the upstream

1For computational efficiency most iterations only optimize the parameters of the normal distributions at the leaves
and leave the tree structure unchanged. For the reported results, only four tree structure change iterations were applied

6.3. BIOLOGICAL RESULTS 105

Figure 6.4: The Respiration and Carbon Regulation Module. (a) Regulation tree/program: The
expression of the regulators themselves is shown below their respective node. (b) Gene expression
profiles: Genes (rows), arrays (columns). Arrays are arranged according to the regulation tree. For
example, the rightmost leaf includes the arrays in which both Hap4 and Alpha2 are up-regulated. (c)
Significant annotations: Colored entries indicate genes with the respective annotation. (d) Promoter
analysis: Lines represent 500bp of genomic sequence located upstream to the start codon of each
of the genes; colored boxes represent the presence of cis-regulatory motifs located in these regions.
Note, the enrichment of both the HAP4 motif (purple) and the stress response element (STRE;
green), recognized by Hap4 and Msn4, respectively

106 CHAPTER 6. MODULE NETWORKS - RECONSTRUCTING REGULATORY MODULES

��������	
��������	�� ��� � ���
� � 	� �� �� � ����	�� ��� � ���
� �� ����� �� 	�� � � �	�� � � ���

��������	
��������	�� ��� � ���
� � 	� �� �� � ����	�� ��� � ���
� �� ����� �� 	�� � � �	�� � � ���

Figure 6.5: The Nitrogen Catabolite Repression Module demonstrates a Module signature: tight
co-expression (assumed to be co-regulation) around a specific sub-set of conditions

region of 32/55 genes in the module (p < 10−3) as well as in those of many of the genes containing
the Hap4 motif (17/29 genes; p < 7 × 10−10), supporting our placement of both regulators in one
control program.

The Nitrogen Catabolite Repression Module (see Figure 6.5) demonstrates the ability of our
method to capture an entire cellular response whose genes participate in diverse metabolic pathways
and cellular roles (12/29 in allantoin and urea metabolism, 5/29 in amino acid metabolism, and 6/29
in sulfur/methionine metabolism), all of which relate to the process by which the yeast utilizes the
best available nitrogen source. Gat1 is suggested as the key (activating) regulator of this module,
further supported by the presence of the GATA motif, the known binding sequence for Gat1, in
the upstream region of 26/29 genes (p < 10−17). This module also demonstrates that the method
can discover context-specific regulation, as the similarity in expression of genes in the module is
mostly pronounced in stationary phase (17/22 experiments; p < 10−4), amino acid starvation (5/5;
p < 9 × 10−5), and nitrogen depletion (10/10; p < 8 × 10−9), all of which are conditions where
nitrogen catabolism is active. Note that two additional known regulators involved in this response,
Uga3 and Dal80, are suggested as members, rather than regulators, of the module.

The Energy, Osmolarity and cAMP Signaling Module demonstrates that our method can dis-
cover regulation by proteins other than transcription factors, as the top predicted regulator was
Tpk1, a catalytic subunit of the cAMP dependent protein kinase (PKA). This prediction is sup-
ported by a recent study [71] showing that expression of several genes in the module (e.g., Tps1)
is strongly affected by Tpk1 activity in osmotic stress, which was among the conditions predicted
by the method to be Tpk1-regulated. Further support is given by the presence of the STRE motif,
known to be bound by transcription factors that are regulated by Tpk120, in the upstream region of
most genes in the module (50/64; p < 3 × 10−11), often in combination with other motifs bound
by Tpk1-modulated transcription factors, such as Adr1 (37/64; p < 6 × 10−3) and Cat8 (26/64;

6.3. BIOLOGICAL RESULTS 107

p < 2 × 10−3). However, our method suggests that Tpk1 is an activator of the module in contrast
to its known role as a repressor. We discuss this discrepancy in Section 7.3.

6.3.2 Global View

Our global evaluation is based on the same principles as the global analysis introduced in in Sec-
tion 5.4. We employ an automated method to associate both modules and regulators with signif-
icantly enriched properties (hypergeometric p-value) in their respective gene sets. Modules are
annotated based on their gene sets. Regulators are annotated based on their targets: since a regula-
tor gene r may regulate more than one module, its targets consist of the union of the genes in all
modules predicted to be regulated by r.

We evaluated all 50 modules to test whether the proteins encoded by genes in the same module
had related functions. We scored the functional/biological coherence of each module by the percent
of its genes covered by annotations significantly enriched in the module (p < 0.01). Most modules
(31/50) contained a biologically coherent set of genes at a coherence level above 50% and only 4/50
had gene coherence below 30%. Note that the actual coherence levels may be considerably higher,
as many genes are not annotated in current databases. Indeed, an in-depth inspection revealed many
cases where genes known to be associated with the main process of the module were simply not
annotated as such.

We next turned to the evaluation of the inferred regulation programs. We compared the known
function of the inferred regulators with the method’s predictions. In most modules (35/50), the
regulators were predicted to play a role under the expected conditions. More importantly, most
modules (30/50) also included genes known to be regulated by at least one of the module’s predicted
regulators. Furthermore, some modules (15/50) also had an exact match between cis-regulatory
motifs enriched (p < 10−4) in upstream regions of the module’s genes and the regulator known to
bind to that motif.

We obtained a global view of the modules and their function by compiling all gene annotations
and motifs significantly enriched in each module into a single matrix [100] (see Figure 6.6 left).
This presentation enables an automatic approach for deriving rich descriptions for modules. For
example, the attributes for the respiration module (Figure 6.4) are immediately apparent in this
representation, including the Hap4 and Msn4 (STRE) binding sites, and the ion transport, TCA
cycle, mitochondrion, and aerobic respiration annotated genes (highlighted rectangles labeled 1).
Note the enrichment of three annotations representing a biochemical process, cellular compartment,
and physiological process, respectively - all relating to cellular respiration.

Analysis using the matrix representation can lead to many insights. For example, our algo-
rithm resulted in four different amino acid (AA) metabolism modules. The submatrix for these
AA metabolism modules (see Figure 6.7 (a)) supports their division into different modules: while
the modules share certain attributes (e.g., a GCN4 motif characteristic of AA metabolism), each is
characterized by a unique combination of gene annotations and cis-regulatory motifs (e.g., only the

108 CHAPTER 6. MODULE NETWORKS - RECONSTRUCTING REGULATORY MODULES

Figure 6.6: Global view of modules (left) and regulators (right). A matrix displaying modules verses
their significanly enriched annotations/motifs. Only significantly enriched annotations (p < 0.05)
are displayed. Binding sites (green) include both known motifs (TRANSFAC [48]) and de novo
motifs (discovered by a motif-finding program [80]). Gene annotations (purple) were compiled
from Gene Ontology (G) [16], MIPS (M) [69], and KEGG (K) [59]. The bottom right matrix
displays significant conditions regulated by each regulator (brown).

6.3. BIOLOGICAL RESULTS 109

Figure 6.7: Highlights from the global matrix view: (a) submatrix of amino acid metabolism mod-
ules (Figure 6.6 highlighted rectangle labeled 2). (b) Annotation of Gat1 (Figure 6.6 highlighted
rectangle 3). (c) Automated novel predictions (Figure 6.6 rectangles labeled 4).

Nitrogen catabolism module is also with the GATA motif characteristic of the nitrogen starvation
response).

Similar to the global view for modules, we construct a global view for regulators associating
each regulator with biological processes, possibly a binding motif and experimental conditions (see
Figure 6.6 right). In addition to annotations and motifs, we can associate each regulator with the
experimental conditions that it significantly regulates by examining how conditions are split by
each relevant regulation tree. For example, in the Nitrogen catabolite module (Figure 6.5), Gat1
up-regulation distinguishes nitrogen depletion, AA starvation and stationary phase conditions from
the rest (right branch), and would thus be associated with regulation in these conditions. For each
occurrence of a regulator as a decision node in a regression tree, we computed the partition of
each experimental condition between the right branch and the left branch, and used the binomial
distribution to compute a p-value on this partition. The resulting associations with p-values < 0.05

are summarized in Figure 6.6 (bottom right matrix).

Each column in Figure 6.6 represents all the resulting associations corresponding to a regulator
r. These result in a comprehensive but somewhat noisy annotation of that regulator. We take Gat1
as an example (see Figure 6.7 (b)). The matrix correctly suggests that Gat1 regulates nitrogen and
sulfur metabolism processes, binds to the GATA motif, and works under conditions of nitrogen
depletion. Alongside these correct associations are seemly incorrect associations (e.g. Gat1 binds

110 CHAPTER 6. MODULE NETWORKS - RECONSTRUCTING REGULATORY MODULES

to GCN4 motif). These “noisy annotations” most likely result from the fact the each regulator is
associated with all genes in each of the modules it regulates. Each such module is also associated
with other regulators, thus we speculate that some of the noisy annotations might correspond to
these other regulators. Contrary to motifs and annotations, experimental conditions are derived
based on splits by the relevant regulator and are thus unique to that regulator.

6.3.3 Experimental Validation

When we consider uncharacterized regulators, the predicted regulator annotations provide focused
hypotheses about the processes they regulate, the conditions under which they work, and the cis-
regulatory motifs through which their regulation is mediated. For example, we can predict that the
putative transcription factor Ypl230w regulates genes important for protein folding during stationary
phase. The ability to generate detailed hypotheses, in the form ”regulator r regulates process P

under conditions W ”, is among the most powerful features of the module networks procedure, as
it also suggests the specific experiments that can validate these hypotheses. Figure 6.7 (c) lists a
number of such automatically generated predictions.

We selected three hypotheses suggested by the method, involving largely uncharacterized puta-
tive regulators. To test our ability to predict different types of regulatory mechanisms, we selected a
putative zinc-finger transcription factor, Ypl230w, and two putative signaling molecules, the protein
kinase Kin82 and the phosphatase Ppt1. Under normal growth conditions, all three deletion strains
show no apparent abnormalities. As discussed above, each hypothesis generated by the method
provides the significant conditions under which the regulator is active, and thereby specifies the
experimental conditions under which the mutant should be tested (see Figure 6.7 (c)). Note, there
are tens of different experimental conditions, therefore pin-pointing the conditions under which the
regulator is active is crucial towards the success of the experiment.

These predictions were experimentally validated in collaboration with the Botstein lab at Stan-
ford. They employed microarray analysis to compare the transcriptional response in the deletion
strain to that of the wild-type strain, under the conditions predicted by our method. These genome-
wide experiments enable a complete evaluation of the accuracy of our predictions for each regulator:
whether it plays a regulatory role in the predicted conditions; whether it regulates genes in mod-
ules that it was predicted to regulate; and most importantly, whether it regulates processes that the
method predicted it regulates.

For completion, we include the resulting analysis. A set of differentially expressed genes was
derived from the microarray experiments for each of the tested regulators (see [82] for details). To
test whether our method correctly predicted the targets of each regulator, we examined the distri-
bution of the differentially expressed genes among the modules. For each putative regulator r, we
calculated a p-value for the enrichment of differentially expressed genes in each module, and ranked
the modules according to these p-values. In all three cases, the highest ranking module was pre-
dicted to be regulated by r (Figure 6.8 (a)). In each case, 25% (Ppt1, p < 9× 10−3), 26% (Kin82,
p < 10−4), and 30% (Ypl230w, p < 10−4) of the genes in the highest ranking module showed

6.3. BIOLOGICAL RESULTS 111

Module Significance

14Ribosomal�and�phosphate�metabolism 8/32,���9e-3

11Amino�acid�and�purine metabolism 11/53,�1e-2

15mRNA,�rRNA and�tRNA processing 9/43,���2e-2

39Protein�folding 6/23,���2e-2

30Cell�cycle 7/30,���2e-2

Module Significance

39Protein�folding 7/23,�1e-4

29Cell�differentiation 6/41,�2e-2

5 Glycolysis and�folding 5/37,�4e-2

34Mitochondrial�and�protein�fate 5/37,�4e-2

Y
pl

23
0w

P
pt

1
K

in
82

a

Module Significance

3 Energy and�osmotic�stress�I 8/31,�1e-4

2 Energy,�osmolarity &�cAMP signaling 9/64,�6e-3

15 mRNA,�rRNA and�tRNA processing 6/43,�2e-2

Module Significance

14Ribosomal�and�phosphate�metabolism 8/32,���9e-3

11Amino�acid�and�purine metabolism 11/53,�1e-2

15mRNA,�rRNA and�tRNA processing 9/43,���2e-2

39Protein�folding 6/23,���2e-2

30Cell�cycle 7/30,���2e-2

Module Significance

39Protein�folding 7/23,�1e-4

29Cell�differentiation 6/41,�2e-2

5 Glycolysis and�folding 5/37,�4e-2

34Mitochondrial�and�protein�fate 5/37,�4e-2

Y
pl

23
0w

P
pt

1
K

in
82

a

Module Significance

3 Energy and�osmotic�stress�I 8/31,�1e-4

2 Energy,�osmolarity &�cAMP signaling 9/64,�6e-3

15 mRNA,�rRNA and�tRNA processing 6/43,�2e-2

Protein�folding�(G)
ATP�binding�(G)
Cell�wall�(G)
Endoplasmic�reticulum�(G)
Steroid�metabolism�(G)
Protein�modification�(G)
Intracellular�protein�transport�(G)
Nucleocytoplasmic transport�(G)
RNA�processing�(G)
ER�to�golgi transport�(G)
mRNA�splicing�(G)
Peroxisome (G)
Starch�and�sucrose�metabolism�(K)

Cell�organization�and�biogenesis��(G)
Transcription�from�Pol I�promoter�(G)�
Phosphate�metabolism�(M)
rRNA processing�(G)
Nucleolus�(G)
Intracellular�protein�transport�(G)
Nucleocytoplasmic transport�(G)
Amino�acid�metabolism�(G)
RNA�processing�(G)
Carbohydrate�metabolism�(G)
mRNA�splicing�(G)
Tricarboxylic acid�cycle�(G)

Y
pl

23
0w

P
pt

1

Amino�acid�metabolism�(G)
Starch�and�sucrose�metabolism�(K)
Glycogen�metabolism�(G)
Carbohydrate�metabolism�(G)
Tricarboxylic acid�cycle�(G)

K
in

82

b

>40%0%

Pre
dic

te
d

Te
ste

d

Protein�folding�(G)
ATP�binding�(G)
Cell�wall�(G)
Endoplasmic�reticulum�(G)
Steroid�metabolism�(G)
Protein�modification�(G)
Intracellular�protein�transport�(G)
Nucleocytoplasmic transport�(G)
RNA�processing�(G)
ER�to�golgi transport�(G)
mRNA�splicing�(G)
Peroxisome (G)
Starch�and�sucrose�metabolism�(K)

Cell�organization�and�biogenesis��(G)
Transcription�from�Pol I�promoter�(G)�
Phosphate�metabolism�(M)
rRNA processing�(G)
Nucleolus�(G)
Intracellular�protein�transport�(G)
Nucleocytoplasmic transport�(G)
Amino�acid�metabolism�(G)
RNA�processing�(G)
Carbohydrate�metabolism�(G)
mRNA�splicing�(G)
Tricarboxylic acid�cycle�(G)

Y
pl

23
0w

P
pt

1

Amino�acid�metabolism�(G)
Starch�and�sucrose�metabolism�(K)
Glycogen�metabolism�(G)
Carbohydrate�metabolism�(G)
Tricarboxylic acid�cycle�(G)

K
in

82

b

>40%0%

Pre
dic

te
d

Te
ste

d

Figure 6.8: Validation of our method’s predictions for putative regulators. (a) Ranked modules table
for each tested regulator. Ranking is based on p-value calculated for enrichment of differentially
expressed genes in each module Modules predicted to be regulated by the respective regulator are
highlighted. (b) Functional predictions for tested regulators. The left column (Predicted) for each
regulator shows all annotations predicted by the method to be associated with that regulator. The
right column (Tested) shows which annotations were also significantly enriched in the set of differ-
entially expressed genes of each regulator (p < 0.05; black triangles). The intensity of each entry
represents the fraction of genes with the annotation from the set of differentially expressed genes.

differential expression.

Furthermore, we tried to identify the process regulated by each regulator, by searching for sig-
nificantly enriched functional annotations in its set of differentially expressed genes. In two cases
(Ypl230w, and Ppt1), the annotations matched those predicted for the regulator (Figure 6.8 (b)),
supporting the method’s suggestions for the regulatory roles of the tested regulators: Ypl230w acti-
vates protein folding, cell wall, and ATP binding genes, and Ppt1 represses phosphate metabolism
and rRNA processing.

In summary, deletion of each of the three regulators caused a marked impairment in the ex-
pression of a significant fraction of their computationally predicted targets, supporting the method’s
predictions and providing important insight regarding the function of these uncharacterized regula-
tors.

112 CHAPTER 6. MODULE NETWORKS - RECONSTRUCTING REGULATORY MODULES

6.4 Definition and Scoring

Now that we have demonstrated that our module networks discovery method offers unique capabil-
ities in extracting modularity and regulation from expression data. We provide a formal definition
of module networks and technical details on how these can be learned from gene expression data.

6.4.1 Formal Definition

As described above, a module represents a set of variables that share the same set of parents and
the same CPD. As a notation, we represent each module by a formal variable that we use as a
placeholder for the variables in the module. A module set C is a set of such formal variables
M1, . . . ,MK . In the gene expression domain, each Mi represents a regulatory module.

We represent by Val(Mj) the set of possible values of the formal variable of the j’th module.
As all the variables in a module share the same CPD, they must have the same domain of values. In
our case, all variables have the same domain. In our implementation, the expression of gene X is
represented by two random variables, depending on the context. As a gene in a module, Val(X) is
continuous valued, representing the raw gene expression measurement. As a regulator, Val(X) is
one of three values: up-regulated, basel and down-regulated, representing the discretized value of
the raw measurement.

A module network relative to C consists of two components. The first defines a template prob-
abilistic model for each module in C; all of the variables assigned to the module will share this
probabilistic model.

Definition 6.4.1: A module network template T = (S, θ) for C defines, for each module Mj ∈ C:

• a set of parents PaMj
⊂ X ;

• a conditional probability template (CPT) P (Mj | PaMj
) which specifies a distribution over

Val(Mj) for each assignment in Val(PaMj
).

We use S to denote the dependency structure encoded by {PaMj
: Mj ∈ C} and θ to denote the

parameters required for the CPTs {P (Mj | PaMj
) : Mj ∈ C}.

In our example, we have three modules M1, M2, and M3, with PaM1 = ∅, PaM2 = {Bmh1}, and
PaM3 = {Usv1, Far1}.

The second component is a module assignment function, that assigns each variable Xi ∈ X to
one of the K modules, M1, . . . ,MK .

Definition 6.4.2: A module assignment function for C is a function A : X → {1, . . . ,K} such that
A(Xi) = j only if Val(Xi) = Val(Mj).

In our example, we have that A(Bmh1) = 1, A(Gic2) = 2, A(Usv1) = 2, and so on.

6.4. DEFINITION AND SCORING 113

A module network defines a probabilistic model by using the formal random variables Mj and
their associated CPDs as templates that encode the behavior of all of the variables assigned to that
module. Specifically, we define the semantics of a module network by “unrolling” a Bayesian net-
work where all of the variables assigned to module Mj share the parents and conditional probability
template assigned to Mj in T . For this unrolling process to produce a well-defined distribution, the
resulting network must be acyclic. Acyclicity can be guaranteed by the following simple condition
on the module network:

Definition 6.4.3: Let M be a triple (C, T ,A), where C is a module set, T is a module network
template for C, and A is a module assignment function for C. M defines a directed module graph
GM as follows:

• the nodes in GM correspond to the modules in C;

• GM contains an edge Mj →Mk if and only if there is a variable X ∈ X so that A(X) = j

and X ∈ PaMk
.

We say thatM is a a module network if the module graph GM is acyclic.

For example, for the module network of Figure 6.1(b), the module graph has the structure M1 →

M2 →M3. We now define the semantics of a Module network.

Definition 6.4.4: A module networkM = (C, T ,A) defines a ground Bayesian network BM over
X as follows: For each variable Xi ∈ X , where A(Xi) = j, we define the parents of Xi in BM to
be PaMj

, and its conditional probability distribution to be P (Mj | PaMj
), as specified in T . The

distribution associated withM is the one represented by the Bayesian network BM.

Returning to our example, the Bayesian network of Figure 6.1(a) is the ground Bayesian network
of the module network of Figure 6.1 (b).

Using the acyclicity of the module graph, we can now show that the semantics for a module
network is well-defined.

Proposition 6.4.5: If GM is a directed acyclic graph, then the dependency graph of BM is acyclic.

Proof: The proof follows from the direct correspondence between edges in the module graph and
edges in the ground Bayesian network. We construct a proof by contradiction. Assume that GM
is acyclic, but BM is cyclic. Thus, there exists a path p of variables in BM of length l ≤ n edges
such that pi ∈ p is a parent of pi+1 ∈ p in BM for i = 1, . . . l − 1 and p1 = pl. We can convert p

to a path in GM by replacing each node pi ∈ p with the module to which it belongs, MA(pi). Our
definition of a module graph guarantees that such a path exists in GM and thus it will be cyclic in
GM, contradicting our assumption that GM is acyclic. Hence, it follows that BM is acyclic.

114 CHAPTER 6. MODULE NETWORKS - RECONSTRUCTING REGULATORY MODULES

Corollary 6.4.6: For any module networkM, BM defines a coherent probability distribution over
X .

As we can see, a module network provide a succinct representation of the ground Bayesian
network. A Bayesian network for the gene expression domain needs to represent thousands of
CPDs. On the other hand, a module network can represent a good approximation of the domain
using a model that uses only few dozen CPDs.

6.4.2 Bayesian Scoring

We now turn to the task of learning module networks from data. Recall that a module network is
specified by a set of modules C, an assignment function A of nodes to modules, the parent structure
S specified in T , and the parameters θ for the local probability distributions P (Mj | PaMj

). We
assume in this paper that the set of modules C is given, and omit reference to it from now on. In this
section we develop a scoring function, score(S,A : D), that measures how well each combination
of structure and assignment function fits the observed data.

Our scoring function is based on the Bayesian paradigm and is developed similarly to the scoring
function for Bayesian networks described in Section 2.3. We briefly follow this derivation highlight-
ing the differences. In this section we treat multinomial CPTs in order to correspond more closely
to Section 2.3. In Section 6.5.4 we describe how to adjust scoring and learning to the regression tree
CPT used for the regulation programs.

6.4.3 Likelihood Function

We start by examining the data likelihood function

L(M : D) = P (D | M) =
M
∏

m=1

P (x[m] | T ,A).

As the semantics of a module network is defined via the ground Bayesian network, we have that,
in the case of complete data, the likelihood decomposes into a product of local likelihood functions,
one for each variable. In our setting, however, we have the additional property that the variables in a
module share the same local probabilistic model. Hence, we can aggregate these local likelihoods,
obtaining a decomposition according to modules.

More precisely, let Xj = {X ∈ X | A(X) = j}, and let θMj |PaMj
be the parameters associated

with the CPT P (Mj | PaMj
). We can decompose the likelihood function as a product of module

likelihoods, each of which can be calculated independently and depends only on the values of Xj

and PaMj
, and on the parameters θMj |PaMj

:

L(M : D)

6.4. DEFINITION AND SCORING 115

=
K
∏

j=1

M
∏

m=1

∏

Xi∈Xj

P (xi[m] | paMj
[m], θMjPaMj

)

=
K
∏

j=1

Lj(PaMj
,Xj , θMj |PaMj

: D) (6.1)

The key difference is in calculating the sufficient statistics. In a module network, all of the
variables in the same module share the same parameters. Thus, we pool all of the data from the
variables in Xj , and calculate our statistics based on this pooled data. More precisely, let Sj(Mj ,U)

be a sufficient statistic function for the CPT P (Mj | U). Then the value of the statistic on the data
set D is

Ŝj =
M
∑

m=1

∑

Xi∈Xj

Sj(xi[m],paMj
[m]). (6.2)

For example, in the case of multinomial table CPTs, we have one sufficient statistic function for
each joint assignment x ∈ Val(Mj),u ∈ Val(PaMj

), which is η{Xi[m] = x,paMj
[m] = u}—

the indicator function that takes the value 1 if the event (Xi[m] = x,PaMj
[m] = u) holds, and 0

otherwise. The statistic on the data is

Ŝj[x,u] =
M
∑

m=1

∑

Xi∈Xj

η{Xi[m] = x,PaMj
[m] = u}

Given these sufficient statistics, the formula for the module likelihood function is:

Lj(PaMj
,Xj , θMj |PaMj

: D) =
∏

x,u∈Val(Mj ,PaMj
)

θ
Ŝj [x,u]
x|u .

This term is precisely the likelihood function presented in Eq. (2.3). The only difference is that
the vector of sufficient statistics for a local likelihood term is pooled over all the variables in the
corresponding module. For example, consider the likelihood function for the module network of
Figure 6.1(b). In this network we have three modules. The first consists of a single variable and
has no parent, and so the vector of statistics Ŝ[M1] is the same as the statistics of the same variable
Ŝ[Bmh1]. The second module contains three variables, and we have that the sufficient statistics
for the module CPT is the sum of the statistics we would collect in the ground Bayesian network
of Figure 6.1(a): Ŝ[M2, Bmh1] = Ŝ[Usv1, Bmh1] + Ŝ[Gic2, Bmh1] + Ŝ[Far1, Bmh1]. Finally,
Ŝ[M3, Usv1, Far1] = Ŝ[Hsp10, Usv1, Far1] + Ŝ[Hsp60, Usv1, Far1].

As with Bayesian networks, the decomposition of the likelihood function allows us to perform
maximum likelihood or MAP parameter estimation efficiently, optimizing the parameters for each
module separately.

116 CHAPTER 6. MODULE NETWORKS - RECONSTRUCTING REGULATORY MODULES

6.4.4 Priors and the Bayesian Score

In Section 2.3.1 we formulated a Bayesian score for each network structure G. Here, in addition to
structure, we also take the assignment function into account. Specifically, we define a model score
for a pair (S,A) as the posterior probability of the pair, integrating out the possible choices for the
parameters θ. We define an assignment prior P (A), a structure prior P (S | A) and a parameter
prior P (θ | S,A). These describe our preferences over different networks before seeing the data.

We define the Bayesian score as the log of P (S,A | D), ignoring the normalization constant

score(S,A : D) = (6.3)

log P (A) + log P (S | A) + log P (D | S,A)

As with Bayesian networks, when the priors satisfy certain conditions, the Bayesian score de-
composes. This decomposition allows to efficiently evaluate a large number of alternatives. The
same general ideas carry over to module networks, but we also have to include assumptions that
take the assignment function into account. Following is a list of conditions on the prior required for
the decomposability of the Bayesian score:

Definition 6.4.7: Let P (A), P (S | A), P (θ | S,A) be assignment, structure, and parameter priors.

• P (θ | S,A) satisfies parameter independence if

P (θ | S,A) =
K
∏

j=1

P (θMj |PaMj
| S,A).

• P (θ | S,A) satisfies parameter modularity if P (θMj |PaMj
| S1,A) = P (θMj |PaMj

| S2,A)

for all structures S1 and S2 such that PaS1
Mj

= PaS2
Mj

.

• P (θ,S | A) satisfies assignment independence if P (θ | S,A) = P (θ | S) and P (S | A) =

P (S).

• P (S) satisfies structure modularity if P (S) ∝
∏

j ρj(Sj) where Sj denotes the choice of
parents for module Mj , and ρj is a distribution over the possible parent sets for module Mj .

• P (A) satisfies assignment modularity if P (A) ∝
∏

j αj(Aj), where Aj is the choice of
variables assigned to module Mj , and {αj : j = 1, . . . ,K} is a family of functions from 2X

to the positive reals.

Parameter independence, parameter modularity, and structure modularity are the natural ana-
logues of standard assumptions in Bayesian network learning (see Section 2.3.1). Two assumptions
are new to module networks. Assignment independence makes the priors on the parents and pa-
rameters of a module independent of the exact set of variables assigned to the module. Assignment
modularity implies that the prior onA is proportional to a product of local terms, one corresponding

6.5. LEARNING ALGORITHM 117

to each module. Thus, the reassignment of one variable from one module Mi to another Mj does
not change our preferences on the assignment of variables in modules other than i, j.

As for the standard conditions on Bayesian network priors, the conditions we define are not
universally justified, and one can easily construct examples where we would want to relax them.
However, they simplify many of the computations significantly, and are therefore very useful even
if they are only a rough approximation. Moreover, the assumptions, although restrictive, still allow
broad flexibility in our choice of priors. For example, we can encode preference (or restrictions)
on the assignments of particular variables to specific modules. In addition, we can also encode
preference for particular module sizes.

When the priors satisfy the assumptions of Definition 6.4.7, the Bayesian score decomposes into
local module scores:

score(S,A : D) =
K
∑

j=1

scoreMj
(PaMj

,A(Xj) : D) (6.4)

Using priors that are conjugate to the parameter distributions often leads to closed form analytic
formula of the value of the integral as a function of the sufficient statistics of Lj(PaMj

,Xj , θMj |PaMj
:

D). For example, using Dirichlet priors leads to the formula given in Eq. (2.11), the only difference
being that the sufficient statistics are collected over modules.

6.5 Learning Algorithm

Given a scoring function over networks, we now consider how to find a high scoring module net-
work. This problem is a challenging one, as it involves searching over two combinatorial spaces
simultaneously — the space of structures and the space of module assignments. We therefore sim-
plify our task by using an iterative approach that repeats two steps: In one step, we optimize a
dependency structure relative to our current assignment function, and in the other, we optimize an
assignment function relative to our current dependency structure.

6.5.1 Structure Search Step

The first type of step in our iterative algorithm learns the structure S , assuming that A is fixed. This
step involves a search over the space of dependency structures, attempting to maximize the score
defined in Eq. (6.3). This problem is analogous to the problem of structure learning in Bayesian
networks. We use a standard heuristic search over the combinatorial space of dependency structures.
We define a search space, where each state in the space is a legal parent structure, and a set of
operators that take us from one state to another. We traverse this space looking for high scoring
structures using a search algorithm such as greedy hill climbing.

An obvious choice of local search operators involves steps of adding or removing a variable
Xi from a parent set PaMj

. (Note that edge reversal is not a well-defined operator for module

118 CHAPTER 6. MODULE NETWORKS - RECONSTRUCTING REGULATORY MODULES

networks, as an edge from a variable to a module represents a one-to-many relation between the
variable and all of the variables in the module.)

When an operator causes a parent Xi to be added to a module Mj , we need to verify that the
resulting module graph remains acyclic, relative to the current assignment A. Note that this step
is quite efficient, as cyclicity is tested on the module graph, which contains only K nodes, rather
than on the dependency graph of the ground Bayesian network, which contains n nodes (usually
n� K).

Also note that, as in Bayesian networks, the decomposition of the score provides considerable
computational savings. When updating the dependency structure for a module Mj , the module
score for another module Mk does not change, nor do the changes in score induced by various
operators applied to the dependency structure of Mk. Hence, after applying an operator to PaMj

,
we need only update the delta score for those operators that involve Mj .

6.5.2 Module Assignment Search Step

The second type of step in our iteration learns an assignment function A from data. This type of
step occurs in two places in our algorithm: once at the very beginning of the algorithm, in order to
initialize the modules; and once at each iteration, given a module network structure S learned in the
previous structure learning step.

Module Assignment as Clustering

In this step, our task is as follows: Given a fixed structure S we want to find:

A = argmaxA′scoreM(S,A′ : D) (6.5)

Interestingly, we can view this task as a clustering problem. A module consists of a set of variables
that have the same probabilistic model. Thus, for a given instance, two different variables in the
same module define the same probabilistic model, and therefore should have similar behavior. We
can therefore view the module assignment task as the task of clustering variables into sets, so that
variables in the same set have a similar behavior across all instances.

However, there are several key differences between this task and a standard clustering task.
First, in general, the probabilistic model associated with each cluster has structure, as defined by the
CPT template associated with the cluster (module). Moreover, our setting places certain constraints
on the clustering, so that the resulting assignment function will induce a legal (acyclic) module
network.

Module Assignment Initialization

In the initialization phase, we exploit the clustering perspective directly, using a form of hierarchical
agglomerative clustering that is tailored to our application. Our clustering algorithm can be thought

6.5. LEARNING ALGORITHM 119

of as performing model merging (as in [31]) in a simple probabilistic model. In the initialization
phase, we do not yet have a learned structure for the different modules. Thus, from a clustering
perspective, we consider a simple naive Bayes model for each cluster, where the distributions over
the different features within each cluster are independent and have a separate parameterization. We
begin by forming a cluster for each variable, and then merge two clusters whose probabilistic models
over the features (arrays) are similar. We continue to merge clusters until we construct a module
network with the desired number of modules.

Module Reassignment

In the module reassignment step, the task is more complex. We now have a given structure S , and
wish to find A = argmaxA′scoreM(S,A′ : D). We thus wish to take each variable Xi, and select
the assignment A(Xi) that provides the highest score.

At first glance, we might think that we can decompose the score across variables, allowing us
to determine independently the optimal assignment A(Xi) for each variable Xi. Unfortunately,
this is not the case. Most obviously, the assignments to different variables must be constrained
so that the module graph remains acyclic. For example, if X1 ∈ PaMi

and X2 ∈ PaMj
, we

cannot simultaneously assign A(X1) = j and A(X2) = i. More subtly, the Bayesian score for
each module depends non-additively on the sufficient statistics of all the variables assigned to the
module. (The log-likelihood function is additive in the sufficient statistics of the different variables,
but the log marginal likelihood is not.) Thus, we can only compute the delta score for moving a
variable from one module to another given a fixed assignment of the other variables to these two
modules.

We therefore use a sequential update algorithm that reassigns the variables to modules one by
one. The idea is simple. We start with an initial assignment function A0, and in a “round-robin”
fashion iterate over all of the variables one at a time, and consider changing their module assignment.
When considering a reassignment for a variable Xi, we keep the assignments of all other variables
fixed and find the optimal legal (acyclic) assignment for Xi relative to the fixed assignment. We
continue reassigning variables until no single reassignment can improve the score. An outline of
this algorithm appears in Figure 6.9

The key to the correctness of this algorithm is its sequential nature: Each time a variable as-
signment changes, the assignment function as well as the associated sufficient statistics are updated
before evaluating another variable. Thus, each change made to the assignment function leads to a
legal assignment which improves the score. Our algorithm terminates when it can no longer im-
prove the score. Hence, it converges to a local maximum, in the sense that no single assignment
change can improve the score.

The computation of the score is the most expensive step in the sequential algorithm. Once again,
the decomposition of the score plays a key role in reducing the complexity of this computation:
When reassigning a variable Xi from one module Mold to another Mnew, only the local score of
these modules changes. The module score of all other modules remains unchanged. The rescoring of

120 CHAPTER 6. MODULE NETWORKS - RECONSTRUCTING REGULATORY MODULES

Input:
A data set D
A0 // Initial assignment function
S // Dependency structure

Output:
A // Improved assignment function

Sequential-Update
A = A0

Loop
For i = 1 to n

score∗ = score(S,A : D), A∗ = ∅
For j = 1 to k
A′ = A except that A′(Xi) = j
If 〈GM,A′〉 is cyclic, continue
If score(S,A′ : D) > score∗

A∗ = A′, score∗ = score(S,A′ : D)
If (A∗ 6= ∅)
A = A∗

Until no reassignments to any of X1, . . . Xn

Return (A)
}

Figure 6.9: Outline of sequential algorithm for finding the module assignment function

6.5. LEARNING ALGORITHM 121

Input:
D // Dataset
K // Number of modules

Output:
M // A module network

Learn-Module-Network
A0 = cluster X into K modules
S0 = empty structure
Loop t = 1, 2, . . . until convergence
St = Greedy-Structure-Search(At−1 ,St−1)
At = Sequential-Update(At−1 ,St);

Return M = (At,St)

Figure 6.10: Outline of the module network learning algorithm. Greedy-Structure-Search succes-
sively applies operators that change the structure as long as each such operator results in a legal
structure and improves the module network score

these two modules can be accomplished efficiently by subtracting Xi’s statistics from the sufficient
statistics of Mold and adding them to those of Mnew.

6.5.3 Algorithm Summary

To summarize, our algorithm starts with an initial assignment of variables to modules. In general,
this initial assignment can come from anywhere, and may even be a random guess. We choose to
construct it using the clustering-based idea described in the previous section. The algorithm then
iteratively applies the two steps described above: learning the module dependency structures, and
reassigning variables to modules. These two steps are repeated until convergence. An outline of the
module network learning algorithm is shown in Figure 6.10. Each of these two steps — structure
update and assignment update — is guaranteed to either improve the score or leave it unchanged.
We can thus prove:

Theorem 6.5.1: The iterative module network learning algorithm converges to a local maximum of
score(S,A : D).

6.5.4 Learning with Regression Trees

For the continous valued gene expression domain we use a conditional probability model repre-
sented as a regression tree [10]. A regression tree T for P (X | U) is defined via a rooted binary
tree, where each node in the tree is either a leaf or an interior node. Each interior node is labeled
with a test U = u on some variable U ∈ PaMj

and u ∈ Val(U). The parameters of T are the distri-
butions associated with each leaf. In our implementation, each leaf ` is associated with a univariate
Gaussian distribution over values of X , parameterized by a mean µ` and variance σ2

` .

122 CHAPTER 6. MODULE NETWORKS - RECONSTRUCTING REGULATORY MODULES

-150

-100

-50

0

50

100

150

0 50 100 150 200 250 300 350 400 450 500

Number of Modules

Te
st

 D
at

a
Lo

g-
Li

ke
lih

oo
d

(g
ai

n
pe

r
in

st
an

ce
)

Figure 6.11: 10-fold cross validation comparing generalization ability between module networks
of different sizes, using Bayesian networks as a baseline. For each run, zero is calibrated to be the
Bayesian network performance and module network score is calculated relative to that base line.
The error bars relate to the 10 different runs for each test dataset.

To learn module networks with regression-tree CPTs, we must extend our previous discussion
by adding another component to S that represents the trees T1, . . . , TK associated with the different
modules. Once we specify these components, the above discussion applies with several small dif-
ferences. These issues are similar to those encountered when introducing decision trees to Bayesian
networks [14, 33], and so we only briefly touch on them.

Given a regression tree Tj for P (Mj | PaMj
), the corresponding sufficient statistics are the

statistics of the distributions at the leaves of the tree. For each leaf ` in the tree, and for each data
instance x[m], we let `j [m] denote the leaf reached in the tree given the assignment to PaMj

in
x[m]. The module likelihood decomposes as a product of terms, one for each leaf `. Each term is
the likelihood for the Gaussian distribution N

(

µ`;σ
2
`

)

, with the sufficient statistics for a Gaussian
distribution.

Ŝ0
j,` =

∑

m

∑

Xi∈Xj

η{`j [m] = `}

Ŝ1
j,` =

∑

m

∑

Xi∈Xj

η{`j [m] = `}xi (6.6)

Ŝ2
j,` =

∑

m

∑

Xi∈Xj

η{`j [m] = `}x2
i

The local module score further decomposes into independent components, one for each leaf `.
Here, we use a Normal Gamma prior [25] for the distribution at each leaf: Letting τ` = 1/σ2

` stand
for the precision at leaf `, we define: P (µ`, τ`) = P (µ` | τ`)P (τ`), where P (τ`) ∼ Γ(α0, β0) and

6.6. SYSTEMATIC EVALUTION 123

P (µ` | τ`) ∼ N
(

µ0; (λ0τ`)
−1
)

, where we assume that all leaves are associated with the same prior.
Letting Ŝi

j,` be defined as in Eq. (6.6), we have that the component of the log marginal likelihood
associated with a leaf ` of module j is given by:

−1
2 Ŝ0

j,` log(2π) + 1
2 log

(

λ0

λ0+Ŝ0
j,`

)

+ log
(

Γ(α0 + 1
2 Ŝ0

j,`)
)

− log (Γ(α0))

+α0 log (β0)−
(

α0 + 1
2 Ŝ0

j,`

)

log (β)

where

β = β0 +
1

2

Ŝ2
j,` −

(Ŝ1
j,`)

2

Ŝ0
,`

+

Ŝ0
,`λ0

(

Ŝ1
,`

Ŝ0
,`

− µ0

)2

2(λ0 + Ŝ0
,`)

.

When performing structure search for module networks with regression-tree CPTs, in addition
to choosing the parents of each module, we must also choose the associated tree structure. We use
the search strategy proposed in [14], where the search operators are leaf splits. Such a split operator
replaces a leaf in a tree Tj with an internal node with some test on a variable U . The two branches
below the newly created internal node point to two new leaves, each with its associated Gaussian.
This operator must check for acyclicity, as it implicitly adds U as a parent of Mj . When performing
the search, we consider splitting each possible leaf on each possible parent U and each value u.

6.6 Systematic Evalution

6.6.1 Cross Validation

We evaluated the generalization ability of different models, in terms of log-likelihood of test data,
using 10-fold cross validation (see Section 5.6.1). In Figure 6.11, we evaluate the performance of
module networks varying in the number of modules. As a baseline, we use the performance of
Bayesian networks (no parameter sharing) for this data. To make the comparison valid, all net-
works, including Bayesian networks, are modeled using regression tree CPDs and are learned using
the same candidate set of regulators and learning program. Thus, shared CPDs and the number of
variables these were based on, was the only difference between models. Module networks gen-
eralize much better to unseen data for almost all numbers of modules, even for as many as 500
modules.

6.6.2 Gene Assignments

Our procedure initiates with a clustering of the genes based on their expression and then iterates
between module assignment and regulation tree learning steps. For computational efficiency some
iterations only optimize the parameters of the normal distributions at the leaves and leave the tree
structure unchanged. An iteration that re-learns the regulation tree structure is employed only after

124 CHAPTER 6. MODULE NETWORKS - RECONSTRUCTING REGULATORY MODULES

��
���

���
��	

��

��

�
���

��
���

��
��

���������	
��
����
���
����

	��� �� ��
��
���
��� � � �����

� ��� ���
���� ��

) * +,*

) * +�-�. /

) * +�-

) * 0�12. /

) * 0�1

) * 043,. /

) * 043

57698;:=<?>=@?A;B9CD6 5E6 6F6 8G6 :H6 <I6 >F6 @G6 AJ6 BG6 CE8 5K8 6L8 8M8 :

���������	
��

) * +,*

) * +�-�. /

) * +�-

) * 0�12. /

) * 0�1

) * 043,. /

) * 043

57698;:=<?>=@?A;B9CD6 5E6 6F6 8G6 :H6 <I6 >F6 @G6 AJ6 BG6 CE8 5K8 6L8 8M8 :

���������	
��

Figure 6.12: Likelihood of model at each iteration

iterations of module assignments and regulation tree parameter-optimizing converge. The results
reported in this thesis converged after 23 iterations, 4 of which were tree structure change iterations.

Why not simply learn our regulation programs on the initial clusters? Do we gain anything by
re-assigning genes to new modules and iterating the learning? In this section we will show that
our iterative procedure is superior to simply learning regulation programs on the results of standard
clustering. In Figure 6.12 demonstrates how the score of the resulting model improves in each
iteration. As expected, the biggest jumps in the score are after tree structure learning.

How similar are the resulting modules (i.e. their gene composition) to the initial clusters? Over-
all, 49% of the genes changed their assignment as compared to the initial clusters. Figure 6.13 plots
the percent of genes that changed in each iteration compared to the previous one and compared to
the initial clusters. Note, the first iteration, over 35% of the genes change their module assignment.

The resulting modules are more biologically coherent than the initial clusters. We computed the
enrichment of each GO annotation in the initial clusters and in the resulting modules. In Figure 6.14
we plotted the negative log of the best p-value found for each annotation in the resulting modules,
against the negative log of the best p-value for that annotation in the initial clusters. This plot shows
a clear shift in the biological coherence in favor of the resulting modules.

The iterations of our algorithm play a similar role to the iterations in the psi-blast [] algorithm.
Just as psi-blast converges to protein motifs of a protein family, our procedure converges to module
signatures of regulatory modules. Recall the Nitrogen Catabolite Repression Module, which has
tight co-expression only when Gat1 is over-expressed. While in standard clustering each sample has
equal weight, our scoring method re-weights the samples so that the Gat1 overexpressed samples
determine most of the score. Thus, condition specific modules are formed.

6.7. DISCUSSION 125

��
��

���
��

�	
�

���
���

��
���

���

���������	
��

0
5
10
15

20
25
30
35
40
45
50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 2223
0
5
10
15

20
25
30
35
40
45
50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 2223

���������	
��
����
���
����
	�������

��
���
��� �� �����
� ��� ���
���� ��

Figure 6.13: Percent of genes changing module assignments at each iteration

6.7 Discussion

Discovering biological organization from gene expression data is a promising but challenging task.
The contribution in this chapter is two-fold. The module networks discovery method presented here
offers unique capabilities in extracting modularity and regulation from expression data. Further-
more, the framework of module networks developed for this task can be successfully applied to
other domains (e.g. stock data [81]).

The statistical advantages of module networks allow us to learn detailed regulatory programs
over thousands of gene solely from approximately one hundred gene expression data samples. Over-
all, our the resulting model provides a clear global view of functional modules and their regulation,
that corresponds well to the known biological literature. Perhaps the most powerful feature of our
method is its ability to generate detailed testable hypotheses concerning the role of specific regu-
lators and the conditions under which this regulation takes place. Microarray experiments planned
based on the computational predictions for three putative regulators with as yet unknown functions
(a transcription factor and two signaling molecules) validated the method’s predictions and provided
important insight regarding the function of these uncharacterized regulators. As more diverse gene
expression datasets become available, it is our belief that applying the module networks may result
in important new insights in the ongoing endeavor to understand the complex web of biological
regulation.

126 CHAPTER 6. MODULE NETWORKS - RECONSTRUCTING REGULATORY MODULES

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45N
eg

at
iv

e
Lo

g
p-

va
lu

e
(m

od
ul

e
ne

tw
or

k)

Negative Log p-value (starting point)

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45N
eg

at
iv

e
Lo

g
p-

va
lu

e
(m

od
ul

e
ne

tw
or

k)

Negative Log p-value (starting point)

Figure 6.14: Biological coherence of modules verses initial clustering. waiting from fig from Eran

Chapter 7

Discussion

7.1 Summary

In this dissertation, we have seen three different methods to infer cellular pathways from gene ex-
pression profiles. The first approach uses ensembles of Bayesian networks to detect strong statistical
dependencies between genes and based on these dependencies, reconstructs detailed subnetworks
of interacting genes. The other two approaches (MinReg and Module Networks) focus the infer-
ence on regulatory relations by constraining the parents in the network to a pre-defined candidate
set of known or putative regulators. The MinReg algorithm constructs a global regulation model by
identifying a small set of “active” regulators and the genes that they regulate. The gene expression
of this small set of chosen regulators can predict the behavior of the majority of the genes in the
data. The Module Network approach is based on revealing coordinated co-regulation by identifying
“regulatory modules”: sets of co-regulated genes and the regulatory program that controls them.

No less important than the model itself and algorithms to learn the model from the data, is how
to interpret and validate of the resulting model in a biological context. For each of the three methods,
we attempted to answer the following questions.

• What is the biological interpretation of the features in the model?

• How well does the model correspond to existing biological knowledge?

• What novel biological insights do we gain from the inferred model?

We validated the reconstructed models by comparing them to independent data sources. We eval-
uated the resemblance between the interactions inferred by our methods to known biological in-
teractions. These included interactions automatically extracted from the YPD [21] database and
manually extracted from review papers. Since only a small fraction of the true biological relations
are known, such a comparison is sparse in its scope, Therefore, we used gene annotations for both
biological process and molecular function obtained from the SGD [11] and YPD [21] databases, to
help support the biological plausibility of the inferred model. This analysis was further corroborated

127

128 CHAPTER 7. DISCUSSION

using evidence from published journals. In addition, independent data sources provided further af-
firmation for our models. These include known cis-regulatory motifs [48] in the promoter regions,
protein-protein interactions from DIP [101] and DNA-protein interactions [62].

For each method, our systematic evaluation confirms many aspects of the reconstructed model.
The Subnetwork approach identified a number of subnetworks that correspond to coherent biolog-
ical processes, including the mating pathway, low osmolarity cell wall pathway and amino acid
metabolism (Chapter 3). The MinReg algorithm automatically associated both transcription factors
and signaling molecules with their known targets and with the biological processes they are known
to regulate (Chapter 5). The Module Network approach discovers known functional modules and
the genes known to regulate them. The validation of our methods culminated in experimental confir-
mation of three automatically generated hypotheses. The Module networks allows to make testable
hypotheses of the form “protein X regulates a module of genes G, under conditions C”. Gene ex-
pression profiles of knockout strains in the specific conditions where the regulator is predicted to be
active, confirmed the computational predictions for three putative regulators with as yet unknown
functions (a transcription factor and two signaling molecules), providing important insight regarding
the function of these uncharacterized regulators. Overall, our results demonstrate that it is possible
to infer metabolic pathways, regulatory relationships, signaling cascades and an organization into
co-regulated modules using gene expression data as input.

7.2 Comparing the Methods

The main differences between the methods involve the various strategies by which they tackle the
issue of statistical robustness and the trade-offs these impose. One of the greatest challenges of
the reconstruction of molecular pathways from gene expression data is the statistical significance
of the resulting model. The domain is high dimensional (even simple organisms such as yeast
have thousands of genes) and it contains a vast number of hidden and unobserved variables; yet we
attempt to learn it using only a small number (hundreds) of noisy samples. Thus we must choose
different tradeoffs, such as few interactions at fine detail verses many interactions at a coarser level
or accuracy of the regulatory interactions themselves verses accuracy of the regulatory program.
Some of these differences are summarized in Table 7.1.

In the subnetwork approach, we do not have confidence in the entire network, instead, we extract
the common features on which many high scoring structures agree. This results in a fine detailed
network structure, but only for a small set of interactions. In order to build a global network over
all genes, the regulatory methods (MinReg and Module networks) reconstruct at a coarser, more
abstract scale. These reconstructions are not always correct at the resolution of a single interaction,
rather, they are more reliable when considering properties (e.g. annotations) of entire sets of co-
regulated genes. Both regulatory methods gain part of their statistical robustness by limiting the
total number of regulators (parents) in the model. MinReg, explicitly, by definition, and Module
networks, implicitly. This forces the learning to identify the most pronounced regulators in the

7.2. COMPARING THE METHODS 129

Bayesian Networks MinReg Model Module Networks
Model Scope Subnetworks Global Global
Prior Assumptions No Yes Yes
Robustness Strategy Bootstrap Few regulators Common regulatory programs
Resolution of Structure Finest In-between Coarse
Logic of Regulation Weak Exists Strong

Table 7.1: Table comparing Bayesian networks, MinReg and Module networks

dataset. Regulators which effect only a small number of targets are not detected by these methods.
Module networks gain additional robustness when learning the combinatorial logic of the regulatory
programs by using parameter sharing and by pooling data samples of co-regulated genes together.

Our adaptation of Bayesian networks to gene expression does not rely on knowledge or assump-
tions specific to the biological domain. Our solutions are general: the sparse candidate algorithm
(Section 4.1) dealt with the vast number of variables, non-parametric bootstrap (Section 3.3) dealt
with the small number of samples and we treated mutations as ideal interventions (Section 4.2).
Since apart from bias for small indegree, the Bayesian networks were not constrained to any par-
ticular preconception, these captured aspects of cellular pathways that were completely missed in
the regulatory methods. Specifically, Bayesian networks reconstructed a number of surprisingly
accurate metabolic pathways, often linking genes whom are one metabolic step from each other
(Figure 3.9 and Section 3.7.2). This reconstruction of metabolic links raises many questions con-
cerning the regulation of metabolism, such as understanding the mechanism behind the significant
correlation between distance in metabolic pathways and coexpression.

The fundamental concept behind both MinReg and Module networks is quite similar. Both
reconstruct global models of gene regulation and both focus the inference on transcriptional regu-
lation by constraining the parents to a candidate list of known and putative regulators. They further
narrow the search space, by using biologically motivated assumptions to constrain the structure of
the learned networks. MinReg is constrained to find a model with a small number of “active” regu-
lators. The Module networks approach makes the additional assumption that the genes are grouped
into modules that share a common regulatory program. These assumptions lead to an abstraction of
the network that misses the more intricate wiring of the network.

This “disadvantage” can also be viewed as an advantage, as it captures a higher level organiza-
tion of the network. Even if it were feasible to reconstruct an exact network of interactions from
the given data, this detailed wiring diagram over thousands of genes would be almost as hard to
understand as the raw gene expression data itself. A higher order organization is often more easy
to interpret: it helps elucidate not only which “wires” exist, but also what they do. In the analysis
of the MinReg model, we do not focus on the single regulator target relationships, rather, we as-
sociate each regulator with Gene Ontology terms significantly enriched in its “regulatee set”. This
approach highlights which biological processes and functions a particular gene is regulating. The
Module networks procedure explicitly learns this higher order organization of network structure

130 CHAPTER 7. DISCUSSION

by automatically organizing genes into co-regulated modules, each responsible for a common re-
sponse or process, By doing so explicitly, the resulting modules have more coherent annotations
(e.g. percentage of module genes that belong to a dominant annotation), than MinReg’s regulatee
sets.

Another strength of the Module network approach is due to the parameter sharing between genes
in the same module, greatly enhancing the statistical robustness of the inferred model. Requiring
similar behavior for genes in the same module is the main reason that the resulting gene sets are
more coherently annotated than the MinReg regulatee sets. Furthermore, enforcing a common, con-
dition specific regulatory program leads to superior coherence than in standard clustering. Most
importantly, pooling many samples together enables to learn not only the structure of the regulatory
network, but the regulatory program itself. Instead of inferring regulatory functions based on only
100 samples, the regulatory functions are reconstructed based on 3000 samples, a significant dif-
ference. Thus, the resulting regulatory programs are richer and include combinatorial logic between
regulators. For example, the Respiration module is activated in conditions of Hap4 upregulation OR
Msn4 upregulation. This combinatorial OR is further supported by the existence of binding sites to
both Hap4 and Msn4 in many of the module’s genes.

While the assumption of a shared regulatory program has many advantaged, it comes at a cost.
In Module networks, each gene belongs to only one module and all genes in a module share the exact
same regulatory program under all conditions. This is a over-simplification of biological modules,
that are overlapping and dynamic in nature. Under different conditions, different sets of genes are
coordinated to act together. Genes that function in a common process often have overlapping, but
distinct regulator sets. In this respect, the MinReg approach has an advantage, as it assigns each
gene a unique set of regulators chosen from a common pool. This is most clearly demonstrated
by the Nitrogen catabolism response, that was reconstructed by both models. MinReg correctly
pieced together the joint regulation of nitrogen starvation, it detected the GATA transcription factors:
Gat1, Uga3 and Dal80, all whom are known to participate in the regulation of this response (see
Figure 5.4). However, the molecular functions they regulate only partially overlapped, highlighting
their specific roles in a common response. The Module network procedure only inferred Gat1 as
a regulator of this response, Uga3 and Dal80 are suggested as members, rather than regulators, of
the module (see Figure 6.5). In Figure 6.5, it is clear that the genes are only tightly co-regulated
under Gat1 upregulation. In other conditions, the genes seem to have a diverse set of behaviors and
regulatory programs.

7.3 From Gene Expression to Transcriptional Regulation

A critical challenge for the validity of our approach lies in explaining how regulatory events can be
reconstructed from gene expression data. In this section we discuss our hypothesis as to how this is
possible.

Our methods detect regulatory relations based on the statistical associations in gene expression.

7.3. FROM GENE EXPRESSION TO TRANSCRIPTIONAL REGULATION 131

Cell

TF B
mRNA

D NA T F A I

t a r g e tD NA T F B

mRNA

II

Cell

TF B
mRNA

D NA T F A I

t a r g e tD NA T F B

mRNA

II

Time

A c t iv e
p r o t ein

l ev el

mR N A
ex p r es s io n

l ev el

I II

TF A

TF A

TF B

TF B

Ta r g et

Ta r g et

Regulator Chain

TF A

TF B

target

Regulator Chain

TF A

TF B

target

A B C

Figure 7.1: Regulator chain A ↪→ B ↪→ C(A) Cartoon of the cell at two time points. At time I,
transcription factor (TF) A activates transcription factor B, raising the levels of mRNA and protein
for transcription factor B. In time II, transcription factor B activates its target. (B) Time series
plotting the protein and mRNA levels. (C) Network motif. The gene with the dotted border is
predicted as regulator.

In order to capture a regulation event in gene expression data, we must observe concordant changes
in the expression of both the regulator and its targets. Therefore, our approach relies on the assump-
tion that the gene expression profile of the regulators provides evidence as to their activity level.
This assumption is currently part of an ongoing biological debate, many researchers do not believe
gene expression data can reveal the actual regulators themselves. Indeed, due to the complex, often
post-transcriptional nature of regulation, our assumption does not always hold. To the contrary, re-
cent large-scale analysis of the regulatory networks of E. Coli [87] and S. Cerevisiae [62] revealed
the prevalence of cases in which the regulators are themselves transcriptionally regulated, a process
whose functional importance is supported both theoretically and experimentally [67]. Such con-
cordant changes in the expression of both the regulator and its targets might allow our automated
procedure to detect statistical associations between them.

When a transcription factor is transcriptionally regulated, its mRNA expression might corre-
lates well with its activity. Therefore, in cases where transcription factor A activates transcription
factor B, which in turn activates some target C , our approach can possibly capture the regulatory
relationship between B and C (see Figure 7.1). Note that steady state gene expression profiles do
not observe temporal changes (as those plotted in the Figure 7.1). Instead, perturbations of the cell
state (mutations and environmental treatments) create statistical associations between regulator and
target, these are detected by our learning algorithm.

Figure 7.1 provides a very simplistic view of gene regulation. In many cases, gene expression
data provides only part of the story: while transcription factors directly control transcription, the
factors themselves are frequently regulated at the post-translational level. Furthermore, many tran-
scription factors are active at very low levels of expression, and thus can not be detected reliably
with microarrays. In such cases, even if the transcription factor is regulated transcriptionally, current

132 CHAPTER 7. DISCUSSION

Signaling

Cell

Target

mRNA

D NA

T FP
I

T FP

S i gn al l i n g II

Signaling

Cell

Target

mRNA

D NA

T FP T FP
I

T FP T FP

S i gn al l i n g II

A c t iv e
p r o t e in

le v e l

m R N A
e x p r e s s io n

le v e l

Signalling
T F
T ar ge t

Signalling

T F
T ar ge t

I II
A c t iv e
p r o t e in

le v e l

m R N A
e x p r e s s io n

le v e l

Signalling
T F
T ar ge t

Signalling

T F
T ar ge t

I II

Signaling

TF

Target

Positive Signaling Loop

A B C

Figure 7.2: Signaling, positive feedback loop (A) In time I, the signaling molecule activates the
transcription factor (TF). In time II, the transcription factor activates all its targets including the
signaling gene. Therefore, the expression of the signaling molecule correlates with its indirect
targets (B) Time series plotting the protein and mRNA levels. (C) Network motif

microarray technology can not observe its change. In these cases, our basic assumption does not
hold. While the gene expression data is inherently oblivious to regulation of this kind, an indirect
regulatory relationship can be detected. Sometimes our method identifies the regulatory relationship
between a signal transduction molecule and its indirect targets.

We attribute this ability to the presence of positive and negative feedback loops: signaling
molecule post-transcriptionally activates transcription factor, which in turn activates its targets. If
the signalling molecule is target of the transcription factor, a feedback loop is formed (see Fig-
ure 7.2). In the first step, the cell contains an in-active form of the transcription factor and its
targets are not transcribed. Small amounts of the signalling molecule activate the transcription fac-
tor without inducing any change to it’s mRNA level. The actived transcription factor induces the
transcription of all its targets, including the signalling molecule. While there is no detectable change
in the expression of the transcription factor, the expression of the signaling molecule is concordant
with its indirect targets.

Shen-Orr et.al. [87] use known E. coli regulatory relations to break down the design of the E.
Coli transcriptional network into basic building blocks. They define network motifs as patterns of
interconnections that recur in the transcriptional network at frequencies much higher than those
found in randomized networks. They find that a number of such sub-structures include regulators
who are themselves transcriptionally regulated. Lee et.al. [62] construct a genome wide regulatory
map for S. Cerevisiae using a new high throughput experimental approach: cis-regulatory location
analysis. This technology measures the binding of transcription factors to the promoter regions of
an entire genome. Using genome-wide location data for 106 S. Cerevisiae transcription factors they
found prevalence of many of the motifs previously detected in the E. coli regulatory network.

We used the data of Lee et.al. [62] to test if some of our inferred regulator-regulatee relationships

7.3. FROM GENE EXPRESSION TO TRANSCRIPTIONAL REGULATION 133

participate in such network motifs1. Indeed, many of the inferred regulatory relations are part of such
regulatory motifs. Note, while the location data was obtained under normal growth conditions, the
gene expression data was obtained under stress conditions and mutated strains (that are often under
stress). Since regulation under stress conditions substantially differs from normal growth, many of
the regulatory events in the gene expression dataset are missed by the cis-binding dataset.

We present different types of regulatory components and an example in which such a component
is found (these are summarized in Figure 7.3):

• (a)Regulator chain: In this chain, a primary transcription factor activates a secondary tran-
scription factor by enhancing its transcription. After the secondary transcription factor is
translated into protein, it activates its own targets. In steady state expression profiles, this
can result in a statistical association between the secondary transcription factor and targets
of both the primary and secondary transcription factors. Note, in regulator chains, only the
secondary transcription factor is inferred as a regulator. For example, the transcription factor,
Phd1, activates a secondary transcription factor, Hap4. The module networks procedure found
twenty one genes2 that are bound by Hap4 in the location dataset, to be part of the respiration
module which Hap4 regulates. Note, Pet9 was also inferred to be regulated by Hap4, while
based on the location data it is regulated by Phd1. In this case our method possibly detected
co-regulation instead of regulation. Such cases will be further discussed below.

• (b) Auto-regulation: A transcription factor activates both its own transcription and that of its
target genes, thus, the transcription factor is co-expressed along with its targets. For example,
Yap6 activates its own transcription and that of its target genes3. These were also inferred as
part of the Snf kinase regulated processes module which Yap6 regulates.

• (c) Positive signaling loop: A signaling molecule activates (post transcriptionally) a tran-
scription factor which induces the transcription of various targets, possibly including the sig-
naling molecule. The coordinated expression changes in signaling molecule and its indirect
targets allow the signaling molecule (but not the transcription factor) to be correctly inferred
as a regulator. For example, the MAP kinase Slt2 activates Rlm1. The MinReg algorithm
inferred Slt2 to regulate both Rlm1 and a number of its known targets: (Pst1, Crh1, Bop1,
Ktr2, Gsc2, Yps3, Prp2). Evidence [96], including a Rml1 binding site in the Slt2 promotor
suggests that Slt2 itself is also activated by Rlm1.

• (d) Negative signaling loop: Similar to the previous example, a negative feedback loop is
also possible: a signaling molecule inhibits activity of a transcription factor, which induces
transcription of its targets and possibly of signaling molecule. However, since both signaling
molecule and the targets are up-regulated, the method predicts that the signaling molecule’s

1Our comparison was made primarily to the Module networks method reconstruction, as this data did not exist during
the course of the previous projects.

2Cox4, Cox6, Atp17, Cox7, Cox8, Qcr2, Mir1, Qcr7, Cox12, Qcr9, Cox13, Cyt1, Atp1, Atp2, Atp3, Rip1, Atp5,
Atp7, Atp20, Cor1, and Ylr294c

3Hxt12, Hxt15, Hxt16, Yil122w, Fsp2, Yol157c, Yil172c, and Kel2

134 CHAPTER 7. DISCUSSION

a

Respiration module (1)

Regulator Chain

Phd1 (TF)

Hap4 (TF)

Cox4 Cox6 Atp17

Pet9

a

Respiration module (1)

Regulator Chain

Phd1 (TF)

Hap4 (TF)

Cox4 Cox6 Atp17

Pet9

Phd1 (TF)

Hap4 (TF)

Cox4 Cox6 Atp17

Pet9

Yap6 (TF)

Hxt12 Fsp2 Kel2

Snf kinase regulated
processes module (7)

b Auto-regulation

Yap6 (TF)

Hxt12 Fsp2 Kel2

Yap6 (TF)

Hxt12 Fsp2 Kel2

Snf kinase regulated
processes module (7)

b Auto-regulation

Slt2 (SM)

Rlm1 (TF)

Crh1 Gsc2 Yps3

c Positive Signaling Loop

cell wall integrity
(low-osmolarity) pathway

(MinReg)

Slt2 (SM)

Rlm1 (TF)

Crh1 Gsc2 Yps3

Slt2 (SM)

Rlm1 (TF)

Crh1 Gsc2 Yps3

c Positive Signaling Loop

cell wall integrity
(low-osmolarity) pathway

(MinReg)

d

Energy and osmotic
stress module (2)

Tpk1 (SM)

Msn4 (TF)

Nth1 Tps1 Glo1

Negative Signaling Loopd

Energy and osmotic
stress module (2)

Tpk1 (SM)

Msn4 (TF)

Nth1 Tps1 Glo1

Tpk1 (SM)

Msn4 (TF)

Nth1 Tps1 Glo1

Negative Signaling Loop

Figure 7.3: Network motifs: For each regulatory component, the relevant transcription factors (TF),
signal transduction molecules (SM), target genes and their relations are shown. Cis-regulation
events via transcription factors are shown in solid arrows, post-transcriptional events via signal-
ing molecules in dotted arrows. The gene with dotted border is that predicted as a regulator by
our method. The solid bordered regulators are not expected to be inferred from gene expression
data. The targets included are those genes that are both predicted by our method to be regulated
by the dotted regulator and also bound by the transcription factor according to the cis-location data
(p < 0.001 in Lee et al. [62]).

role is activation, in contrast to its actual inhibitory role. For example, Tpk1 inhibits the
activity of Msn4. Msn4 regulates the targets: Nth1, Tps144, and Glo145. These are part of
the Energy and osmotic stress module regulated by Tpk1. Tpk1’s upstream region includes
the Msn4 bound STRE motif, supporting Tkp1’s regulation by Msn4. Indeed, Tpk1 is inferred
as an activator rather than a repressor

Overall, our results demonstrate that regulatory events, including post-transcriptional ones, have
a detectable signature in the expression of genes encoding transcription factors and signal transduc-
tion molecules. Nevertheless, the ability of our methods to discover regulatory events is due in
part to secondary effects. The methods do not directly detect the post-translational activation of a
transcription factor, rather, due to a feedback loop, they identify the resulting change in the tran-
scription of the signaling molecule. Similarly to feedback signaling loops, we believe that our
detection of direct metabolic links (see Section 3.7.2) may be due to feedback loops involving the
metabolites themselves. This is supported by the discovery of such a feedback loop in the Galactose
pathway [53].

Despite the successes described above, our methods fails to identify regulatory relations. These
false negatives are divided between cases when the regulator’s expression does not change suf-
ficiently to merit detection, and cases where our method faile to identify the correct regulatory

7.3. FROM GENE EXPRESSION TO TRANSCRIPTIONAL REGULATION 135

relation, despite a detectable change in the regulator’s expression pattern. A close examination of
the relationships missed by our method reveals four categories of false negatives. The first two are
relevant to all three reconstruction methods.

• Undetectable regulators: If the change in a regulator’s activity is attributed exclusively (or
mostly) to post-transcriptional changes, we do not expect our method to capture it. For ex-
ample, the Dal81 gene is a known transcriptional activator of allantoin, GABA, and urea
catabolic genes, when nitrogen sources are low (e.g., in later stationary phase). Although
such conditions are included in our data set, there is little change in the expression of the
Dal81 gene itself. Thus, our methods could not detect Dal81-mediated regulation. Further-
more, if the regulatory event and the concomitant change in the regulator’s expression occur
primarily under very specific conditions, that are not included in our data set, we do not ex-
pect our methods to capture it. While missed in our current analysis, these relations can be
captured by our methods given a more appropriate dataset.

• Regulator redundancy: If several regulators participate in the same regulatory event, due
to “explaining away” we expect our methods to capture only some representatives, missing
the remaining regulators. This limitation applies both when several transcription factors work
in one complex and when several signal transduction molecules and/or transcription factors
are concatenated in one regulator chain. For example, the Hap2/3/4/5 transcription factors
work in a ternary complex to regulate the expression of respiration genes. While the module
networks procedure correctly captured Hap4 as a regulator of respiration it failed to identify
Hap2, 3, and 5 that have a “redundant function”. Note that the changes in Hap4’s expres-
sion are the most pronounced among these four potential regulators, explaining the method’s
specific choice. Note that this limitation of our methods does not apply to combinatorial reg-
ulation, when several regulators have only partly overlapping roles (e.g., Hap4 and Msn4 in
the respiration module).

The next two are specific to the two regulatory methods

• Co-regulation redundancy: Many modules contain target genes that also happen to belong
to the candidate regulator set. As these genes often have an expression profile which is similar
to that of the other target genes in the module, they may mistakenly be chosen as a regulator
for the module, in some cases rendering the true regulator redundant. In such cases, the true
regulator is often assigned as a module member, along with its targets. For instance, the
MinReg algorithm inferred Apg1, a signaling molecule involved in induction of autophagy,
as regulator of many Tor1 targets. Indeed, Apg1 is known to be regulated by Tor1 [78]. Tor1
itself is regulated post-transcriptionally, thus, we are captured Apg1 as its “replacement” in
our model, reflecting co-regulation rather than true regulation.

• Gene specific regulation: Even when a regulator’s expression pattern is highly (and possibly
uniquely) predictive of that of its known target, this relationship may be specific to a single

136 CHAPTER 7. DISCUSSION

target, and cannot be generalized to an entire module or set of genes. In such cases, nei-
ther MinReg nor Module networks, which are aimed to identify shared regulatory responses,
would detect the regulatory relation. We believe that the statistical robustness and biologi-
cal conciseness gained by taking a general perspective of regulation outweighs this particular
limitation of our approach.

Thus, while we attempt to limit the false positives, our reconstruction approach inherently leads
to many false negatives. We do not reconstruct the entire regulatory program of an entire organ-
ism, rather only certain aspects of it. Further work is required in order to explain why a specific
transcription factor is chosen over other potential ones, why a signaling molecules is identified as
a regulator instead of its cognate transcription factor in certain cases but not in others (e.g. Tpk1
and Msn4, both of which have a strong expression signature), or why a particular combination of
regulators has been selected. While some of the reasons may have to do with our computational
method, others may be related to critical biological issues such as the strength of feedback regula-
tion and the coordination of action between various regulators. Answers to these questions can both
aid the design of better regulatory models and algorithms to reconstruct them and can illuminate the
regulation of regulators and the coordination of their actions.

7.4 Future Prospects

The task of cellular pathway reconstruction is one of the biggest challenges of the post genomic era.
The work described in this dissertation is only a one step towards the goal of automated reconstruc-
tion of cellular pathways. Many specific issues and future direction have already been raised in the
summary of each chapter, here we provide a more general overview.

One suggestion for the next step in our quest for regulatory modules is “dynamic module net-
works”. One way to implement this is a hybrid between MinReg and Module networks: a method
that identifies a minimal set of common regulatory rules. Each such rule would be shared by many
genes and its parameters would be estimated using parameter sharing. But, each gene would be
regulated by a its own specific set of rules, giving it a unique signature of biological processes and
responses.

We focused on the structure and connections within cellular pathways. We used standard distri-
butions such as multinomials and regression trees for the local probability model that describes how
a set of regulators affect their targets. Bayesian network analysis for genetic networks has already
been enhanced by the use of non-parametric local CPDs [54] and more sophisticated models based
on the chemistry of molecular interactions are being developed [70]. Many of these models are
based on time series data [90, 58], that is beyond the scope of this thesis. Clearly time can help
elucidate causality of regulation, yet there is very little work that takes the temporal aspect of the
data into consideration [72, 5].

The methods described in this thesis use only gene expression as input, and are thus capable
of reconstructing certain aspects of the cell’s activity. Today, in addition to DNA microarrays,

7.4. FUTURE PROSPECTS 137

many new technologies can probe different attributes of the cell at a genome-wide scale and more
technologies are in constant development. Mass spectrometry [56] and protein arrays [65] quanti-
tatively measure abundance of proteins and other molecules in the cell. CIS-regulatory regions can
be studied using motif analysis [94, 6] and location binding assays [88, 62]. Protein interactions are
detected using 2-hybrid assays [98] and complexes [41]. Technology itself is advancing faster than
the computational tools needed to analyze such data.

Different methods and technologies provide different viewpoints of the cells’ activity: Gene
expression data measures changes in the levels of mRNA, but fails to measure changes in levels
of the active (e.g. phosphorylated) protein. Motif analysis on sequence promoters shows putative
binding sites for transcription factors, but fails to identify neither the regulated genes nor the condi-
tions under which active regulation occurs. Reconstructing biology requires the integration of many
different data sources and technologies. Such integration not only provides a synergetic, multi-
dimensional picture of the cells functioning, it also provides a means to detect and filter-out the
noise in the given measurements. The biggest challenge is to develop models that fuse these differ-
ent datatypes in a principled way. A number of attempts to integrate some of the above technologies
have already been published [44, 80, 52, 85, 84, 102]. In addition, good automated experiment
planning methods can greatly aid the goal of pathway reconstruction [53]. In this scenario the com-
putational scientist will guide the experimentalist to perform experiments that are expected to give
the largest amount of new information and gain [97].

The pathway reconstruction approaches discussed in this thesis were applied to S. Cerevisiae.
While this is a big challenge in itself, one of the most important goals is to develop methods that
would scale up to higher organisms. These are significantly more complex: consisting of more
genes, many more layers of different types of regulation and communication between differentiated
cells. While each model organism is quickly gaining enormous amounts of data, the real potential
of data integration lies in the integration of data from different organisms. A known pathway in
one organism can help reconstruct a homologous pathway in another organism. Such a comparative
genomics approach has been proven successful in motif finding [60] and is the key to pathway
reconstruction in more complex organisms such as mouse and human. In order to extend such an
approach to pathway analysis, a formulation for a plausible model for pathway evolution is needed.
Based on this model, a tractable distance measure between pathways can be devised. While holding
great promise, there have been only a few initial attempts [24, 92].

Finally, the most exciting challenge of all, is to find ways to use the reconstructed models to
better understand life itself. We can attempt to use these models to understand how biological reg-
ulation works, how cross talk between metabolic pathways and the environment can control levels
of metabolites in the cell. Understanding the organization of genes into modules, and the higher
order interaction between these modules can not only help design better reconstruction algorithms
but also shed light on the robust multitasking workings of the cell. Once we understand the higher
order organization of the cellular network, we could then ask how such an organization evolved.
Finally, the biggest challenge would be to understand how failure of regulation leads to diseases
such as cancer, and more importantly how to possibly fix such failures.

Bibliography

[1] S. Akutsu, T. Kuhara, O. Maruyama, and S. Minyano. Identification of gene regulatory
networks by strategic gene disruptions and gene over-expressions. In Proc. Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms. ACM-SIAM, 1998.

[2] B. Alberts, A. Johnson, J. Lewis, K.Roberts M. Raff, and P. Walter. Molecular Biology of the
Cell. Garland, 2002.

[3] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine. Broad
patterns of gene expression revealed by clustering analysis of tumor and normal colon tis-
sues probed by oligonucleotide arrays. Proceedings of the National Academy of Science,
96(12):6745–50, 1999.

[4] O. Alter, P. Brown, and D. Botstein. Singular value decomposition for genome-wide ex-
pression data processing and modeling. Proceedings of the National Academy of Science,
100(6):3351–6, 2000.

[5] Z. Bar-Joseph, G.K. Gerber, D.K. Gifford, T.S. Jaakkola, and I. Simon. Continuous represen-
tations of time-series gene expression data. Journal of Computational Biology, 10(3-4):241–
256, 2003.

[6] Y. Barash and N. Friedman. Context-specific Bayesian clustering for gene expression data.
Journal of Computational Biology, 9(2):169–191, 2002.

[7] T. Blumenthal. Gene clusters and polycistronic transcription in eukaryotes. BioEssays,
20:480–487, 1998.

[8] H. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal of Computing, 25(6):1305–1317, 1996.

[9] Breiman, Friedman, Olshen, and Stone. Classification and Regression trees. Chapman &
Hall, 1993.

[10] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
Wadsworth & Brooks, Monterey,CA, 1984.

138

BIBLIOGRAPHY 139

[11] J. M. Cherry, C. Ball, K. Dolinski, S. Dwight, M. Harris, J. C. Matese, G. Sherlock, G. Bink-
ley, H. Jin, S. Weng, and D. Botstein. Saccharomyces genome database. http://genome-
www.stanford.edu/Saccharomyces/, 2001.

[12] D. M. Chickering. Learning Bayesian networks is NP-complete. In D. Fisher and H.-J. Lenz,
editors, Learning from Data: Artificial Intelligence and Statistics V. Springer Verlag, 1996.

[13] D. M. Chickering. A transformational characterization of equivalent Bayesian network struc-
tures. In Proceedings of the Twelfth Annual Conference on Uncertainty in Artificial Intelli-
gence (UAI), pages 87–98. 1996.

[14] D. M. Chickering, D. Heckerman, and C. Meek. A Bayesian approach to learning Bayesian
networks with local structure. In Proceedings of the Thirteenth Annual Conference on Un-
certainty in Artificial Intelligence (UAI), pages 80–89, 1997.

[15] G. Chisholm and TG. Cooper. Isolation and characterization of mutants that produce the
allantoin-degrading enzymes constitutively in saccharomyces cerevisiae. Mol Cell Biol.,
2(9):1088–95, 1982.

[16] The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nature
Genetics, 25(1):25–29, 2000.

[17] G. Cooper and C. Yoo. Causal discovery from a mixture of experimental and observational
data. In Proceedings of the Fifteenth Annual Conference on Uncertainty in Artificial Intelli-
gence (UAI), pages 116–125. 1999.

[18] G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic net-
works from data. Machine Learning, 9:309–347, 1992.

[19] G.F. Cooper and C. Glymour. Computation, Causation, and Discovery. MIT Press, 1999.

[20] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms. MIT
press, 2001.

[21] M.C. Costanzo, M.E. Crawford, J.E. Hirschman, J.E. Kranz, P. Olsen, L.S. Robertson, M.S.
Skrzypek, B.R. Braun, K.L. Hopkins, P. Kondu, C. Lengieza, J.E. Lew-Smith, M. Tillberg,
and J.I. Garrels. Ypd, pombepd, and wormpd: model organism volumes of the bioknowledge
library, an integrated resource for protein information. Nucleic Acids Research, 2001.

[22] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons, New
York, 1991.

[23] TS. Cunningham, R. Rai, and TG. Cooper. The level of dal80 expression down-regulates
gata factor-mediated transcription in saccharomyces cerevisiae. J Bacteriol., 182(23):6584–
91, 2000.

140 BIBLIOGRAPHY

[24] T. Dandekar, S. Schuster, B. Snel, M. Huynen, and P. Bork. Pathway alignment: application
to the comparative analysis of glycolytic enzymes. Biochem Journal, 343:115–24, 1999.

[25] M. H. DeGroot. Optimal Statistical Decisions. McGraw-Hill, New York, 1970.

[26] J.L. DeRisi, V.R. Iyer, and P.O. Brown. Exploring the metabolic and genetic control of gene
expression on a genomic scale. Science, 278:680–686, 1997.

[27] P. D’haeseleer, X. Wen, S. Fuhrman, and R. Somogyi. Linear modeling of mrna expression
levels during cns development and injury. In Pacific Symposium on Biocomputing, pages
41–52, 1999.

[28] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley & Sons,
New York, 1973.

[29] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall, London,
1993.

[30] M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein. Cluster analysis and display
of genome-wide expression patterns. Proceedings of the National Academy of Science,
95:14863–14868, 1998.

[31] G. Elidan and N. Friedman. Learning the dimensionality of hidden variables. In Proceedings
of the Seventeenth Annual Conference on Uncertainty in Artificial Intelligence (UAI), pages
144–151. 2001.

[32] G. Elidan, N. Lotner, N. Friedman, and D. Koller. Discovering hidden variables: A structure-
based approach. In Proceedings of Neural Information Processing Systems (NIPS) 2000,
pages 479–485. 2000.

[33] N. Friedman and M. Goldszmidt. Learning Bayesian networks with local structure. In M. I.
Jordan, editor, Learning in Graphical Models, pages 421–460. Kluwer, 1998.

[34] N. Friedman, M. Goldszmidt, and A. Wyner. Data analysis with Bayesian networks: A
bootstrap approach. In Proceedings of the Fifteenth Annual Conference on Uncertainty in
Artificial Intelligence (UAI), pages 206–215. 1999.

[35] N. Friedman and D. Koller. Being Bayesian about Bayesian network structure: A Bayesian
approach to structure discovery in Bayesian networks. Machine Learning, 50:95–126, 2003.

[36] N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze
expression data. Journal of Computational Biology, 7:601–620, 2000.

[37] N. Friedman and I. Nachman. Gaussian process networks. In Proceedings of the Sixteenth
Annual Conference on Uncertainty in Artificial Intelligence (UAI), pages 211–219, 2000.

BIBLIOGRAPHY 141

[38] N. Friedman, I. Nachman, and D. Pe’er. Learning Bayesian network structure from massive
datasets: The “sparse candidate” algorithm. In Proceedings of the Fifteenth Annual Confer-
ence on Uncertainty in Artificial Intelligence (UAI), pages 196–205. 1999.

[39] N. Friedman and Z. Yakhini. On the sample complexity of learning Bayesian networks. In
Proceedings of the Twelfth Annual Conference on Uncertainty in Artificial Intelligence (UAI),
pages 274–282. 1996.

[40] A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G. Storz, D. Botstein,
and P. O. Brown. Genomic expression program in the response of yeast cells to environmental
changes. Mol. Bio. Cell, 11:4241–4257, 2000.

[41] AC. Gavin, M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, JM. Rick,
AM. Michon, CM. Cruciat, M. Remor, C. Hofert, M. Schelder, M. Brajenovic, H. Ruffner,
A. Merino, K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau, A. Bauch, S. Bastuck,
B. Huhse, C. Leutwein, MA. Heurtier, RR. Copley, A. Edelmann, E. Querfurth, V. Rybin,
G. Drewes, M. Raida, T. Bouwmeester, P. Bork, B. Seraphin, B. Kuster, G. Neubauer, and
G. Superti-Furga. Functional organization of the yeast proteome by systematic analysis of
protein complexes. Nature, 415:141–7, 2002.

[42] D. Geiger and D. Heckerman. Learning gaussian networks. In Proceedings of the Tenth
Annual Conference on Uncertainty in Artificial Intelligence (UAI), pages 235–243. 1994.

[43] D. Geiger, T. Verma, and J. Pearl. d-separation: From theorems to algorithms. In Proceedings
of the Fifth Annual Conference on Uncertainty in Artificial Intelligence (UAI), pages 139–
148. 1989.

[44] A.J. Hartemink, D.K. Gifford, T.S. Jaakkola, and R.A. Young. Combining location and ex-
pression data for principled discovery of genetic regulatory networks. In Pacific Symposium
on Biocomputing, pages 437–449, 2002.

[45] D. Heckerman and D. Geiger. Learning Bayesian networks: a unification for discrete and
Gaussian domains. In Proceedings of the Eleventh Annual Conference on Uncertainty in
Artificial Intelligence (UAI), pages 274–284. 1995.

[46] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combi-
nation of knowledge and statistical data. In Proceedings of the Tenth Annual Conference on
Uncertainty in Artificial Intelligence (UAI), pages 293–301. 1994.

[47] D. Heckerman, C. Meek, and G. Cooper. A Bayesian approach to causal discovery. In
Computation, Causation, and Discovery [19], pages 141–166.

[48] T. Heinemeyer, X. Chen, H. Karas, A.E. Kel, O.V. Kel, I. Liebich, T. Meinhardt, I. Reuter,
F. Schacherer, and E. Wingender. Expanding the TRANSFAC database towards an expert
system of regulatory molecular mechanisms. NAR, 27:318–322, 1999.

142 BIBLIOGRAPHY

[49] F. C. Holstege, E. G. Jennings, J. J. Wyrick, T. I. Lee, C. J. Hengartner, M. R. Green, T. R.
Golub, E. S. Lander, and R. A. Young. Dissecting the regulatory circuitry of a eukaryotic
genome. Cell, 95(5):717–28, 1998.

[50] NS. Holter, M. Mitra, A. Maritan, M. Cieplak, JR. Banavar, and NV. Fedoroff. Fundamental
patterns underlying gene expression profile: Simplicity from complexity. Proceedings of the
National Academy of Science, 97:8409–14, 2000.

[51] T. R. Hughes, M. J. Marton, A. R. Jones, C. J. Roberts, R. Stoughton, C. D. Armour, H. A.
Bennett, E. Coffey, H. Dai, Y. D. He, M. J. Kidd, A. M. King, M. R. Meyer, D. Slade, P. Y.
Lum, S. B. Stepaniants, D. D. Shoemaker, D. Gachotte, K. Chakraburtty, J. Simon, M. Bard,
and S. H. Friend. Functional discovery via a compendium of expression profiles. Cell,
102(1):109–26, 2000.

[52] T. Ideker, O. Ozier, B. Schwikowski, and A. F. Siegel. Discovering regulatory and signal-
ing circuits in molecular interaction networks. In Proceedinds of the Tenth International
Conference on Intelligent Systems for Molecular Biology., pages 233–240. 2002.

[53] T. Ideker, J.A. Thorsson, V. Ranish, R. Christmas, J. Buhler, J.K. Eng, R. Bumgarner, D.R.
Goodlett, R. Aebarsold, and L. Hood. Integrated genomic and proteomic analyses of a sys-
tematically perturbed metabolic network. Science, 291:929–934, 2001.

[54] S. Imoto, T. Goto, and S. Miyano. Estimation of genetic networks and functional structures
between genes by using bayesian networks and nonparametric regression. In Pacific Sympo-
sium on Biocomputing, pages 175–86, 2002.

[55] V. R. Iyer, M. B. Eisen, D. T. Ross, G. Schuler, T. Moore, J. C. F. Lee, J. M. Trent,
L. M. Staudt, Jr. Hudson, J., M. S. Boguski, D. Lashkari, D. Shalon, D. Botstein, and P. O.
Brown. The transcriptional program in the response of human fibroblasts to serum. Science,
283(5398):83–7, 1999.

[56] J.D. Jaffe, H.C. Berg, and G.M. Church. Proteogenomic mapping reveals genomic structure
and novel proteins undetected by computational algorithms. Proteomics, 2003.

[57] F. V. Jensen. An introduction to Bayesian Networks. University College London Press,
London, 1996.

[58] S. Kalir, J. McClure, K. Pabbaraju, C. Southward, M. Ronen, S. Leibler, M.G. Surette, and
U. Alon. Ordering genes in a flagella pathway by analysis of expression kinetics from living
bacteria. Science, 292:2080–3, 2001.

[59] M. Kanehisa, S. Goto, S. Kawashima, and A. Nakaya. The kegg databases at genomenet.
Nucleic Acids Research, 30:42–46, 2002.

[60] M. Kellis, N. Patterson, M. Endrizzi, B. Birren, and E.S. Lander. Sequencing and comparison
of yeast species to identify genes and regulatory elements. Nature, 423:241–54, 2003.

BIBLIOGRAPHY 143

[61] FG. Kuruvilla, AF. Shamji, and SL. Schreiber. Carbon- and nitrogen-quality signaling to
translation are mediated by distinct gata-type transcription factors. Proceedings of the Na-
tional Academy of Science, 98(13):7283–8, 2001.

[62] T.I. Lee, N.J. Rinaldi, F. Robert, D.T. Odom, Z. Bar-Joseph, G.K. Gerber, N.M. Hannett,
C.T. Harbison, C.M. Thompson, I. Simon, J. Zeitlinger, E.G. Jennings, H.L. Murray, D.B.
Gordon, B. Ren, J.J. Wyrick, J.B. Tagne, T.L. Volkert, E. Fraenkel, D.K. Gifford, and R.A.
Young. Transcriptional regulatory networks in saccharomyces cerevisiae. Science, 298:799–
804, 2002.

[63] B. Lehmann, D. Lehmann, and N. Nisan. Combinatorial auctions with decreasing marginal
utilities. In ACM Conference on Electronic Commerce, pages 18–28, 2001.

[64] D. J. Lockhart, H. Dong, M. C. Byrne, M. T. Follettie, M. V. Gallo, M. S. Chee, M. Mittmann,
C. Wang, M. Kobayashi, H. Horton, and E. L. Brown. Expression monitoring by hybridiza-
tion to high-density oligonucleotide arrays. Nat Biotechnol, 14(13):1675–80, 1996.

[65] G. MacBeath and S.L. Schreiber. Printing proteins as microarrays for high throughput func-
tion determination. Science, 289:1760–3, 2000.

[66] B. Mai and L. Breeden. Cln1 and its repression by xbp1 are important for efficient sporulation
in budding yeast. Mol Cell Biol., 20(2):478–87, 2000.

[67] S. Mangan, A. Zaslaver, and U. Alon. The coherent feedforward loop serves as a sign-
sensitive delay element in transcription networks. Journal of Molecular Biology, 334(2):197–
204, 2003.

[68] H.H. McAdams and A. Arkin. Stochastic mechanisms in gene expression. Proceedings of
the National Academy of Science, 94(3):814–9, 1997.

[69] HW. Mewes, K. Heumann, A. Kaps, K. Mayer, F. Pfeiffer, S. Stocker, and D. Frishman.
MIPS: a database for protein sequences and complete genomes. NAR, 27:44:48, 1999.

[70] I. Nachman and N. Friedman. Inferring regulation kinetics from expression data. Technical
report, The Hebrew University of Jerusalem, 2003.

[71] J. Norbeck and A. Blomberg. The level of camp-dependent protein kinase a activity strongly
affects osmotolerance and osmo-instigated gene expression changes in saccharomyces cere-
visiae. Yeast, 16:121–137, 2000.

[72] I.M. Ong, J.D. Glasner, and D. Page. Modelling regulatory pathways in e. coli from time
series expression profiles. Bioinformatics, 18 Suppl 1:S241–S248, 2002.

[73] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

[74] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge Univ. Press, 2000.

144 BIBLIOGRAPHY

[75] J. Pearl and T. S. Verma. A theory of inferred causation. In KR’91: Principles of Knowledge
Representation and Reasoning, pages 441–452. 1991.

[76] D. Pe’er, A. Regev, G. Elidan, and N. Friedman. Inferring subnetworks from perturbed
expression profiles. Bioinformatics, 17 Suppl 1:S215–S224, 2001.

[77] D. Pe’er, A. Regev, and A. Tanay. Minreg: Inferring an active regulator set. Bioinformatics,
18 Suppl 1:S258–S267, 2002.

[78] B. Raught, AC. Gingras, and N. Sonenberg. The target of rapamycin (tor) proteins. Proceed-
ings of the National Academy of Science, 98(13):7037–44, 2001.

[79] C.J. Roberts, B. Nelson, M.J. Marton, R. Stoughton, M.R. Meyer, H.A. Bennett, Y.D. He,
H. Dai, W.L. Walker, T.R. Hughes, M. Tyers, C. Boone, and S.H. Friend. Signaling and
circuitry of multiple mapk pathways revealed by a matrix of global gene expression profiles.
Science, 287:873–80, 2000.

[80] E. Segal, Y. Barash, I. Simon, N. Friedman, and D. Koller. From promoter sequence to
expression: A probabilistic framekwork. In RECOMB, pages 263–272. 2002.

[81] E. Segal, D. Pe’er, A. Regev, D. Koller, and N. Friedman. Learning module networks. In
Proceedings of the Ninteenth Annual Conference on Uncertainty in Artificial Intelligence
(UAI). 2003.

[82] E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman. Module
networks: identifying regulatory modules and their condition specific regulators from gene
expression data. Nature Genetics, 34:166 – 176, 2003.

[83] E. Segal, B. Taskar, A. Gasch, N. Friedman, and D. Koller. Rich probabilistic models for
gene expression. Bioinformatics, 17(Suppl 1):S243–52, 2001.

[84] E. Segal, H. Wang, and D. Koller. Discovering molecular pathways from protein interaction
and gene expression data. Bioinformatics, 19 Supplement:S273–S282, 2003.

[85] E. Segal, R. Yelensky, and D. Koller. Genome-wide discovery of transcriptional modules
from dna sequence and gene expression. Bioinformatics, 19 Supplement:S264–S272, 2003.

[86] R. Sharan and R. Shamir. CLICK: A clustering algorithm with applications to gene expres-
sion analisys. In Proceedings of the Eighth International Conference on Intelligent Systems
for Molecular Biology (ISMB), pages 307–316, 2000.

[87] S.S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional
regulation network of escherichia coli. Nature Genetics, 31(1):64–8, 2002.

[88] I. Simon, J. Barnett, N. Hannett, CT. Harbison, NJ. Rinaldi, TL. Volkert, JJ. Wyrick,
J. Zeitlinger, DK. Gifford, TS. Jaakkola, and RA. Young. Serial regulation of transcriptional
regulators in the yeast cell cycle. Cell, 106:697–708, 2001.

BIBLIOGRAPHY 145

[89] R. Somogyi, S. Fuhrman, M. Askenazi, and A. Wuensche. The gene expression matrix:
Towards the extraction of genetic network architectures. In The Second World Congress of
Nonlinear Analysts (WCNA), 1996.

[90] P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown,
D. Botstein, and B. Futcher. Comprehensive identification of cell cycle-regulated genes of the
yeast saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell, 9(12):3273–97,
1998.

[91] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and Search. Number 81 in
Lecture Notes in Statistics. Springer-Verlag, New York, 1993.

[92] J. Stuart, E. Segal, D. Koller, and S. Kim. A gene co-expression network for global discovery
of conserved genetics modules. Science, 302(5643):249–55, 2003.

[93] A. Tanay and R. Shamir. Computational expansion of genetic networks. Bioinformatics, 17
Suppl 1:S270–S278, 2001.

[94] S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church. Systematic deter-
mination of genetic network architecture. Nat Genet, 22(3):281–5, 1999.

[95] H. Terashima, S. Fukuchi, K. Nakai, M. Arisawa, K. Hamada, N. Yabuki, and K. Kitada.
Sequence-based approach for identification of cell wall proteins in saccharomyces cerevisiae.
Current Genetics, 40:311–316, 2002.

[96] H. Terashima, N. Yabuki, M. Arisawa, K. Hamada, and K. Kitada. Up-regulation of genes
encoding glycosylphosphatidylinositol (gpi)-attached proteins in response to cell wall dam-
age caused by disruption of fks1 in saccharomyces cerevisiae. Mol Gen Genet., 264:64–74,
2000.

[97] S. Tong and D. Koller. Active learning for structure in bayesian networks. In International
Joint Conference on Artificial Intelligence, pages 863–869, 2001.

[98] P. Uetz, L. Giot, G. Cagney, TA. Mansfield, RS. Judson, JR. Knight, D. Lockshon,
V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover,
T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston, S. Fields, and JM. Rothberg. A
comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae. Nature,
403:623–7, 2000.

[99] D. Weaver, C. Workman, and G. Stormo. Modeling regulatory networks with weight matri-
ces. In Pacific Symposium on Biocomputing, pages 112–123, 1999.

[100] LF. Wu, TR. Hughes, AP. Davierwala, MD. Robinson, R. Stoughton, and SJ. Altschuler.
Large-scale prediction of saccharomyces cerevisiae gene function using overlapping tran-
scriptional clusters. Nature Genetics, 31:255–265, 2002.

146 BIBLIOGRAPHY

[101] I. Xenarios, D.W. Rice, L. Salwinski, M.K. Baron, E.M. Marcotte, and D. Eisenberg. Dip:
The database of interacting proteins. Nucleic Acids Research, 28(1):289–91, 2000.

[102] C. Yeang and T. Jaakkola. Physical network models and multi-source data integration. In
RECOMB, pages 312–321. 2003.

