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ABSTRACT
Genome-wide expression profiles of genetic mutants

provide a wide variety of measurements of cellular re-
sponses to perturbations. Typical analysis of such data
identifies genes affected by perturbation and uses clus-
tering to group genes of similar function. In this paper we
discover a finer structure of interactions between genes,
such as causality, mediation, activation, and inhibition
by using a Bayesian network framework. We extend
this framework to correctly handle perturbations, and
to identify significant subnetworks of interacting genes.
We apply this method to expression data of S. cerevisiae
mutants and uncover a variety of structured metabolic,
signaling and regulatory pathways.
Contact: danab@cs.huji.ac.il

INTRODUCTION
Integratedmolecularpathways consistingof interacting
proteins,genes,and small moleculesunderliethe major
functionsof living cells. Theseinclude signal transduc-
tion and processing,regulation of geneexpressionand
metabolism.Genomewideexpressionprofilesallow usto
gaininsightinto theseprocesses.In orderto obtainawide
variety of profiles, reflecting different active pathways,
various perturbations and treatments are employed.
Perturbationby mutationof specificgenesservesa dual
purpose,providing a rich variety of different profiles,
while allowing us to comparea wild type profile with
a mutant one and to determinethe moleculareffect or
functionof themutatedgene.

Two recentstudiesusesuchanexperimentaldesign,em-
ploying differenttypesof analysis.Holstegeet al. (1998)
comparemutantandwild type profilesto identify setsof
“downstream”geneswhoseexpressionis affected by a
specificmutation.Hugheset al. (2000)useclusteringto
groupeithergeneswith correlatedexpressionin different
mutantstrainsor entiremutantprofiles.Valuablebiologi-
cal insightcanbegainedby bothapproaches.

In this paper, we strive to answerquestionsthat deal
with finerstructure.For example,is theeffectof amutated

geneon a target genedirect, or is it mediatedby other
genes?Which genesmediatethe interactionswithin a
clusterof genesor betweenclusters?What is the nature
of the interactionbetweengenes(e.gdoesgeneA inhibit
geneB)?

To infer such finer relations from perturbed gene
expressionprofiles

�
we usethe framework of Friedman

et al. (2000). In this framework, we treat the measured
expressionlevel of eachgeneasa randomvariable,and
regulatory interactions as probabilistic dependencies
betweenrandomvariables.Friedmanet al. usenonpara-
metric bootstrap to estimatethe confidenceof features
of Bayesiannetworks learnedfrom expressionprofiles.
This allows them to identify pairwise relationsof high
confidencesuchas:“Genes

�
and � closelyinteract”.

We extend this framework in four ways. First, we
adapt and extend recent results on learning with in-
terventions (Cooper and Yoo, 1999) to handle genetic
mutations.Second,we devisenew, bettersuited,methods
for discretizingthedataprior to analysis.Third, wedefine
andlearnnew features:mediator, activator andinhibitor.
Finally, we describehow to use featuresto construct
subnetworksof strongstatisticalsignificance.

Theresultingmethodcomprisesthefollowing steps.We
start by discretizingthe data.Then, we apply bootstrap
analysisto learnanensembleof networkswhichrepresent
potentialmodelsof the interactionsbetweengenes.We
usethisensembleto extractstatisticallyconfidentfeatures
involving relationshipsbetweenpairsandtripletsof genes.
We then identify statistically significant subnetworks
which contain several high-confidencefeatures.These
subnetworks capture a strong statistical signal in the
expressionprofile that often reflectsa coherentcellular
process.

As acasestudy, weapplyourframework for theanalysis
of the RosettaCompendium of expressionprofiles from
Saccharomycescerevisiae(Hugheset al., 2000).�
We stressthat any attempt to perform this task is limited to learning

relationsthatarerepresentedin mRNA expressiondata.For example,post-
translationalregulationmayoftenbemissed.

c
�
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BAYESIAN NETWORK ANALYSIS OF
EXPRESSION DATA
Probabilistic Modeling of GeneExpression
Measurementsof geneexpressioninvolve noise arising
from the measurementtechnology, the experimental
procedures,andthe underlyingstochasticbiological pro-
cesses.Thus,we treatgeneexpressionasa probabilistic
process,and representthe expressionlevel of eachgene
asa randomvariable. The joint distribution over the set
of all genesreflectsthe distribution of cell “states” and
how theseaffect transcriptlevels.Our ultimategoal is to
estimateandunderstandthestructureof this distribution.�

Most standardmethodsfor analyzinggeneexpression
focuson pairwiserelationsbetweengenes,suchascorre-
lation.However, biologicalinteractionis seldomthissim-
ple, andoften includeschainsof mediatorsbetweentwo
genes.By going beyondpairwiserelationsandexploring
multi-variableinteractions,we can infer more aboutthe
structureof the relationshipbetweengenes.In particular,
we focusonconditionalindependence. For example,if �
and � areco-regulatedby � then,while � correlateswith� , it might be that given the valueof � , � becomesin-
dependentof � . In this case,we saythat � separatesbe-
tween � and � . In general,sucha separatorcanbea set
of variables.

BayesianNetworks
A Bayesiannetworkover a set � 	�
������������������� is
a representationof a joint probability distribution over� . This representationconsistsof a directed acyclic
graph(DAG) � whoseverticescorrespondto therandom
variables ���������������� , and a parameterizationwhich
describesaconditionaldistributionfor eachvariablegiven
its immediateparentsin � .

The graph � representsconditional independence
properties of the distribution. These are the Markov
Independencies: Each variable ��� is independentof its
non-descendants,given its parentsin � . A distribution
that satisfiestheseindependenciescan be decomposed
into theproductform��� ������������������ 	 �! �#"$ ��� ����%Pa&� �'� (1)

where Pa&� is the set of parents of ��� in � . The
parameterizationcomponentof thenetwork describesthe
conditionaldistributions

��� ���(%Pa&� � . Thus, the network
representstheuniquedistribution.

The Markov independenciesrepresentedby � often
imply otherconditionalindependencies.Wecandetermine� Weusethefollowing notationin theremainderof thepaper. Weusecapital
letters,suchas )+*-,.*0/ , for variablenames.Setsof variablesaredenotedby
boldfacecapitalletters 12*435*-6 .

whether� impliesthat � and � areindependentgiven 7
by usingd-separation(Pearl,1988).Thisis asimplegraph
theoreticcriteriaon thestructureof thegraph � .

Two DAGs may imply exactly the sameset of inde-
pendencies.For example,considergraphs� 8 � and�:9;� over two variables� and � . Both graphsimply
that � and � arenot independent.In sucha situation,we
saythatthetwo graphsareequivalent.

The notion of equivalenceis crucial, since when we
examine observations from a distribution, we cannot
distinguish betweenequivalent graphs.Thus, we want
to find the common propertiesof equivalenceclasses
of DAGs. Pearland Verma(1991) show that equivalent
graphshave the sameunderlying undirectedgraph but
might disagreeon the direction of some of the arcs.
Moreover, they show thatanequivalenceclassof network
structurescan be uniquely representedby a partially
directedgraph (PDAG), wherea directededge �<8 �
denotesthatall membersof theequivalenceclasscontain
thearc �=8>� ; anundirectededge� — � denotesthat
somemembersof theclasscontainthearc �?8:� , while
otherscontainthearc �@8A� .

Learning BayesianNetworks
Givena training set BC	D
�E FHGJIK����������E FMLNIO� of indepen-
dent samplesfrom an unknown distribution

��� �P� , we
want to estimatethis distribution by a network � . The
commonapproachto this problemis to introducea sta-
tistically motivatedscoring function that evaluateseach
network with respectto the training data,and to search
for the optimal network accordingto this score(Hecker-
man,1998).A popularscorebasedon Bayesianreason-
ing, scorescandidategraphs � by their posteriorproba-
bility given the data(see(Heckermanet al., 1995) for a
completedescription).We definethe score Q � �SRTBP� to
beproportionalto

��� �U%VBP� . An importantcharacteristic
of this scoreis thatwhenthedatais complete(nomissing
values)thescoreis decomposable:

S
� �WR�BX�Y	NZ � Q local

� � � � Pa&� R[BP� (2)

The contribution of eachvariable ��� to the total score
dependsonly on thevaluesof ��� andPa&� in thetraining
instances.Q local

� ���\�(]?R^BP�Y	`_baVc ��� Pa�d	e]f��g_baVcih !4j ��� ���kF lXIm%n]oF lXIK�(p��rq ��� p��'�
The first term is the prior probability assignedto the
choice of the set ] as the parentsof � � . The second
term measuresthe probability of the data, when we
integrate over the possibleparameterizations( p ) of the

2



Inferring Subnetw orks from Perturbed Expression Profiles

conditionaldistribution.Theselocalcontributionsfor each
variablecan be computedusing a closedform equation
(see(Heckerman,1998)for details).

MODELING PERTURBATIONS INTO BAYESIAN
NETWORKS
Ideal Inter ventions
Above we assumedthat eachtraining instancewassam-
pledfrom theunderlyingdistribution.This doesnotapply
in geneticmutationexperiments.For instance,by knock-
ing out gene� , we replacetheoriginal molecularcontrol
on � ’s expression(its parents)by anexternalone.Thus,
any consequentmeasurement(in which � ’s valueis con-
stantlysetto 0) will not teachusanythingabout� ’s con-
ditional distribution on its parents.Modeling suchinter-
ventionsfor learningBayesiannetworks involvestwo is-
sues:thescorefunctionandthedefinitionof equivalence.

Recall that the scoreof a DAG � , given a data setB , decomposesinto a product of entities that depend
on theconditionaldistributions

��� �s%Pa&t � . Supposethat
in a certain sample,we intervene by fixing the value
of ���kF lXI . In this sample,it is clear that we shouldnot
take into account

��� ���rF lXIo% Pa�rF lXI-� , as the value of� � in the sampledoesnot dependon this distribution.
However, if our intervention only modified the value of� � , all othersvariablesweresampledfrom theirrespective
conditionaldistributions.Wecall suchmanipulationsideal
interventions(Pearl,2000)andtreattheirscoreasfollows:
If we let Int

� lu� denotethe set of variablesthat were
intervenedin the l ’ th sample,then the modified local
scoreisQ local

� ���r�(]?R[BX� 	`_baVc ��� Pa�d	`]f��g_vaVcwh !j+x tdy\z{ Int | j~} ��� ���kF lXI~%V]oF lXIK�(p��rq ��� p.�'�
See(CooperandYoo,1999)for moredetailsonthisscore.

This scoreis no longer structure equivalent, i.e., the
scoreof two equivalent graphs, � and ��� is no longer
guaranteedto be the same.This shouldbe expected,as
interventionshelpusdeterminethedirectionof causality.
We say that � and ��� are interventionequivalentgiven
interventions���`
������������������� , if they receivethesame
scoregivenadataset B whereInt

� lu�w��� , for all l . This
notion of equivalenceis more restrictive, and thus more
edgesin thePDAG will bedirected.Theseinclude,but are
not limited to, all edgesenteringor leaving an intervened
variable� . We modifiedtheprocedurefor constructinga
PDAG representationfrom a DAG (Chickering,1995)to
fit ournew equivalencerelation.Dueto spacerestrictions,
weomit thetechnicaldetails.

Modeling Perturbations
Wedistinguishbetweentwo typesof perturbationsin gene
expressiondata.Thefirst type includesgenedeletionand
over-expression.Both imply a direct changeto the ex-
pressionlevel of themutatedgene.Formally, the random
variablecorrespondingto thisgeneis deterministicallyas-
signeda specificvalue.We modelsuchmutationsasideal
interventions,asdescribedabove.

The second class of perturbationsincludes temper-
ature sensitive and kinetic mutations (Holstege et al.,
1998))aswell asexternaltreatments(e.g.environmental
stress(Gaschet al., 2000)). Theseperturbationsdo not
directly determinean expressionlevel of a specificgene,
andthuscannotbemodeledasideal interventions.How-
ever, sincethey haveanimportanteffectontheexpression
level of many genes,their occurrencein a given sample
should be indicated.We add indicator variables to our
domain,one for eachtreatmenttype. We constrainsuch
variablesto be roots i.e. no other variablescan be their
parentsin thenetwork.

ZOOMING IN: IDENTIFYING FEATURES
Potential Features
Wenow focusonthefollowing question:Canweelucidate
the natureof interactionbetweentwo genes?We learn
from the perturbedgeneexpressionprofiles a Bayesian
network � and constructits correspondingPDAG � &(taking into accountthe patternsof interventions).As-
sumingthat � correctlycapturesthedependenciesin the
domain,we considerseveral typesof “features”that can
beidentifiedfrom � and � & .

Markov and Edge Relations To find if thereis a direct in-
teractionbetween� and � we can,query our network
whether� and � areMarkov neighbors. Markov neigh-
borsarevariablesthatarenotseparatedby any othermea-
suredvariable in the domain.They include parent-child
relations(one generegulating another),or spouserela-
tions (two genesthat co-regulatea third). Sinceour do-
main consistsof many variableswhich arenot modeled
into our network (e.g.proteinactivation),many of there-
sulting Markov neighborsrepresenttwo geneswhich are
regulatedby a third latent(Elidanetal.,2001).Whennei-
therof thesesituationsoccur, thenetwork impliesthatthe
interactionbetween� and � is indirect.

We can query whetherthe edge � 8 � appearsin� & . Recall that this implies that � and � are Markov
neighbors(parent-childtype) and that the edgebetween
themis directedin all networksin theequivalenceclassof� . Theexistenceof sucha directededgesuggeststhat �
is adirectcauseof � . �� To reachcausalconclusionsfrom a BayesianNetwork few assumptions
mustbemade.See(Pearl,2000;CooperandGlymour,1999)regardingthe
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Separators When � and � are indirectly dependent,
we canaskwhat factorsmediatethis dependence.In the
simplecase,a singlevariable � , separates� and � . For
example,theedges��8��`8:� or theundirectededges� — � — � appearin � & . In theformercase,� affects � ,
which in turn affects � ; while in the latter, � might bea
commoncauseof both � and � .

In morecomplex cases,� and � may bemoredistant
in the graphstructure(e.g � is a commongrandparent
of both � and � ) and there might be more than one
variablethat mediatestheir interaction(e.g � is parent
of �  and ��� , who in turnarebothparentsof � ). In these
caseswe must employ a global approach,searchingfor
variables7 , suchthat � is independentof � given 7 in
thenetwork. In suchasituation,wesaythat 7 explainsall
thedependenciesbetween� and � .

We can test suchdependenciesusing d-separation.To
checkthat two variables� and � areindependentgiven7 , we need to check that no path between � and �
can “pass” information when the value of 7 is known
(See Pearl (1988) for the precise definition). Testing
for d-separationbetweentwo variables requires � �-� �
time, where

�
is the number of variables.Computing

d-separationfor every pair of variablesin the network
is thus in the order of � �-��� � with a relatively large
coefficient. For a large domain, this calculationis time
and memory consuming.We note, however, that when
two variablesare far from each other in the network,
thedependencebetweenthemis significantlydiminished.
Thus, in practice we check for d-separationbetween
variablesalongpathsof limited length.

Activation and Inhibition When � is a parentof � , we
can gain understandingof � ’s effect on � . Here we
are interestedonly in the conditionaldistribution

��� ��%
Pa�~� . Let ] 	 Pa���@
��o� . If

��� � 	 G@%��u���~�
increaseswhen � increasesand � is held fixed, we say
that � activates� . Sinceall otherdirect influenceson �
have beenkept at the samestate,the changein � is the
explanationfor changein � . Similarly, if

��� �A	A��G�%�f���m� increases,then � inhibits � . Our current strict
criterionrequiresthat � activates/inhibits� for everyset
of values � of ] . Lessnäıve approachesthat softenthis
requirementareunderstudy.

FeatureConfidence
Above we assumedthat the network � correctly repre-
sentsthe interactionsin theunderlyingdomain.How rea-
sonableis this assumption?If we have a sufficiently large
numberof samples,we can be (almost)certainthat the
network we learnis a goodmodelof the data.However,

connectionbetweenBayesiannetworks andcausality, and(Friedmanet al.,
2000)for adiscussionof theseconnectionsin thecontext of geneexpression.

givenonly asmallnumberof traininginstances,theremay
bemany modelsthatexplain thedataalmostequallywell.
Suchmodelscan have qualitatively very different struc-
tures.We do not have confidencethat onenetwork is an
accuratedescriptionof thebiologicaldomain.

Therefore,insteadof queryingasinglestructure,wecan
examinetheposteriorprobabilityof thefeaturegiventhe
data.Formally, weconsiderthedistributionof features. A
featureof a network is a propertysuchas“ �;8�� is in
thenetwork” or “ 7 d-separates� from � in thenetwork”.
We definethe featureusing an indicator function � � ���
thathasthevalue1 when � satisfiesthefeatureandvalue�

otherwise.Theposteriorprobabilityof a featureis��� � � ����%nBP��	 Z & � � ��� ��� ��%nBP�'� (3)

This probabilityreflectsourconfidencein thefeature� .
A näıve way of calculatingEq. 3, is by enumeratingall

high scoringnetworks.Unfortunately, thenumberof such
networkscanbeexponentialin thenumberof variables,so
exact computationof the posteriorprobability is imprac-
tical. Instead,we canestimatethis posteriorby sampling
representative networks,andthenestimatingthe fraction
thatcontainthe featureof interest.We cangeneratesuch
networksusingnon-parametricbootstrap(Friedmanetal.,
1999)or usingmoreexactbut costlyMCMC simulations
(FriedmanandKoller,2001).Friedmanetal. (2000)evalu-
atethebootstrapapproachin simulateddatathatmatches
the distributionsobserved in geneexpressiondata.They
notethat therateof falsenegativesis high.Thus,thefact
thatwedo notdetecta high confidencefor a feature,does
notmeanit doesnotexist, but ratherthatthedatadoesnot
stronglysupportthis feature.

RECONSTRUCTING SIGNIFICANT
SUBNETWORKS
Using the methodsof the previous section we assign
confidenceto features(e.g.,all Markov edges).We then
estimatewhich confidencelevels to considersignificant�
(
� �#�¡  in the experimentsbelow), and focus on these

significantfeatures.As weshow below, importantinsights
can be gained from such features. Nonetheless,this
approachsuffers from two drawbacks.First, it is limited
to examining the relationsbetweentwo or threegenes.
Second, it can be overly cautious discarding correct
featureswhose confidenceis below our threshold.We
suggest to overcome these drawbacks by identifying
subnetworksof high confidence.This allows us to both� This canbe doneby simulationstudies, wherewe generatetraining sets
from a known network, andby randomizationstudies, wherewe permute
the expressionof genesacrossexperimentsto createa dataset whereall
genesareindependentof eachotherFriedmanet al. (1999,2000).
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broadenourviewpointandgainconfidenceaboutfeatures
thatarenotsignificantin isolation.

We currently focus on Markov pairs, as thesecan be
morereliably reconstructedusingour methods(Friedman
et al., 1999).We hypothesizethatif we canfind a subnet-
work thatcontainsaconcentrationof Markov pairswith a
relatively high confidence,thenour estimateof edgesand
otherfeaturesin this regionwill bemorereliable.While a
full-scalenetwork is currentlyof insufficient quality, sta-
tistically significant sub-networks can be reconstructed.
Indeed,suchsubnetworksoftencorrespondto biologically
meaningfulrelationsbetweengenes.

NäıveApproach
A näıve approachfor finding subnetworks is as follows.
We start by selectinga threshold ¢�£ of significant con-
fidence.We then constructa graphover variables,with
an edgebetween� and � if this Markov pair is confi-
dent(beyond ¢�£ ). In thisgraphwefind maximalconnected
components.Eachnon-trivial component(one that con-
tainsmorethanthreevariables)is considereda seedof a
subnetwork.Weexpandeachseedby addingvariablesthat
arerelatedtosomevariable(s)in theseedbyaMarkov pair
with confidenceabove ¢ � , where ¢ �¥¤ ¢ £ is an additional
parameter. In the experimentsbelow, we use ¢ £ 	 � �#�¡ 
and ¢r�¦	 � �§  .

While the resultsfound by the näıve proceduremake
biologicalsense,therearetwo drawbacksto thisapproach.
First, there is no measureof quality for the resulting
networks.Second,theseedis symmetricallyexpandedby
inclusionof all directly relatedvariables.This overlooks
variableswhich arequite significantly, thoughindirectly,
relatedto theseed.

Score-basedApproach
We proposeto evaluatethe significanceof a subnetwork
in termsof theconcentrationof it features.Westartby es-
timatingtheprobabilityof observingMarkov pairsat dif-
ferentconfidencelevels.Let ¨ �0© � betheprobabilitythata
randomMarkov pair

� �f�(��� hasconfidenceª � �f�(��� of
at least

©
. We estimatethis probability by computingthe

observed fraction of Markov pairswith confidence
©

and
aboveamongthe « � �'¬ possiblepairsin ourdomain.

Considera subnetwork that containsthe variables ]
with Markov pairs n������������® thathave confidences

© °¯© �±¯ ²�²�²³¯ © ®´¯ ¢rµ , respectively, where ¢rµ is a
thresholdwe choosein advance(In our experiments,we
set ¢rµs	 � �§  ). We want to evaluatethe significanceof
the existenceof theseedgesamongthe variablesin ] .
We do so, by boundingthe expectednumberof similar
subnetworks we expect to find under a null-hypothesis
model.This model assumesthat the confidenceof each
edgeis sampledindependentlyfrom thesamedistribution¨ weobservedin ourdata.

The probability of sampling the observed confidence
levels or higher for the particular edges �������������® is¶ � ¨ �0© �K� . Thus,underthenull hypothesis,theprobability
of a subnetwork over ] having confidencelevels better
than

© ���������� © ® is at most «¸· ®�¬ ¶ � ¨ �0© �0� where ¹s	A% ]º%
and »¼	C«\½�(¬ . Sincewe searchfor a similar substructure
over all possiblesubsetsof size ¹ of 
��  ����������� � � , the
expectednumberof occurrencesof such a subnetwork
overall is at most ¾ � ¹À¿ ¾ »-Á ¿ ! � ¨ �0© �K� (4)

Thus, we evaluate potential subnetworks by a score
that bounds their E-value from above under the null
hypothesis.

To find high scoringsubnetworks,we employ a greedy
hill-climbing search.This searchstarts with candidate
seeds,which are triplets of variablesconnectedby at
leasttwo high scoringedges.At eachstepof the search
we consideraddingor removing a single variableto the
“current” subnetwork. We then selectthe operationthat
leadsto the bestscore.Oncewe reacha local optimum,
we addit to a pool of subnetworks.We repeatthis search
from all potentialseeds,andthenreturnthesubnetworks
that have E-value better (smaller) than a pre-specified
threshold(weuse ¡Â.Ã ).

We tried the procedureon randomizeddata,obtained
by reshuffling the original data-set, thus eliminating
genuinedependenciesbetweenvariables.We constructed
subnetworksfrom therandomizeddataandvalidatedthat
noneof resultingsubnetworksscoredaboveour threshold.

DISCRETIZING GENE EXPRESSION DATA
Due to noisy experimentalproceduresandmeasurement
techniques,geneexpressiondata must be handledwith
careto ensuresuccessfulapplicationof analysismethods.
Friedmanet al. (2000)considertwo strategiesfor treating
geneexpressionmeasurements.In the first strategy, they
discretizethe expressionlevels to several discretestates
(e.g.,“under-expressed”,“baseline”,and“over-expressed)
using a fixed discretizationpolicy (e.g., 2-fold change
from control).In thesecondapproach,they usetheactual
measurements,and model dependencieswith a linear
regressionmodel. As they show, the first strategy is
sensitive to the discretizationprocedure,and the second
oneis heavily biasedtowardlineardependencies.

In this paper, we introducea new, adaptive, discretiza-
tion procedurethat learns for eachgenethe distribution
of expressionvalues in each state. In particular, this
proceduretakes into accountthe gene-specificvariation,
and usesit to differentiatewhich expressionlevels sig-
nificantly deviate from the baselineexpressionof the
gene.
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Our basicassumptionis thateachgenecanbe in a few
discretefunctional expressionstates,which relate to its
activity. Thus, it is convenient to model the expression
level of thegenein differentexperimentsassamplesfrom
a mixture of normal distributions, where each normal
componentcorrespondsto a specific state. Once we
estimatesuch a mixture model, we can classify each
expressionlevel to the most likely mixture component
and obtain a discretization.We use standard ¹ -means
clusteringto estimatesucha mixture.

We facetwo issues.First, how many statesof the gene
actually appearin the data?For somegenes,only two
states(say, “baseline”and“over-expressed”)areactually
presentin the data. Second,what initial classification
shouldwe usefor ¹ -means?Both choicesarecrucial to
obtainasensiblediscretization.

To deal with both issues, we adopt the following
strategy. We use measurementsof expressionlevels in
repeatedwild-type experiments(i.e., measurementsof
expressionwithout perturbations)to estimatethe distri-
bution of thegene’s expressionlevel in its baselinestate.
We then considereachmeasurementof the genein the
perturbedsamples,and determinewhether it is signifi-
cantly over-expressedor under-expressedwith respect
to its distribution in the control experiments.Basedon
the outcomeof this test, we place the measurementin
the appropriateclassification.The number of mixtures
we learnwith ¹ -meansis thenthe numberof non-empty
classesin this initial assignment.We then run ¹ -means
clusteringfrom theinitial point, andusetheclassification
it determinesasthediscretizationfor thegene.

The only question that remains is how to identify
significant changesin expressionlevels. We employ a
Bayesianprocedureto estimatethe posteriorprobability
over the meanand variancefor a given gene(DeGroot,
1989) in the control experiments, and then test the
probability that the treatedsamplecamefrom the same
distribution. For lack of spacewe omit the technical
details.

RESULTS
The RosettaInpharmaticsCompendium (Hugheset al.,
2000)is a referencedatasetcompiledof 300full-genome
expressionprofiles obtainedfrom 276 deletionmutants,
11tetracyclin regulatableallelesof essentialgenes,and13
chemicallytreatedS. cerevisiaecultures,eachcompared
to a baselinewild typeor mock-treatedculture.We chose
a subsetof 565 geneswhich includedthe mutatedgenes
andgeneswhich showeda significantchangein at least4
profiles.Weusedtheir63wild-typeversuswild-typemea-
surementsto estimatethe baselinedistribution provided
to our discretizationprocedure.Featureconfidenceswere
computedusinga 100-fold bootstraplearningprocedure.

Eachnetwork requiresapproximately1 hour CPU using
anIntel III 600mhzprocessorwith a1 gigabytesRAM.

We have developed Pathway Explorer a visualiza-
tion tool for the resulting subnetworks. The network
is displayedas a graph in which extensive local infor-
mation is associatedwith the undirectedand directed
edges.We stress that no prior biological knowledge
was used by our learning procedure when recon-
structing the networks. The full annotatedresults can
be viewed using Pathway Explorer at our web site:
http://www.cs.huji.ac.il/labs/compbio/ismb01.Here we
focuson several examplesthat highlight the validity and
powerof ourapproach.

Pairwise Relations
Biological analysisof individual Markov pair relations
indicatesthat many are supportedby previous findings,
and representeither a known biochemicalor regulatory
interaction,a sharedcommonregulator, or a functional
link. Strikingly, the Pearsoncorrelation coefficient be-
tweenapproximatelya third of these“proof-of-principle”
genepairswaslower than0.7. Our methodis capableof
discoveringsuchrelationsbecauseof thecontext specific
naturein whichit handlesthedata.Therearemany biolog-
ical processesthat occur only underspecificconditions.
Correlation “misses” such interactions,which are only
apparentin part of the samples.(Scoresfor featuresare
presentedin the following format: (Confidence,Pearson
correlation)for eachsuchpair.) Two such“proof of prin-
ciple” Markov pairs are,Phosphoribosylaminoimidazole
carboxylase(ADE2) andPhosphoribosylamidoimidazole-
succinocarboxamidesynthase(ADE1) (0.797, 0.518),
which catalyzethesixth andseventhstepsin thedenovo
purine biosynthesispathway, respectively; and SST2,
a (negative) regulator of the mating signaling pathway
and STE6, the membranetransporterresponsiblefor the
exportof the“a” matingfactor(0.914,0.677).

Evenpair-wiserelationsalonesucceedin providing new
biological insight.For example,we studiedanedgerela-
tion (0.914,0.162)from ESC4, aproteininvolvedin chro-
matin silencingto KU70, a key componentof the DNA
non-homologousdoublestrandbreakrepair mechanism.
This is a previously unknown link, yet we supplystrong
supportingevidencefrom the literature.First, otherchro-
matin silencinggenes(SIR2, 3, and4) arenecessaryto-
getherwith KU70 andKU80 for DNA endjoining [W1]. Ä
Second,ESC4contains6 BRCT domains,thatareknown
to occurpredominantlyin proteinsinvolved in cell cycle
checkpointfunctions responsive to DNA damage[W2].
Together, thesefactsclearlysupportbotha functionalas-
sociationbetweenthe two proteinsand a regulatory di-
rectedinteraction(from ESC4to KU70) assigninga newÄ Thenotations[Wn] relateto additionalcitationsappearingatourwebsite.
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(putative) regulatory function to ESC4 in doublestrand
breakrepair. Note,thataku70mutantstrainis includedin
thecompendiumdata,while ESC4wasnot mutated.This
illustrateshow ourtreatmentof mutationsaidsin inferring
causalrelationsin acounterintuitivedirection.While typ-
ical analysiscanonly find theeffectof amutation,wefind
acausalsource(in wild-typestrains)of amutatedgene.

SeparatorRelations
In this sectionwe provide an illustrationof thecapability
of separatortriplets to explain away dependencies,pro-
viding anenhancedinsight into theunderlyingmolecular
architectureof pathways.First, we considerthreegenes,
eachappearingin severalundirectedseparatortriplet rela-
tions. All threegenesarewell known mediatorsof tran-
scriptional responses,and the genesthey separateshare
functional roles and regulation patterns,consistentwith
theseparatorservingasa commonregulator.

The first gene, KAR4, is a mating transcriptional
regulatorof karyogamy(nuclearfusion) genes,which is
known to pair with thematingtranscriptionfactorSte12p
to activategenesrequiredfor nuclearfusion [W3]. KAR4
separatesseveral pairs of cell fusion genes(e.g. AGA1
and FUS1). The secondgene,SLT2, encodesthe MAP
kinaseof thecell wall integrity (low osmolarity)pathway,
which post-translationallyactivates(by phosphorylation)
the transcription factors Rlm1p and Swi4/6, which in
turn activate low osmolarityresponsegenes[W4]. SLT2
separatesseveral pairs of cell membraneand cell wall
proteinsas well as previously uncharacterizedone (e.g.
YSP1and SRL3, respectively). In addition,an activation
relation was detectedbetweenSLT2 and YSP1which is
consistentwith SLT2’s known regulatoryeffect.Thethird
gene,SST2, is a post-translationalnegative regulator of
theG-proteinin thematingsignalingpathway[W5]. SST2
separatesthe mating responsegenesTEC1 and STE6.
Moreover, a directedinhibition edgewasdiscoveredfrom
SST2to STE6, consistentwith SST2’s known inhibitory
role in thematingpathway.

We concludethat in all threecases,our inferencehas
reconstructedthe regulatoryrole in thecorrectmolecular
and functional context, revealing both transcriptional
and post-translational regulators. Furthermore, since
previously uncharacterizedgenesparticipatedin some
of theseinteractions(e.g. SRL3 in SLT2, YNL276Win
KAR4) we could assignthem putative effector functions
in cell wall integrity andcell fusion,respectively.

The power of separatorrelationsat identifying indirect
dependenciescan be fully appreciatedwhen examining
d-separatorrelations( � –� –� ). The maindifferencebe-
tweenMarkov-triplet andd-separatorrelations,is thatthe
mediatinggeneis itself notnecessarilyin adirectMarkov
relationwith thetwo genesit separates.For computational
efficiency we computedonly singletonseparatorsappear-

ing in pathsof lengthatmost6. Strikingly, in 35of there-
sulting120interactions,themediating( � ) genewaseither
a transcriptionalor a post-translational(signaling)regula-
tor. ÅKÅ Suchmoleculeswereconsiderablylessfrequentin
the � and � positions(only 18 and 11 interactionsre-
spectively). Theseresultsareconsistentwith a regulatory
role to themediatinggene.

Eachof the generaltranscriptionalregulatorSIN3and
the GTP-binding signaling protein RHO1 occupy the
mediatorposition in several d-separatorrelations(5 and
6, respectively). In eachcase,a combinationof statistical
and biological evidence indicatesa regulatory role for
theseproteins.For example,RHO1mediatesinteractions
betweenproteinsthataffect thelevel of freeglucosein the
cell (glycogenphosphorylaseGPH1, hexokinase1 HXK1,
thehexosetransporterHXT6 and Æ 1,4 glucanbranching
enzyme GLC3). In some cases,the Markov relation
betweenthe two “extremes” is high (X-Y 0.97, 0.89),
providing furthersupportfor their commonregulationby
RHO1. This finding, which identifies a new regulatory
spectrumfor RHO1, is consistentwith its activation ofÇ

1,3 glucansynthase(which utilizes UDP-glucoseasa
substrate).It alsoallows us to assigna putative role to a
proteinof unknown function,YJL161W, which appeared
in oneof thed-separatorrelations.

In somecases,d-separatorrelationsprovidesupportfor
the regulatory role of putative transcriptionfactorsand
signalingmolecules.For example,YPR015C,which has
two zinc finger motifs, appearsas a mediatorbetween
two uncharacterizedgeneswith a high Markov score(X-
Y 0.92).In othercases,suchrelationsidentify functional
links that were not directly identified by pair or triplet
relations.For instance,no Markov relationwasidentified
betweenSTE5andSTE11, two signalingproteinsfrom the
mating pathway. They were identified, however, within
a significantlyscored(0.5) d-separatedtriplet, consistent
with their sharedfunctionalrole andphysicalinteraction
(STE5is a scaffold proteinwhich complexeswith STE11
and other signalingproteins).Theseresultsindicate the
importanceof d-separatorrelationsin theidentificationof
indirect relations,in particular thoseinvolving common
transcriptionalandpost-translationalregulators.

Subnetwork analysis
The full power of our approachbecomesapparentwhen
exploring subnetworks. We first applied our näıve ap-
proachto constructingsubnetworks(seeabove),andthen
mergedsubnetworkswhosegenesareknown to berelated
to the samebiological process.This resultedin 6 well-Å¸ÅThe 8 transcriptionalregulators at position / include general repres-
sors (ISW1(2 relations), TOP1(1), SIN3(5)), specific transcription fac-
tors (MTH1(1), RGT1(1), IMP2(1)), and putative transcriptionalregula-
tors (YFL052W(1),YPR015C(1)). The 7 signalingmoleculesareKSS1(1),
MFA2(3),RAS1(6),RHO1(6),STE11(1),TFS1(3),YKL161C(2).
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Fig. 1. Two subnetworksthatvisualizefeaturesdiscovered.(a) Iron
homeostasis(b) Mating response.Thewidth of thearccorresponds
to theconfidenceof the feature.Theedgesaredirectedonly when
there is high confidencein its orientation.Nodescircled with a
dashedline correspondto geneswhich have beenmutatedin some
of the samples.Arcs marked by a

(
sign are activators, size

correspondsto confidenceof feature.Due to spacelimitations, the
iron homeostasispathway is notdiscussedhere.

structuredsubnetworks,with interleavedhigherandlower
confidencerelations.Eachof the subnetworks represents
a coherentmolecular response:mating response,low
osmolarity cell wall integrity pathway, stationaryphase
response,iron homeostasis,aminoacidmetabolismalong
with mitochondrialfunction,andcitratemetabolism(two
aredepictedin Figure1, all availableat our website).Of
87 top scoringMarkov pairs,61 appeared)*) within these
subnetworks.

Our scorebasedapproachto constructingsubnetworks
produced5 highly significantnetworks,capturing4 of the
6 partiallyhand-craftednetworks.Thesubnetworksresult-
ing from this methodareusuallylarger andstructuredin
an almostmodularfashion.They aretypically composed
of tightersubstructures(usuallyaroundahigh degreeme-
diatinggene)connectedthroughhigh confidenceedgesto
othersuchtight parts.Interestingly, mostof the high de-
greevariablesin thesenetworkscorrespondto known reg-
ulatorygenesor signalingmolecules.

While Hughes et al. (2000) identify some of these
responses(amino acid metabolism, iron homeostasis,
andmating)usingclustering,our reconstructednetworks
provide a much richer context for regulatory and func-
tional analysis.For example,they describea largecluster
of genesassociatedwith aminoacid metabolism.In our
network, we can discern at least three finer structures
with high confidence.Thefirst involvesthegenesARG1,
ARG3 and ARG5, all part of the urea cycle (and its
closeperiphery),which areknown to be transcriptionally
co-regulated[W6,7]. The secondis composedof sulfate

)*)An additional 16 relationscould be explained as individual interacting
genepairsor triplets, andonly 10 relationscurrently remainunassociated
or unexplained.

metabolism genes and further decomposesinto two
branches:one of sulfate transporters(SUL1 and SUL2)
andtheotherof sulfateassimilation(MET3, MET14, and
MET22). Thecommonseparatorfor thesebranchesis the
MET10 gene.The third and major part of the network
interleaves variousenzymesfor amino acid metabolism
(e.g. HIS4, HIS5, LEU4, ILV2 and ARG4) with mito-
chondrial proteins, most prominently transportersand
carriers(e.g.BAT1, OAC1, andYHM1). A regulatorylink
hasbeenfoundbetweenthegeneralaminoacid response
and mitochondrial function [W8]. Thus, a large group
of genes,which by correlationalone would be simply
clusteredtogether, can be organizedin clear functional
networks.

We usethematingresponsesubnetwork, shown in Fig-
ure 1(b), to illustrate the power of our methodto recon-
structa coherentbiologicaltaleandraisenovel biological
hypotheses.Wediscerntwo distinctbranches,onefor cell
fusion and the other for outgoingmating signaling.Ac-
cording to our network, the cell fusion responsebranch
is mediatedby the KAR4gene(seeabove), andincludes
severalknown cell membranefusiongenes(FUS1, AGA1,
AGA2, PRM1 and FIG1) [W9,10,11,12]as well as two
genespreviously unassociatedwith this process(TOM6
and YEL059W). The multitude of high confidencerela-
tionsstronglysuggestsa putativerole to KAR4in regulat-
ing notonly nuclearfusionbut alsocell membranefusion.

Another branch in this network is directed from the
mating signalingpathway regulatorSST2(above). Since
anSST2mutanthasbeenincorporatedin thecompendium
we could determineedgedirection,andidentify SST2as
a prime regulator of several other genes(TEC1, STE6,
MFA1) previously shown to betranscriptionallyregulated
by the mating pathway [W13,14,15]. The regulatory
link from SST2to KSS1is intriguing as the two share
an interaction with MPT5, a multicopy suppressorof
transcript specific regulators of mRNA degradation in
yeast [W16,17]. However, KSS1 was not previously
associatedwith the mating pathway, but ratherwith the
(related)filamentousinvasivegrowth response.

Somepuzzlingdiscrepanciesexist in our network. The
first is the absenceof the main transcriptionfactor of
the pathway, STE12. This may be due either to loss of
informationby our discretizationprocedureor to our bias
to reducethe numberof falsepositive interactions.The
secondis the marginal position of the pathway’s MAP
kinase, FUS3. This may be due to positive feedback,
renderingFUS3bothanactivatorandanactivationtarget.
However, despite the knockout mutation in FUS3 we
have failed to identify directed regulation. We believe
thata largernumberof repetitionsfor eachmutationwill
enhanceour framework’s capabilities to discover such
regulatoryrelations.
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DISCUSSION AND FUTURE WORK
In this paperwe extendedthe framework of Friedman
et al. (2000). We integratedinto this framework a new
discretizationprocedureandaprincipledway for learning
with a mixture of observational and interventionaldata.
We examinednew typesof featuresthatcanbeuncovered
usingouranalysismethod.Lastbut not least,wepresented
automatedmethods of integrating these features into
structuresrepresentingbiological processes.We applied
thesetoolsto analyzetheCompendium dataof S.cerevisiae
mutations(Hughesetal., 2000).

This analysis illustrates the differencesbetweenour
techniquesandclusteringmethods.On the onehand,we
are able to discover inter-cluster interactionsbetween
weakly correlatedgenes.On the other hand, we can
uncover finer intra-cluster structure among correlated
genes.This assistsus in understandingtherolesof genes
within a richer context and in assigningthem putative
novel functions.Theuseof thePathway Explorergreatly
facilitates such biological exploration. Both regulatory,
metabolic, and signaling componentsare identified,
showing the potential of our approachto uncover the
threemajor typesof molecularnetworks. We stressthat
our approachcannotrecover all interactions.Instead,we
attemptto provide the biologist with a numberof highly
promisinghypotheses.

Theprimary contribution of this paperis anautomated
methodologyfor finding significantsubnetworksof inter-
actinggenes.Theseareshown to berelatedto known bi-
ological pathways.Still, uncovering biological pathways
from geneexpressiondataremainsa major challenge.A
crucial issueis how to useprior biological knowledgeto
improvethequalityof analysisandincreasethenumberof
novel interactionsdetected.

Additional directions for exploration include better
reconstructionof causalstructure.Our analysismostly
found mediatorsthat were commonancestors.Yet, we
seldomfound intermediatestepsin causalchains.This
is partially due to the lack of repeatedmeasurements
from eachgeneticmutant.Nevertheless,it posesaserious
challengefor analysis methods.A related problem is
identifying latentfactors(e.g.,co-regulators)that interact
with severalobservedgenes(Elidanetal., 2001).

Acknowledgments
The authorsare grateful to Michal Chur, Rani Nelken,
Matan Ninio, Itsik Pe’er and Eran Segal for comments
on draftsof this paperandusefuldiscussions.This work
wassupportedin partby IsraelScienceFoundation(ISF)
grant244/99,IsraeliMinistry of Sciencegrant2008-1-99,
and an ISF infrastructuregrant.D. Pe’er was supported
by an Eshkol Fellowship. A. Regev was supportedby
theColtonFoundation.N. Friedmanwassupportedby an

Alon Fellowship.

REFERENCES
Chickering, D. M. (1995). A transformationalcharacterizationof

equivalentBayesiannetwork structures.In UAI’95, pp.87–98.
Cooper, G. andC. Glymour (1999). Computation,Causation,and

Discovery.
Cooper, G. andC. Yoo (1999). Causaldiscovery from a mixtureof

experimentalandobservationaldata.In UAI’99, pp.116–125.
DeGroot,M. H. (1989).ProbabilityandStatistics.
Elidan,G., N. Lotner, N. Friedman,andD. Koller (2001). Discov-

eringhiddenvariables:A structure-basedapproach.In NIPS’00.
Friedman,N., M. Goldszmidt,andA. Wyner(1999). Dataanalysis

with Bayesiannetworks:A bootstrapapproach.In UAI ’99, pp.
206–215.

Friedman,N. andD. Koller (2001).BeingBayesianaboutBayesian
network structure:A Bayesianapproachto structurediscovery
in Bayesiannetworks. Machine Learning. To appear. Earlier
versionappearedin UAI’00.

Friedman,N., M. Linial, I. Nachman,andD. Pe’er(2000). Using
Bayesiannetworks to analyzeexpressiondata. J. Comp.Bio. 7,
601–620.

Gasch, A. P., P. T. Spellman, C. M. Kao, O. Carmel-Harel,
M. B. Eisen,G. Storz, D. Botstein,and P. O. Brown (2000).
Genomicexpressionprogramin the responseof yeastcells to
environmentalchanges.Mol. Bio. Cell 11, 4241–4257.

Heckerman, D. (1998). A tutorial on learning with Bayesian
networks. In Learningin GraphicalModels. Kluwer.

Heckerman,D., D. Geiger, andD. M. Chickering(1995). Learning
Bayesiannetworks:Thecombinationof knowledgeandstatisti-
caldata.MachineLearning20, 197–243.

Holstege, F. C., E. G. Jennings,J. J. Wyrick, T. I. Lee, C. J.
Hengartner, M. R. Green,T. R. Golub,E. S. Lander, andR. A.
Young(1998).Dissectingtheregulatorycircuitry of aeukaryotic
genome.Cell 95(5), 717–28.

Hughes, T. R., M. J. Marton, A. R. Jones, C. J. Roberts,
R. Stoughton,C. D. Armour, H. A. Bennett,E. Coffey, H. Dai,
Y. D. He, M. J. Kidd, A. M. King, M. R. Meyer, D. Slade,
P. Y. Lum, S. B. Stepaniants,D. D. Shoemaker, D. Gachotte,
K. Chakraburtty, J. Simon,M. Bard, and S. H. Friend (2000).
Functionaldiscovery via a compendiumof expressionprofiles.
Cell 102(1), 109–26.

Pearl,J. (1988).ProbabilisticReasoningin IntelligentSystems.
Pearl,J. (2000).Causality:Models,Reasoning, andInference.
Pearl,J.andT. S.Verma(1991).A theoryof inferredcausation.In

KR’91, pp.441–452.

9


