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ABSTRACT

Genome-wide expression profiles of genetic mutants
provide a wide variety of measurements of cellular re-
sponses to perturbations. Typical analysis of such data
identifies genes affected by perturbation and uses clus-
tering to group genes of similar function. In this paper we
discover a finer structure of interactions between genes,
such as causality, mediation, activation, and inhibition
by using a Bayesian network framework. We extend
this framework to correctly handle perturbations, and
to identify significant subnetworks of interacting genes.
We apply this method to expression data of S. cerevisiae
mutants and uncover a variety of structured metabolic,
signaling and regulatory pathways.
Contact: danab@cs.huji.ac.il

INTRODUCTION

Integrated molecular pathways consistingof interacting
proteins,genes,and small moleculesunderliethe major
functionsof living cells. Theseinclude signal transduc-
tion and processingregulation of gene expressionand
metabolismGenomewide expressiorprofilesallow usto
gaininsightinto theseprocessedn orderto obtainawide
variety of profiles, reflecting different active pathways,
various perturbations and treatments are employed.
Perturbationby mutationof specificgenessenesa dual
purpose,providing a rich variety of different profiles,
while allowing us to comparea wild type profile with
a mutantone and to determinethe moleculareffect or
functionof themutatedgene.

Two recentstudiesusesuchanexperimentablesignem-
ploying differenttypesof analysis.Holstegge etal. (1998)
comparemutantandwild type profilesto identify setsof
“downstream”geneswhose expressionis affectedby a
specificmutation.Hugheset al. (2000) useclusteringto
groupeithergeneswith correlatedexpressionn different
mutantstrainsor entire mutantprofiles.Valuablebiologi-
calinsightcanbegainedby bothapproaches.

In this paper we strive to answerquestionsthat deal
with finer structure For example,is theeffectof amutated

geneon a target genedirect, or is it mediatedby other
genes?Which genesmediatethe interactionswithin a
clusterof genesor betweenclustersAVhat s the nature
of theinteractionbetweengeneqe.gdoesgeneA inhibit
geneB)?

To infer such finer relations from perturbed gene
expressionprofiles we use the framewnork of Friedman
et al. (2000). In this framework, we treat the measured
expressionlevel of eachgeneasa randomvariable,and
regulatory interactions as probabilistic dependencies
betweenrandomvariables.Friedmanet al. usenonpama-
metric bootstiap to estimatethe confidenceof features
of Bayesiannetworks learnedfrom expressionprofiles.
This allows them to identify pairwise relationsof high
confidencesuchas:“GenesA andB closelyinteract”.

We extend this framework in four ways. First, we
adapt and extend recent results on learning with in-
terventions (Cooperand Yoo, 1999) to handle genetic
mutations.Secondwe devise new, bettersuited,methods
for discretizingthe dataprior to analysisThird, we define
andlearnnew features:mediator activator and inhibitor.
Finally, we describehow to use featuresto construct
subnetwork®f strongstatisticalsignificance.

Theresultingmethodcompriseghefollowing stepsWe
start by discretizingthe data. Then, we apply bootstrap
analysigo learnanensembl®f networkswhich represent
potentialmodelsof the interactionsbetweengenes.We
usethis ensembléo extractstatisticallyconfidentfeatures
involving relationshipbetweerpairsandtripletsof genes.
We then identify statistically significant subnetvorks
which contain several high-confidencefeatures. These
subnetvarks capture a strong statistical signal in the
expressionprofile that often reflectsa coherentcellular
process.

As acasestudy we applyourframeawvork for theanalysis
of the RosettaCompendium of expressionprofiles from
Sactaromycegerevisiae(Hughesetal., 2000).

tWe stressthat ary attemptto perform this task is limited to learning
relationsthatarerepresenteéh mRNA expressiondata.For example,post-
translationategulationmay oftenbemissed.
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BAYESIAN NETWORK ANALYSIS OF
EXPRESSION DATA

Probabilistic Modeling of GeneExpression

Measurement®f geneexpressioninvolve noise arising
from the measurementtechnology the experimental
proceduresandthe underlyingstochastidiological pro-
cessesThus,we treatgeneexpressionas a probabilistic
processand representhe expressionlevel of eachgene
asarandomvariable. The joint distribution over the set
of all genesreflectsthe distribution of cell “states” and
how theseaffect transcriptlevels. Our ultimate goalis to
estimateandunderstandhe structureof this distribution *

Most standardmethodsfor analyzinggeneexpression
focuson pairwiserelationsbetweengenessuchascorre-
lation. However, biologicalinteractionis seldomthis sim-
ple, and often includeschainsof mediatorsbetweentwo
genesBYy going beyond pairwiserelationsand exploring
multi-variableinteractions,we can infer more aboutthe
structureof the relationshipbetweengeneslin particular
we focuson conditionalindependencd-or example,if X
andY areco-rggulatedby Z then,while Y correlatesvith
X, it might bethatgiventhevalueof Z, Y becomesn-
dependenof X. In this casewe saythat Z sepaatesbe-
tweenX andY . In generalsucha separatocanbe a set
of variables.

BayesianNetworks

A BayesiannetworkoverasetX = {X;,...,X,} is
a representatiorof a joint probability distribution over
X. This representationconsistsof a directed acyclic
graph (DAG) G whoseverticescorrespondo therandom
variables Xy,...,X,, and a parameterizationwhich
describes conditionaldistribution for eachvariablegiven
its immediateparentsn G.

The graph G representsconditional independence
properties of the distribution. These are the Markov
IndependenciesEachvariable X; is independenbf its
non-descendantgiven its parentsin G. A distribution
that satisfiestheseindependenciesan be decomposed
into the productform

n

P(Xy,...,X,) = [[ P(Xi|Paf),

i=1

1)

where Pal is the set of parentsof X; in G. The
parameterizatioecomponenbf the network describeghe
conditionaldistributions P(X;|Paf’). Thus, the network
representthe uniquedistribution.

The Markov independenciesepresentecdby G often
imply otherconditionalindependencie$Ve candetermine

fWe usethefollowing notationin theremaindeof the paper We usecapital
letters,suchas X, Y, Z, for variablenamesSetsof variablesaredenotecdy
boldfacecapitallettersX, Y, Z.

whetherG impliesthat X andY areindependengivenZ
by usingd-sepaation(Pearl,1988).Thisis asimplegraph
theoreticcriteriaon the structureof thegraphG.

Two DAGs may imply exactly the sameset of inde-
pendencieskor example,considergraphsX — Y and
X < Y overtwo variablesX andY . Both graphsimply
that X andY arenotindependentlin sucha situation,we
saythatthe two graphsareequivalent

The notion of equivalenceis crucial, since when we
examine obsenations from a distribution, we cannot
distinguish betweenequialent graphs. Thus, we want
to find the common propertiesof equivalenceclasses
of DAGs. Pearland Verma (1991) showv that equivalent
graphshave the sameunderlying undirectedgraph but
might disagreeon the direction of some of the arcs.
Moreover, they shav thatanequivalenceclassof network
structurescan be uniquely representecby a partially
directedgraph (PDAG), wherea directededge X — Y
denoteghatall memberf the equivalenceclasscontain
thearc X — Y; anundirectededgeX—Y denoteshat
somemembersf theclasscontainthearc X — Y, while
otherscontainthearcY — X.

Learning BayesianNetworks

GivenatrainingsetD = {x[1],...,x[M]} of indepen-
dent samplesfrom an unknown distribution P(X), we

want to estimatethis distribution by a network G. The

commonapproachto this problemis to introducea sta-

tistically motivated scoring function that evaluateseach
network with respectto the training data,andto search
for the optimal network accordingto this score(Hecker-

man, 1998). A popularscorebasedon Bayesianreason-
ing, scorescandidategraphsG by their posteriorproba-
bility giventhe data(see(Heckermanet al., 1995)for a

completedescription).We definethe scoreS(G : D) to

beproportionalto P(G | D). An importantcharacteristic
of this scoreis thatwhenthe datais complete(no missing
values)the scoreis decomposable

S(G: D) =" Socal X;, Pa{ : D) )

The contritution of eachvariable X; to the total score
depend®nly on thevaluesof X; andPal in thetraining
instances.

SlocaI(XiaU : D) = ]Og P(Pa, = U)+
tog [ T[ P(Xilm) | Ul 0)4P(0).
The first term is the prior probability assignedto the
choice of the set U as the parentsof X;. The second

term measuresthe probability of the data, when we
integrate over the possibleparameterizationgd) of the




imnertng ouoricivy Orks 1oim Fertiuroecd EXpPIression Frofies

conditionaldistribution. Thesdocal contributionsfor each
variable can be computedusing a closedform equation
(see(Heckerman,1998)for details).

MODELING PERTURBATIONS INTO BAYESIAN
NETWORKS

Ideal Inter ventions

Above we assumedhat eachtraining instancewas sam-
pledfrom theunderlyingdistribution. This doesnot apply
in geneticmutationexperiments For instancepy knock-
ing outgeneX, we replacethe original molecularcontrol
on X's expression(its parents)y an externalone.Thus,
any consequentneasuremer(in which X's valueis con-
stantlysetto 0) will notteachusanythingaboutX's con-
ditional distribution on its parents.Modeling suchinter
ventionsfor learningBayesiametworks involvestwo is-
suesthescorefunctionandthedefinitionof equivalence.

Recall that the scoreof a DAG G, given a data set
D, decomposesnto a product of entities that depend
onthe conditionaldistributions P(X |Pa$ ). Supposehat
in a certain sample,we intervene by fixing the value
of X;[m]. In this sample,it is clearthat we should not
take into accountP(X;[m| | PaJ[m]), asthe value of
X; in the sampledoesnot dependon this distribution.
However, if our intervention only modified the value of
X;, all othersvariablesveresampledrom theirrespectie
conditionaldistributions.We call suchmanipulationsdeal
interventiongPearl,2000)andtreattheir scoreasfollows:
If we let Int(m) denotethe set of variablesthat were
intervenedin the m’th sample,then the modified local
scoreis

SIocaI(Xi,U : D) = log P(Pa,- — U)+

log / H

m,Xi€|nt(m)

P(X;[m] | U[m],0)dP(8).

Seg(CooperandYoo, 1999)for moredetailsonthis score.

This scoreis no longer structure equivaleni i.e., the
scoreof two equivalentgraphs,G and G’ is no longer
guaranteedo be the same.This shouldbe expected,as
interventionshelp us determinethe directionof causality
We saythat G and G’ areinterventionequivalentgiven
interventions! C {Xi,...,X,},if they recevethesame
scoregivenadatasetD wherelnt(m) C I, for all m. This
notion of equivalenceis more restrictve, and thus more
edgesn thePDAG will bedirected.Theseinclude,butare
not limited to, all edgesenteringor leaving anintervened
variable X . We modifiedthe procedurdor constructinga
PDAG representatiofrom a DAG (Chickering, 1995)to
fit our new equivalencerelation.Dueto spacerestrictions,
we omit thetechnicaldetails.

Modeling Perturbations

We distinguishbetweertwo typesof perturbationsn gene
expressiordata.Thefirst typeincludesgenedeletionand
over-expression.Both imply a direct changeto the ex-
pressionlevel of the mutatedgene.Formally, the random
variablecorrespondingo this geneis deterministicallyas-
signeda specificvalue.We modelsuchmutationsasideal
interventions,asdescribedabove.

The secondclass of perturbationsincludes temper
ature sensitve and kinetic mutations (Holstege et al.,
1998))aswell asexternaltreatmentge.g.environmental
stress(Gaschet al., 2000)). Theseperturbationsdo not
directly determinean expressiorlevel of a specificgene,
andthuscannotbe modeledasideal interventions.How-
ever, sincethey have animportanteffectontheexpression
level of mary genestheir occurrencen a given sample
should be indicated.We add indicator variablesto our
domain,onefor eachtreatmenttype. We constrainsuch
variablesto be rootsi.e. no other variablescan be their
parentsn thennetwork.

ZOOMING IN: IDENTIFYING FEATURES
Potential Features

We now focusonthefollowing questionCanwe elucidate
the nature of interactionbetweentwo genes\e learn
from the perturbedgeneexpressionprofiles a Bayesian
network G and constructits correspondingPDAG Ug

(taking into accountthe patternsof interventions). As-

sumingthat G correctlycaptureshe dependenciei the
domain,we considerseveral typesof “features”that can
beidentifiedfrom G andUyg.

Markov and Edge Relations To find if thereis adirectin-

teractionbetweenX andY we can, query our network

whetherX andY areMarkov neighbos. Markov neigh-
borsarevariableshatarenot separatetyy any othermea-
suredvariablein the domain.They include parent-child
relations (one generegulating another),or spouserela-
tions (two genesthat co-regulatea third). Sinceour do-
main consistsof mary variableswhich are not modeled
into our network (e.g.proteinactivation), mary of there-

sulting Markov neighborsrepresentwo geneswhich are
regulatedby athird latent(Elidanetal.,2001).Whennei-

therof thesesituationsoccur, the network impliesthatthe
interactionbetweenX andY is indirect.

We can query whetherthe edge X — Y appearsn
Ug. Recallthat this implies that X andY are Markov
neighbors(parent-childtype) and that the edgebetween
themis directedin all networksin the equialenceclassof
G. Theexistenceof sucha directededgesuggestshat X
is adirectcauseof Y .5

8To reachcausalconclusionsfrom a BayesianNetwork few assumptions
mustbe made.See(Pearl,2000; Cooperand Glymour, 1999)regardingthe
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Separators When X and Y are indirectly dependent,
we canaskwhat factorsmediatethis dependencen the
simplecasea singlevariableZ, separates andY . For
exampletheedgesX — Z — Y ortheundirectecedges
X—Z—Y appeain Ug. In theformercase X affectsZ,
whichin turn affectsY’; while in thelatter, Z mightbea
commoncauseof both X andY'.

In morecomplex cases X andY may be moredistant
in the graphstructure(e.g Z is a commongrandparent
of both X andY’) and there might be more than one
variable that mediatestheir interaction(e.g X is parent
of Z; andZ,, whoin turnarebothparentsof Y). In these
caseswe mustemplgy a global approach searchingfor
variablesZ, suchthatY is independenof X givenZ in
thenetwork. In suchasituation,we saythatZ explainsall
thedependenciesetweenX andY .

We cantest suchdependenciesising d-separationTo
checkthattwo variablesX andY areindependengiven
Z, we needto checkthat no path betweenX andY
can “pass” information when the value of Z is known
(See Pearl (1988) for the precise definition). Testing
for d-separationbetweentwo variablesrequires O(n)
time, where n, is the number of variables.Computing
d-separatiorfor every pair of variablesin the network
is thus in the order of O(n?) with a relatively large
coeficient. For a large domain, this calculationis time
and memory consuming.We note, however, that when
two variablesare far from each other in the network,
thedependencbetweerthemis significantlydiminished.
Thus, in practice we check for d-separationbetween
variablesalongpathsof limited length.

Activation and Inhibiton When X is a parentof Y, we
can gain understandingof X's effect on Y. Here we
areinterestedonly in the conditionaldistribution P(Y" |
Pay). LetU = Pay — {X}. If P(Y =1 | X,u)
increasesvhen X increasesandu is held fixed, we say
that X activatesY . Sinceall otherdirectinfluencesonY
have beenkept at the samestate,the changein X is the
explanationfor changein Y. Similarly, if P(Y = —1 |
X,u) increasesthen X inhibits Y. Our current strict
criterionrequiresthat X activates/inhibitsy” for every set
of valuesu of U. Lessnaive approacheshat softenthis
requiremenareunderstudy

Feature Confidence

Above we assumedhat the network G correctly repre-
sentstheinteractiondn the underlyingdomain.How rea-
sonablds this assumption™ we have a sufficiently large
numberof sampleswe can be (almost) certainthat the
network we learnis a good modelof the data.However,

connectiorbetweenBayesiametworks and causality and (Friedmanet al.,
2000)for adiscussiorof theseconnectionsn thecontext of geneexpression.

givenonly asmallnumberof traininginstancestheremay
be mary modelsthatexplain the dataalmostequallywell.
Suchmodelscan have qualitatvely very different struc-
tures.We do not have confidencethat one network is an
accuratedescriptionof the biologicaldomain.

Thereforejnsteadof queryingasinglestructurewe can
examinethe posterior probability of the featuregiventhe
data.Formally, we considerthe distribution of featuies A
featureof a network is a propertysuchas“X — Y isin
thenetwork” or“Z d-separateX fromY in thenetwork”.
We definethe featureusing an indicator function f(G)
thathasthevaluel when( satisfieghefeatureandvalue
0 otherwise.The posteriomprobability of a featureis

P(f(G)| D)= _f(@)P(G| D). 3)

This probabilityreflectsour confidencen thefeaturef.

A naive way of calculatingEq. 3, is by enumeratingll
high scoringnetworks. Unfortunately the numberof such
networkscanbeexponentialin thenumberof variablesso
exact computationof the posteriorprobability is imprac-
tical. Instead we canestimatethis posteriorby sampling
representatie networks, and then estimatingthe fraction
that containthe featureof interest.We cangeneratesuch
networksusingnon-parametribootstragFriedmaretal.,
1999)or usingmoreexactbut costly MCMC simulations
(FriedmarandKoller,2001).Friedmaretal. (2000)evalu-
atethe bootstrapapproachn simulateddatathat matches
the distributions obsened in geneexpressiondata. They
notethatthe rate of falsenegativesis high. Thus,thefact
thatwe do not detecta high confidencdor a feature does
notmeanit doesnotexist, but ratherthatthe datadoesnot
stronglysupportthis feature.

RECONSTRUCTING SIGNIFICANT
SUBNETWORKS

Using the methodsof the previous section we assign
confidenceto features(e.g.,all Markov edges)We then
estimatewhich confidencdevels to considersignificant

(0.75 in the experimentsbelow), and focus on these
significantfeaturesAs we show below, importantinsights
can be gained from such features. Nonetheless this
approachsuffers from two drawvbacks.First, it is limited

to examining the relationsbetweentwo or three genes.
Second,it can be overly cautious discarding correct
featureswhose confidenceis belowv our threshold.We
suggestto overcome these drawbacks by identifying
subnetworksf high confidence.This allows us to both

TThis can be doneby simulationstudies wherewe generateraining sets
from a known network, and by randomizationstudies wherewe permute
the expressionof genesacrossexperimentsto createa datasetwhereall
genesareindependenof eachotherFriedmanretal. (1999,2000).
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broaderour viewpointandgainconfidenceaboutfeatures
thatarenot significantin isolation.

We currently focus on Markov pairs, as thesecan be
morereliably reconstructedisingour methodgFriedman
etal., 1999).We hypothesizehatif we canfind a subnet-
work thatcontainsa concentation of Markov pairswith a
relatively high confidencethenour estimateof edgesand
otherfeaturedn thisregionwill be morereliable.While a
full-scale network is currently of insufficient quality, sta-

tistically significant sub-netvarks can be reconstructed.

Indeed suchsubnetvarksoftencorrespondo biologically
meaningfulrelationsbetweergenes.

Naive Approach

A naive approachfor finding subnetverks is asfollows.
We start by selectinga thresholdt, of significantcon-
fidence.We then constructa graph over variables,with
an edgebetweenX andY if this Markov pair is confi-
dent(beyondt,). In this graphwe find maximalconnected
componentsEach non-trivial component(one that con-
tainsmorethanthreevariables)is considereda seedof a
subnetvark. We expandeachseedby addingvariableghat
arerelatedto somevariable(sjn theseediy aMarkov pair
with confidenceabove t', wheret' < t, is anadditional
parameterln the experimentsbelow, we uset, = 0.75
andt’' = 0.5.

While the resultsfound by the naive proceduremake
biologicalsensetherearetwo dravbacksto thisapproach.
First, there is no measureof quality for the resulting
networks. Secondthe seeds symmetricallyexpandecby
inclusionof all directly relatedvariables.This overlooks
variableswhich are quite significantly thoughindirectly,
relatedto theseed.

Score-basedApproach

We proposeto evaluatethe significanceof a subnetvork
in termsof theconcentratiorof it featuresWe startby es-
timating the probability of observingMarkov pairsat dif-
ferentconfidencdevels.Let F'(c) betheprobabilitythata
randomMarkov pair (X, Y") hasconfidenceC'(X,Y") of
at leastc. We estimatethis probability by computingthe
obsenedfraction of Markov pairswith confidencec and
aboseamongthe (%) possiblepairsin our domain.

Considera subnetverk that containsthe variablesU
with Markov pairsey, ..., ¢ thathave confidences; >
cy > > ¢ > tg, respectiely, wheret, is a
thresholdwe choosein advance(In our experimentswe
sett, = 0.5). We want to evaluatethe significanceof
the existenceof theseedgesamongthe variablesin U.
We do so, by boundingthe expectednumberof similar
subnetvorks we expect to find under a null-hypothesis
model. This model assumeghat the confidenceof each
edgeis sampledndependentlyrom the samedistribution
F we obseredin our data.

The probability of samplingthe obsened confidence
levels or higher for the particular edgese;,...,¢e; is
[ L; F(c;)- Thus,underthenull hypothesisthe probability
of a subnetwark over U having confidencelevels better
thancy, ..., ¢ is atmost (%) I, F(c;) wherek = |U|
andK = (’2“) Sincewe searchfor a similar substructure
over all possiblesubsetof sizek of {X4,...,X,}, the
expectednumberof occurrencef sucha subnetverk
overallis at most

O o

Thus, we evaluate potential subnetvorks by a score
that boundstheir E-value from above under the null
hypothesis.

To find high scoringsubnetverks, we employ a greedy
hill-climbing search.This searchstarts with candidate
seeds,which are triplets of variablesconnectedby at
leasttwo high scoringedges.At eachstepof the search
we consideraddingor removing a single variableto the
“current” subnetvork. We then selectthe operationthat
leadsto the bestscore.Oncewe reacha local optimum,
we addit to a pool of subnetvorks. We repeatthis search
from all potentialseedsandthenreturnthe subnetworks
that have E-value better (smaller) than a pre-specified
threshold(we usee ).

We tried the procedureon randomizeddata, obtained
by reshufling the original data-set,thus eliminating
genuinedependenciebetweenvariables We constructed
subnetverksfrom the randomizeddataandvalidatedthat
noneof resultingsubnetvorksscoredabove our threshold.

DISCRETIZING GENE EXPRESSION DATA

Due to noisy experimentalproceduresand measurement
techniquesgene expressiondata must be handledwith
careto ensuresuccessfuapplicationof analysismethods.
Friedmanetal. (2000)considertwo strateyiesfor treating
geneexpressionmeasurementdn the first stratey, they
discretizethe expressionlevels to several discretestates
(e.g.,"underexpressed™ baseline”, and“over-expressed)
using a fixed discretizationpolicy (e.g., 2-fold change
from control).In the secondapproachthey usethe actual
measurementsand model dependenciesith a linear
regressionmodel. As they shaw, the first stratgy is
sensitve to the discretizationprocedure and the second
oneis heaily biasedowardlineardependencies.

In this paper we introducea new, adaptve, discretiza-
tion procedurethat learns for eachgenethe distribution
of expressionvaluesin each state. In particular this
proceduretakesinto accountthe gene-specifiozariation,
and usesit to differentiatewhich expressionlevels sig-
nificantly deviate from the baselineexpressionof the
gene.
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Our basicassumptioris thateachgenecanbein a few
discretefunctional expressionstates,which relateto its
actiity. Thus, it is corvenientto model the expression
level of thegenein differentexperimentsassamplegrom
a mixture of normal distributions, where each normal
componentcorrespondsto a specific state. Once we
estimate such a mixture model, we can classify each
expressionlevel to the most likely mixture component
and obtain a discretization.We use standardk-means
clusteringto estimatesucha mixture.

We facetwo issuesFirst, how mary statesof the gene
actually appearin the data?For somegenes,only two
states(say “baseline”and“over-expressed”are actually
presentin the data. Second,what initial classification
shouldwe usefor k-meansBoth choicesare crucial to
obtaina sensiblediscretization.

To deal with both issues,we adopt the following
stratgly. We use measurementsf expressionlevels in
repeatedwild-type experiments(i.e., measurement®f
expressionwithout perturbations)}o estimatethe distri-
bution of the genes expressionevel in its baselinestate.
We then considereachmeasurementf the genein the
perturbedsamples,and determinewhetherit is signifi-
cantly overexpressedor underexpressedwith respect
to its distribution in the control experiments.Basedon
the outcomeof this test, we place the measuremenin
the appropriateclassification.The number of mixtures
we learnwith k-meansis thenthe numberof non-empty
classedn this initial assignmentWe then run k-means
clusteringfrom theinitial point, andusethe classification
it determinessthediscretizatiorfor thegene.

The only questionthat remainsis how to identify
significant changesin expressionlevels. We emplo a
Bayesianprocedureto estimatethe posteriorprobability
over the meanand variancefor a given gene(DeGroot,
1989) in the control experiments,and then test the
probability that the treatedsamplecamefrom the same
distribution. For lack of spacewe omit the technical
details.

RESULTS

The RosettalnpharmaticsCompendium (Hugheset al.,
2000)is areferencedatasecompiledof 300 full-genome
expressionprofiles obtainedfrom 276 deletion mutants,
11tetrag/clin regulatableallelesof essentiagenesand13
chemicallytreatedS. cerevisiae cultures,eachcompared
to a baselinewild type or mock-treatectulture.We chose
a subsetof 565 geneswhich includedthe mutatedgenes
andgeneswhich shaveda significantchangein at least4
profiles.We usedtheir 63 wild-type versuswild-type mea-
surementdo estimatethe baselinedistribution provided
to our discretizatiorprocedure Featureconfidencesvere
computedusinga 100-fold bootstraplearningprocedure.

Eachnetwork requiresapproximatelyl hour CPU using
anintel 11l 600mhzprocessowith a1 gigabytesRAM.

We have developed Pathway Explorer a visualiza-
tion tool for the resulting subnetvorks. The network
is displayedas a graphin which extensve local infor-
mation is associatedwith the undirectedand directed
edges.We stressthat no prior biological knowledge
was used by our learning procedure when recon-
structing the networks. The full annotatedresults can
be viewed using Pathway Explorer at our web site:
http://www.cs.huji.ac.il/labs/compbio/ismb0OlHere we
focuson several examplesthat highlight the validity and
power of our approach.

Pairwise Relations

Biological analysisof individual Markov pair relations
indicatesthat mary are supportedby previous findings,
and representither a known biochemicalor regulatory
interaction,a sharedcommonregulator, or a functional
link. Strikingly, the Pearsoncorrelation coeficient be-
tweenapproximatelya third of these“proof-of-principle”
genepairswaslower than0.7. Our methodis capableof
discovering suchrelationsbecausef the context specific
naturein whichit handlegshedata.Therearemary biolog-
ical processeshat occur only underspecificconditions.
Correlation “misses” such interactions,which are only
apparentn part of the samples(Scoresfor featuresare
presentedn the following format: (Confidence Pearson
correlation)for eachsuchpair) Two such“proof of prin-
ciple” Markov pairs are, Phosphoribosylaminoimidazole
carboxylas€d ADE2) andPhosphoribosylamidoimidazole-
succinocarboxamidesynthase (ADE1) (0.797, 0.518),
which catalyzethe sixth andseventhstepsin the de novo
purine biosynthesispathway, respectiely; and SST2
a (negative) regulator of the mating signaling pathway
and STEG the membranetransporterresponsiblefor the
exportof the“a” matingfactor(0.914,0.677).
Evenpair-wiserelationsalonesucceedn providing new
biologicalinsight. For example,we studiedan edgerela-
tion (0.914,0.162)from ESC4 a proteininvolvedin chro-
matin silencingto KU70, a key componentof the DNA
non-homologousiouble strandbreakrepair mechanism.
This is a previously unknawn link, yet we supply strong
supportingevidencefrom the literature.First, otherchro-
matin silencinggenes(SIR2, 3, and 4) are necessaryo-
gethemwith KU70 andKUB80 for DNA endjoining [W1]."
SecondESC4containss BRCT domainsthatareknown
to occurpredominantlyin proteinsinvolvedin cell cycle
checkpointfunctions responsie to DNA damage[W2].
Togetheythesefactsclearly supportboth a functionalas-
sociationbetweenthe two proteinsand a regulatory di-
rectedinteraction(from ESC4to KU70) assigninga new

IThe notationgWn] relateto additionalcitationsappearingat our webssite.
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(putative) regulatory function to ESC4in double strand
breakrepair Note,thata ku70mutantstrainis includedin

the compendiundata,while ESC4wasnot mutated.This
illustrateshow ourtreatmenof mutationsaidsin inferring
causalelationsin a counterintuitive direction.While typ-

ical analysiscanonly find the effectof amutation we find

acausakource(in wild-type strains)of amutatedgene.

Separator Relations

In this sectionwe provide anillustration of the capability
of separatotriplets to explain away dependenciesyro-
viding an enhancednsightinto the underlyingmolecular
architectureof pathways. First, we considerthreegenes,
eachappearingn severalundirectedseparatotriplet rela-
tions. All threegenesarewell known mediatorsof tran-
scriptionalresponsesand the genesthey separateshare
functional roles and regulation patterns,consistentwith
theseparatoservingasa commonregulator

The first gene, KAR4 is a mating transcriptional
regulator of karyogamy(nuclearfusion) geneswhich is
known to pair with the matingtranscriptionfactorStel2p
to activategenesrequiredfor nuclearfusion [W3]. KAR4
separateseveral pairs of cell fusion genes(e.g. AGA1
and FUSJ). The secondgene,SLT2, encodeshe MAP
kinaseof the cell wall integrity (low osmolarity)pathway,
which post-translationallactivates(by phosphorylation)
the transcription factors RIm1p and Swi4/§ which in
turn activate low osmolarityresponsegenes|W4]. SLT2
separatesereral pairs of cell membraneand cell wall
proteinsas well as previously uncharacterizedne (e.g.
YSPland SRL3 respectiely). In addition, an activation
relation was detectedoetweenSLT2 and YSP1which is
consistentvith SLT2's known regulatoryeffect. Thethird
gene,SST2 is a post-translationahegative regulator of
the G-proteinin the matingsignalingpathway [W5]. SST2
separateghe mating responsegenesTEC1 and STES6.
Moreover, adirectedinhibition edgewasdiscoveredfrom
SST2to STEG consistentwith SST2s known inhibitory
role in thematingpathway.

We concludethat in all three casesour inferencehas
reconstructedhe regulatoryrole in the correctmolecular
and functional context, revealing both transcriptional
and post-translational regulators. Furthermore, since
previously uncharacterizedyenes participatedin some
of theseinteractions(e.g. SRL3in SLT2, YNL276Win
KAR4 we could assignthem putative effector functions
in cell wall integrity andcell fusion,respectiely.

The power of separatorelationsat identifying indirect
dependenciesan be fully appreciatedvhen examining
d-separatorelations(X—Z-Y'). The maindifferencebe-
tweenMarkov-triplet andd-separatorelations,is thatthe
mediatinggeneis itself not necessarilyn a directMarkov
relationwith thetwo genest separated-or computational
efficiency we computedonly singletonseparatorgppear

ing in pathsof lengthat most6. Strikingly, in 35 of there-
sulting120interactionsthe mediating(2) genewaseither
atranscriptionabr a post-translationasignaling)regula-
tor.* Suchmoleculeswere considerabljessfrequentin
the X andY positions(only 18 and 11 interactionsre-
spectvely). Theseresultsare consistentith aregulatory
role to themediatinggene.

Eachof the generaltranscriptionalregulator SIN3 and
the GTP-binding signaling protein RHO1 occupy the
mediatorpositionin several d-separatorelations(5 and
6, respectiely). In eachcase,a combinationof statistical
and biological evidence indicatesa regulatory role for
theseproteins.For example,RHO1 mediatednteractions
betweerproteinsthataffectthelevel of freeglucosen the
cell (glycogenphosphorylas&PH1, hexokinasel HXK1,
the hexosetransporteHXT6 and« 1,4 glucanbranching
enzyme GLC3. In some cases,the Markov relation
betweenthe two “extremes”is high (X-Y 0.97, 0.89),
providing further supportfor their commonregulationby
RHO1 This finding, which identifies a new regulatory
spectrumfor RHOY, is consistentwith its activation of
B 1,3 glucansynthasgwhich utilizes UDP-glucoseas a
substrate)lt alsoallows usto assigna putatve role to a
proteinof unknawn function, YJL161W which appeared
in oneof thed-separatorelations.

In somecasesg-separatorelationsprovide supportfor
the regulatory role of putative transcriptionfactorsand
signalingmolecules.For example, YPR015C,which has
two zinc finger motifs, appearsas a mediator between
two uncharacterizedeneswith a high Markov score(X-
Y 0.92).In othercasessuchrelationsidentify functional
links that were not directly identified by pair or triplet
relations.For instance no Markov relationwasidentified
betweerSTESandSTE11 two signalingproteinsfrom the
mating pathway. They were identified, however, within
a significantly scored(0.5) d-separatedriplet, consistent
with their sharedfunctionalrole and physicalinteraction
(STESis ascafold proteinwhich complexeswith STE11
and other signaling proteins). Theseresultsindicate the
importanceof d-separatorelationsin theidentificationof
indirect relations,in particularthoseinvolving common
transcriptionabndpost-translationalegulators.

Subnetwork analysis

The full power of our approachbecomesapparentwhen
exploring subnetvorks. We first applied our naive ap-
proachto constructingsubnetverks (seeabove),andthen
metgedsubnetvarkswhosegenesareknown to berelated
to the samebiological process.This resultedin 6 well-

*The 8 transcriptionalregulators at position Z include general repres-
sors (ISW1(2 relations), TOP1(1), SIN3(5), specific transcription fac-
tors (MTH1(1), RGT1(1),IMP2(1)), and putative transcriptionalregula-
tors (YFLO52W(1),YPRO15C(1) The 7 signalingmoleculesare KSS1(1),
MFA2(3),RAS1(6)RHO1(6),STE11(1);TFS1(3),YKL161C(2)
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Fig. 1. Two subnetwrksthatvisualizefeaturesdiscorered.(a) Iron
homeostasigh) Mating responseThewidth of the arccorresponds
to the confidenceof the feature.The edgesaredirectedonly when
thereis high confidencein its orientation.Nodescircled with a
dashedine correspondo geneswhich have beenmutatedin some
of the samples.Arcs marked by a + sign are actiators, size
correspondso confidenceof feature.Due to spaceimitations, the
iron homeostasipathway is notdiscussedhere.

structuredsubnetvorks,with interlearedhigherandlower
confidencerelations.Eachof the subnetverks represents
a coherentmolecular response:mating response,low
osmolarity cell wall integrity pathway, stationaryphase
responseiron homeostasisaminoacid metabolismalong
with mitochondrialfunction, andcitrate metabolism(two
aredepictedin Figure 1, all availableat our website).Of
87 top scoringMarkov pairs,61 appearet! within these
subnetvorks.

Our scorebasedapproacho constructingsubnetvarks
producedb highly significantnetworks, capturing4 of the
6 partially hand-craftedhetworks. Thesubnetvorksresult-
ing from this methodare usuallylarger and structuredn
an almostmodularfashion.They aretypically composed
of tightersubstructuregusuallyarounda high degreeme-
diatinggene)connectedhroughhigh confidenceedgego
othersuchtight parts.Interestingly mostof the high de-
greevariablesn thesenetworkscorrespondo known reg-
ulatorygenesor signalingmolecules.

While Hugheset al. (2000) identify some of these
responses(amino acid metabolism,iron homeostasis,
andmating) usingclustering,our reconstructedhetworks
provide a much richer context for regulatory and func-
tional analysis.For example,they describea large cluster
of genesassociatedvith amino acid metabolism.In our
network, we can discern at least three finer structures
with high confidenceThefirst involvesthe genesARG],
ARG3 and ARGH all part of the urea cycle (and its
closeperiphery),which areknown to be transcriptionally
co-regulated[W6,7]. The secondis composedf sulfate

tAn additional 16 relations could be explained as individual interacting
genepairsor triplets, and only 10 relationscurrently remainunassociated
or unexplained.

metabolism genes and further decomposesinto two
branches:.one of sulfate transporterSUL1 and SUL2
andthe otherof sulfateassimilation(MET3, MET14 and
MET22. Thecommonseparatofor thesebranchess the
MET210 gene.The third and major part of the network
interleaves various enzymesfor amino acid metabolism
(e.g. HIS4, HIS5 LEU4, ILV2 and ARG with mito-
chondrial proteins, most prominently transportersand
carriers(e.g.BAT1, OAC1, andYHMY). A regulatorylink
hasbeenfound betweerthe generalaminoacid response
and mitochondrial function [W8]. Thus, a large group
of genes,which by correlationalone would be simply
clusteredtogethey can be organizedin clear functional
networks.

We usethe matingresponseubnetvork, shovn in Fig-
ure 1(b), to illustrate the power of our methodto recon-
structa coherenbiologicaltaleandraisenovel biological
hypothesesWe discerntwo distinctbranchespnefor cell
fusion and the other for outgoingmating signaling. Ac-
cording to our network, the cell fusion responsebranch
is mediatedby the KAR4 gene(seeabove), andincludes
severalknown cell membrandusiongenegFUS1, AGAL,
AGA2, PRM1andFIG1) [W9,10,11,12]as well astwo
genespreviously unassociatedavith this process(TOM6
and YELO59W. The multitude of high confidencerela-
tionsstronglysuggests putative role to KAR4in regulat-
ing notonly nuclearfusionbut alsocell membrandusion.

Another branchin this network is directedfrom the
mating signaling pathway regulator SST2(above). Since
anSST2nutanthasbeenincorporatedn the compendium
we could determineedgedirection, andidentify SST2as
a prime regulator of several other genes(TEC1 STE6§
MFA1L) previously shovn to betranscriptionallyregulated
by the mating pathway [W13,14,15]. The regulatory
link from SST2to KSS1is intriguing as the two share
an interaction with MPT5 a multicopy suppressorof
transcript specific regulators of mRNA degradationin
yeast [W16,17]. However, KSS1 was not previously
associatedvith the mating pathway, but ratherwith the
(related)filamentoudnvasive growth response.

Somepuzzlingdiscrepanciesxist in our network. The
first is the absenceof the main transcriptionfactor of
the pathway, STE12 This may be due either to loss of
informationby our discretizationprocedureor to our bias
to reducethe numberof false positive interactions.The
secondis the mamginal position of the pathway’s MAP
kinase, FUS3 This may be due to positve feedback,
renderingFUS3bothanactivatorandanactivationtarget.
However, despitethe knockout mutation in FUS3 we
have failed to identify directed regulation. We believe
thata larger numberof repetitionsfor eachmutationwill
enhanceour framewvork’s capabilitiesto discover such
regulatoryrelations.
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DISCUSSION AND FUTURE WORK

In this paperwe extendedthe framewvork of Friedman
et al. (2000). We integratedinto this framework a new
discretizatiorprocedureanda principledway for learning
with a mixture of obsenational and interventionaldata.
We examinednew typesof featuresthatcanbeuncovered
usingouranalysisnethod Lastbut notleastwe presented
automatedmethods of integrating these featuresinto
structuresrepresentingpiological processesWe applied
theseoolsto analyzethe Compendium dataof S.cerevisiae
mutationg(Hughesetal., 2000).

This analysisillustrates the differencesbetweenour
techniguesand clusteringmethods.On the one hand,we
are able to discover intercluster interactionsbetween
weakly correlatedgenes.On the other hand, we can
uncover finer intra-cluster structure among correlated
genesThis assistalisin understandinghe rolesof genes
within a richer context and in assigningthem putative
novel functions.The useof the Pathway Explorergreatly
facilitates such biological exploration. Both regulatory
metabolic, and signaling componentsare identified,
shaving the potential of our approachto uncover the
three major types of molecularnetworks. We stressthat
our approachcannotrecover all interactionsInstead,we
attemptto provide the biologist with a numberof highly
promisinghypotheses.

The primary contritution of this paperis an automated
methodologyfor finding significantsubnetverks of inter
actinggenesTheseareshownn to be relatedto known bi-
ological pathways. Still, uncovering biological pathways
from geneexpressiondataremainsa major challenge A
crucialissueis how to useprior biological knowledgeto
improvethequality of analysisandincrease¢henumberof
novel interactiongetected.

Additional directions for exploration include better
reconstructionof causalstructure.Our analysismostly
found mediatorsthat were common ancestors.Yet, we
seldomfound intermediatestepsin causalchains. This
is partially due to the lack of repeatedmeasurements
from eachgeneticmutant.Neverthelessit posesa serious
challengefor analysis methods.A related problem is
identifying latentfactors(e.g.,co-regulators)thatinteract
with severalobsenedgenegqElidanetal., 2001).
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