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Abstract

Internet flashcrowds (a.k.a. hot spots)area phenomenon that result from a sudden, unpredicted
increasein an on-lineobject’s popularity. Currently, thereis no efficient meanswithin the Internet to
scalablydeliver webobjectsunderhot spotconditions to all clientsthatdesirethe object. We present
PROOFS:asimple,lightweight, peer-to-peer(P2P)approachthatusesrandomizedoverlay construction
andrandomized,scopedsearchesto efficiently locateanddeliver objectsunder heavy demand to all
usersthat desirethem. We evaluate PROOFS’ robustness in environmentsin which clients join and
leave the P2Pnetwork aswell as in environments in which clientsarenot always fully cooperative.
Through a mix of analytical modeling, simulation,andprototype experimentationin the Internet,we
show that randomized approacheslike PROOFSshouldeffectively relieve flash crowd symptoms in
dynamic, limited-participationenvironments.

1 Intr oduction

Internet Flash Crowds (a.k.a. hot spots) are a phenomenonthat result from a sudden, unpredicted in-
crease in an on-line object’s popularity. Recent examples include the news pagesat www.cnn.com and
www.nytimes.comon September11thandimmediately following theplanecrashin New York on Novem-
ber12th. During thevery timeswhencontent reachesits apex in popularity, it becomesunavailable to the
majority of users thatseekit.

Thereareseveral approachesto remedytheproblem. A straightforward but costly approachis to provi-
sionaccessability basedonpeak demand. An alternativeapproachis to dynamically increaseserver locations
of thepopular documents. Content distribution companiessuch asAkamaihave identified waysto offload
the burden placedon serversto transfer embeddedobjects. However, to prevent flashcrowds from over-
loading serverswith requestsfor containerpages, significant changesmustbe madeto the DomainName
System(DNS) sothatclients’ initial requestscanbealsoberedirectedto availableresources.

A third approachis to havetheclientsform apeer-to-peer (P2P)overlaynetwork thatallowsclients that
havereceivedcopiesof thepopularcontentto forwardthecontent to thoseclientsthatdesire but havenotyet
received it. In this paper, we describeandevaluate our implementationof a setof protocols thatcombines�
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findings,andconclusionsor recommendationsexpressedin this materialarethoseof theauthorsanddo not necessarilyreflectthe
views of theNationalScienceFoundation.

1



this third approachon top of overlaytopologiesgeneratedessentially at random to scalably, reliably deliver
content whosepopularity exceeds the capabiliti es of standard delivery techniques. We call this system
PROOFS: P2PRandomizedOverlaysto ObviateFlash-crowd Symptoms.

PROOFS consistsof two protocols. Thefirst forms andmaintains a network overlay that connects the
clients thatparticipatein theP2Pprotocol. Theoverlay construction is anongoing, randomizedprocessin
which nodescontinually exchangeneighborswith oneanotherataslow rate.Thesecondprotocol performs
a seriesof randomized,scoped searchesfor objects atopthe overlay formedby the first protocol. Objects
arelocated by randomly visiting setsof neighborsuntil a nodeis reached thatcontainstheobject.

PROOFS falls into a class of systemstermedFirst Generation P2Psystemsthat alsocontainsP2Psys-
temssuchas Gnutella [3] in which an object (or information about the precise location of an object) is
equally likely to beavailableat any nodewithin theP2Psystem. In contrast,Second Generation P2Psys-
tems(e.g.,see[14, 1, 7, 11]) form overlays that,using a variety of clever distributedanddynamichashing
strategies,assign eachobject to a particular setof clients in the overlay. For an “unpopular” object that
residesatasmall,fixednumber of locations,second generationsystemscanlocateanobjectusing ���	��

�����
queries,whereasfirst generation systemsrequire ������� queries. Thus,second generation systemscanpro-
vide considerable savings in levels of traffic usedfor searching as � grows large. However, mathematical
andsimulation analysis in [12] shows thatsearchesof first generation P2Psystemscanbedesignedto have
low expectedtraffic requirementsandlow latency whensearching for objects thataretheinterestof a flash
crowd. This is understoodintuitively in that whenever a client locatesandsubsequently retrievesa copy
of the desired object, that client canthenservice any subsequentqueries, cutting down the costs in terms
of both time taken andtransmissions madeof subsequentsearches,in effect makingthe amortizedcostof
eachclient’s search ���	��

����� aswell. While in somerespects,PROOFS is a stepbackwards from second
generationsystems,it hasthefollowing advantagesover theotherproposedstate-of-the-art:

� Clients are not required to cache any objects or pointers to objects other than that which the client
has explicitly expressedinterest in receiving. To date, second generation systemsthat address the
flashcrowd issuedo soby requiring participating clients to explicitly cachecopies of objectsthatare
not necessarily of direct interest on the behalfof the system (i.e., for other clients). While technical
complications arearguably solvable,it remainsunclear whetheruserswould feel comfortable using
their own disk spaceto hostunknown content.

� PROOFShandlesdynamicchangesin overlay membership (i.e., participantsjoining andleaving the
system with time) without any additional mechanism or modification to its fundamentaldesign. In
addition, PROOFSis naturally robustevenwhenthereexist asubstantialnumberof clientswho“take
advantage” of the systemby using it to obtain popular objects, but who do not fully participate in
assisting otherclients by either refusing to forward content or even secretly dropping all queries it
receives. While somesecond generation systemshave demonstrated certain degrees of robustness
against changesin overlay membership, it is unclearhow they perform in environmentswheresome
clientsvary their levelsof participation in theforwarding queries and/or delivering storedobjects.

� The system is amenable to the formation of complex queries that contain keywords or temporalre-
strictions(e.g.,acopy of anobject generatedwithin thelast5 minutes). This is muchmoredifficult to
do within second generation systemsin which theobject description musthashto a uniqueidentifier.
In first generationprotocols, eachclient visitedparsesthequery for itself.

Our design is motivated by the observations in [5] that moreattention should be paid to the manage-
ability, reliability and robustness of communication systems. Ratherthan target our main efforts toward
minimizing traffic levelsanddelivery latencies,thesystemis designedto achieve “good” traffic levelsand
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latencieswhile remaining robust, reliable, andmanageableunderavarietyof network settings. Wedemon-
strate these claimsaswell asthe scalability of the system to thousandsof participants by performing the
following tasks:

� Through analytical modeling andsimulation, weshowthatthelikelihood thattheconstructedoverlay
separatesaclient from reaching a largefractionof otherclients is extremely rare,evenin thepresence
of clients dynamically joining andleaving theoverlay.

� Through simulation, we showthat traffic levels, latency, andconnectivity grow in a tolerable manner
as a function of the fraction of overlay nodes ceaseto perform query and object forwarding (i.e.,
non-cooperative nodes).

� We evaluate a prototype implementationon a testbedcomprisedof end-systemsscatteredaround the
world. Although small in scalecompared to how we hope the systemwill eventually be used, the
testbeddemonstratesthat latenciesandtraffic util izationsby thesystemarelow enough to make the
approachfeasible in today’s networks.

Thepaper proceedsasfoll ows. In Section2, we overview relatedwork. Section 3 describesthe basic
architecture of PROOFS. In Section4, we evaluate our design’s robustnessin thefaceof dynamicchanges
to overlay membership andclients who offer limited participation. Section5 presentsexperimentalresults
using aprototypeversionof PROOFSupon therealInternet.Wediscusssomelimitations,futuredirections,
andchallengesin Section6 andconcludein Section7.

2 RelatedWork

The ideaof flash-crowd alleviation via replication waspreviously consideredin [4]. However, the archi-
tecture there involves an elobrate communication and exchange mechanism betweenservers within the
network, having beendevelopedbefore the notion of peer-to-peer communication gainedin popularity. A
system whosedesign is similar in several respectsto PROOFSis examined in [12]. There,a mathematical
modelof a discrete-eventversion of a randomized,scopedsearch protocol is analyzedandsimulated.They
show thatupon randomizedtopologies,suchsystemscaneffectively scaleto overlays thatcontain millions
of participating clients. However, their evaluation,restrictedonly to simple mathematical modelsandbasic
simulationsatopthesemodelsdoesnotevaluatetherobustnessof theapproach:theeffectsof clients joining
andleaving theoverlayarenot considered. In addition, it assumesthatall clients are“full participants” in
that every client is willing to forward queriesaswell as returncopies of requestedobjects whenever the
client downloadedtheobject. Here,we focus on theperformancewhenthese assumptions arerelaxedand
alsolook at theperformanceof a prototypeimplementation.

A significant amount of attention hasbeenpaid to second generation P2ParchitecturessuchasCAN
[7], CHORD [14, 1] and PASTRY [11], in which participantshave a sense of direction as to whereto
forward requests. For unpopular documents,second generation architectures clearly provide benefitover
their first generation counterparts in termsof theamountsof network bandwidth utilizedandthetime taken
to locate thosedocuments. However, to be able to handle documents whosepopularity suddenly spikes
without inundating thosenodesresponsible for servingthesedocuments,thesearchitecturesmustimplement
a caching mechanismthatcachestheobjects. It is unclear whether thetransferoverheadssuchanapproach
makessensein a browser-like environmentwhereclientsjoin andleave thesystem at high frequency. Last,
wesuspectthatmembersof theoverlaywhodonotparticipatefull y (e.g.,droprequestsor refuseto transmit
objects)cansignificantly deterioratetheeffectivenessof theseapproaches.

Therehasbeeninteresting theoretical work that looks at ways to form “good” topologies for scoped
searches. Oneexample is that of [6] which focuseson building randomized topologieswith bounds on
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the overlay graph’s diameter. Theprocedureis somewhat morecomplicatedandrelies on a central server
at various points in the algorithm beyond merebootstrapping. The overlay generation methodconsidered
heredoesnot give any suchguaranteeson overlay graph diameter, though we expect that in practice the
diameter will be small. In its current form, the only centralized component of PROOFSis what is used
to bootstrapnew clients into the overlay. However, other meanssuchasmulticast or anycastcanbe used
in place, removing the needfor a centralized component. Last, thereexists a small body of work that has
measuredor analyzedexisting P2Pfile sharing systemssuchasGnutellaandNapster [13, 8, 9].

3 DesignDescription

In this section, we describe the application for which the PROOFS system wasdesignedanddescribe the
details of that design. PROOFSpurposeis to provide timely delivery of web objects that are stored at
locationswhoseavailability is compromisedasa result of a heavyrequest load for theobjects. Proofswas
designedwith thefollowing design objectives:

� Minimize operational complexity: Eachclient should beresponsiblefor performing a smallnumber
of simpletasks (perhapsrepeatedseveral times). A flow-chartdiagramof a node’s operation should
beshortandsimple, minimizing thelikelihood of implementationerror.

� Minimize state: To form an overlay, clients mustmaintain a list of neighborsthat canbe contacted
for the purposesof a search. Clients also maintain thosepages that are of interest to them. It is
preferrednot to require clients to maintainadditional statefor purposessuchasmonitoring or sharing
of network statistics,or for thecaching of objectsnotexplicitly requestedby thatclient. Furhtermore,
the state should be “soft” in that any incorrect perceptions about the operating environmentdo not
prevent thesystemfrom performing its task(but maydecreasesystemefficiency) suchthat this state
cansimply expire with time.

� Limit recovery code: oftenprotocolsrequire additional complexity to “heal”, e.g.,recover from net-
work partitions or adaptthe overlay to dynamic changesin membership (clientsjoining/leaving the
overlay). We wish to remove any suchadditional mechanism except for whatis requiredto bootstrap
thesysteminto operation.

� Naturally cope with limited participation: someclients may refuseto deliver objects they have re-
ceived. Othersmay refuse to forward queries, andworseyet, someclients may not wish to reveal
their refusal to assist. Thesystem should continueto function properly andefficiently evenasthese
non-participants grow to significant, but not overwhelming proportions.

� Theability to put richer semantics within thequery, includingtemporal specifications.

3.1 Application of PROOFS

Figure1 pictorially demonstrateshow PROOFSalleviatessymptomsassociatedwith flashcrowds. In Figure
1(a),a setof end-systemsis attempting to receive thesameobjectat roughly thesametime directly servers
containing theobject. DNS requestsissued by these end-systemswould point thesesystemsto a small set
of servers from which they canreceive the object. For instance,a recentquery to the DNS for cnn.com1

returned6 IP addressesto which http queries canbetransmitted.This smallnumberof sitescannot handle
sudden,huge increasesin requests. To redirect theseinitial requests,DNS would require substantial mod-
ifications in orderto quickly update DNS entries throughout the Internet to preventclients sending queries

1on 1/9/2002from hostmedellin.cs.columbia.eduvia theLinux commandhostcnn.com
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(b) PROOFS-enhancedarchitecture

Figure1: An exampleof how PROOFSassistsin timely object retrieval.

to theoverloadedservers.While deployedcontent delivery solutionsareableto offset theloadimposed on
theseservers for sub-objects (JPGs,ads, etc.),they areunable to offset the load for theoriginal requestfor
what is oftenreferredto asthecontainer page. Figure1(a) is anexamplewhereseveral end-systemsplace
temporally-adjacent requestsfor the sameobject, overloading the capacity of the servers. As a result, the
majority of requestsremainunansweredandfail, frustrating many of the usersthat placedthe request. In
Figure1(b), with thePROOFSsystemactivated, end-systemscanquery other end-systemsfor acopy of the
object. Presumably, thesystemworkswell if end-systemqueries for theobject reachend-systemsthathave
already obtaineda copy of the requestedobject. Our design leveragesoff the theoretical andsimulation
results in [12] that analytically demonstratethatin theory, randomizedscopedsearchesbetweenP2Ppartic-
ipantsall looking for thesamepopular object scalewell in termsof numberof packetstransmittedandtime
taken to retrieve theobject.

3.2 PROOFSDesign

Hereweconsiderthearchitectural design of thePROOFSsystemwithout attemptingto optimizeits perfor-
mancein any waywhatsoever, i.e.,no functionality is added beyond whatis necessaryto make it functional
androbust. Therearetwo componentsto thesystem,theclient andthebootstrap server. Fromtheperspec-
tive of PROOFS(without optimizationsadded), clientsarea setof homogeneous end-systemsthatform the
P2Poverlay andareusedto send searches. Bootstrap serversprovide a meansby which clients canlearn
about andgainaccessto theoverlay. In ourcurrent implementation, weutili zeasinglebootstrapserver. For
thesystem to berobust, it is likely necessaryto have multiple bootstrapservers. Below, we limit discussion
to asystemthatcontainsa singlebootstrapserver. Webriefly discusssomestraightforwardwaysto provide
multiple servers in Section6. A detailed explorationis beyondthescopeof this paper.

EachPROOFSclient runstwo protocols,ConstructOverlay andLocateObject. Construct-
Overlay is responsible for determining which setsof clients aclient is permitted to querywhensearching
for objects.LocateObject is theprotocol thatparticipates in searchesupontheoverlaynetwork formed
by ConstructOverlay. ConstructOverlay is in essencethe passive component, running contin-
ually, whereasLocateObject runsonly whenflashcrowd phenomenaexist within thenetwork. Below,
we give brief descriptions of thesetwo protocols. Theseprotocols rely heavily on randomnessto be both
simple and robust. All communications betweenclients occur at the IP level, i.e., eachclient hasan IP
addressandport that it usesto sendandreceive communications. Theunderlying routing systemis not of
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concernin this paper.

3.2.1 ConstructOverlay

Whena client wishesto participatein thePROOFS system, theConstructOverlay protocol first con-
tactsa bootstrapserver to obtaina preliminary list of neighbors (an IP address:port combination). A client.

’s neighborsarethesetof nodeswith which it is permittedto initiate contact. Hence,if theP2Poverlay is
viewed asa graph / in which thesetof clients arethe nodes, thenthe neighbor relation is indicatedvia a
directededge. Becausewe usedirectededges, it is possible for node 0 to benode

.
’s neighbor(such that.

caninitiate contact with 0 ) while
.

is not 0 ’s neighbor (suchthat 0 canonly communicate with
.

di-
rectly by responding to

.
). Thissetof neighborsis theonly statemaintainedby theConstructOverlay

protocol thatvarieswith time. Thereis afixedbound, 1 , on themaximumnumberof neighborsthataclient
will maintain.

Clientscontinually perform whatis called a shuffle operation. Theshuffle is anexchangeof a subsetof
neighborsbetween a pair of clientsandcanbe initiatedby any client. Theclient 132 that initi atesa shuffle
choosesa subset of neighborsof size 4 thatis no greater thanits current number of neighbors. It selectsone
neighbor, 165 from this subsetandcontactsthatneighbor to participatein theshuffle. 1 2 sendsthesubset of
neighborsit selectedwith 175 removedfrom thesubset and 1 2 added. If 165 accepts 1 2 ’s shuffle, it selects
a subset of neighborsfrom its list of neighborsandforwardsthis subset to 1 2 . Uponreceiving eachother’s
subsetsof neighbors, 1 2 and 1�5 update their respective neighbor setsby including thesetof neighborssent
to them. Thereplacementis doneaccording to threerules:

1. No neighborappearstwice within theset.

2. A client is never its own neighbor.

3. Increasethesizeof thetheneighbor setif below thebound before overwriting previousentries

4. Neighbors in the neighbor setcanonly be overwritten(i.e., removed) if they weresent to the other
neighborduring theshuffle.

{4,5,15}
{2,7,15}

4 10

15

6

1

7

2

8

5

(a) Beforetheshuffle

{4,5,15}
{2,7,15}

4 10

15

6

1

7

2

8

5

(b) After theshuffle

Figure2: An example of a shuffle operation

A sampleshuffle operation is shown in Figure2. There,clients arerepresentedby numbered circles.
Directed edges indicate the neighbor relation, wherean arrow pointing from

.
to 0 meansthat 0 is a
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neighborof
.

. Neighborsaredepictedonly for thedarkenedclients numbered4 and10. Thesenodesstart
with thesetof neighbors depictedin Figure2(a)andendwith thesetof neighbors depictedin Figure2(b).

Notetwo important points: first, noclient becomesdisconnectedasaresult of ashuffle: it simplymoves
from being theneighborof onenodeto being theneighbor of another. Second, if client

.
is 0 ’s neighbor

and 0 init iatesa shuffle with
.

, thenaftertheshuffle, 0 is
.

’s neighbor(i.e., theedgereverses direction).
In our current implementation, a client waits a random amountof time sampledfrom an exponential

distribution. A shuffle request is only rejected by neighborsthat have placed a request to shuffle but have
not yet received a response. Upon receiving a rejection (or a timeout), a client continuesthe processof
choosing the next time to initi atethe shuffle from a uniform distribution. The rejection mustbe explicitly
acknowledged. Clientsthatdo not respond to shuffle requestsareassumedto beinactive (i.e.,areno longer
partof theoverlay) andareremovedfrom therequesting client’s neighborset.

Shuffling is usedto producean overlay that is “well-mixed” in the a client’s neighborsareessentially
drawn at random from the setof all clients that participatein the overlay. Thereis no attemptto optimize
theoverlaysuchthatneighborsaretopologically adjacent.Thereis no reasonto ever terminate theshuffling
operation.Oncea “random” stateis reached,additional shuffleswill keeptheoverlay in a “random” state.

3.2.2 LocateObject

The LocateObject protocol is the protocol that attempts retrieval of the desired object by searching
amongthe participating clients that areconnected together by the overlay that wasconstructed using the
ConstructOverlay protocol. Oncea client decides to usePROOFS to retrieve an object (how such
a decision canbe madeis discussedin Section6), a query is initiated at the client. A querycontains the
following information:

� Object: a description of theobject being searchedfor. In our current implementation,thedescription
is restricted to the URL that describes the original location of the page. However, the description
caneasily beextendedto handle moresophisticatedqueries(keywords,temporal specifications, etc.)
since thesetof locationssearchedareindependentof theobject specification.

� TTL : a counter that counts the maximumnumber of additional hopsin the overlay that the query
should propagateif a copy of therequestedobjecthasnot beenlocated.

� fanout: a value 8 that indicatesto how many neighborsa client should forward a query that it has
receivedwhenit doesnot have a copy of therequestedobject (assuming theTTL hasnot expired).

� Return Address: theaddressof theclient that initi atedthequery suchthatoncea suitable object is
located,it canbereturneddirectly.

Whenaclient receivesaquery or initiatesaqueryfrom anotherclient, it first checksto seeif it contains
a copy of the requestedobject. If so, it forwardsthe object to the return addressspecified in the query.
Otherwise, it decrementstheTTL of thequery, andif theTTL is non-negative,randomlyselects 8 neighbors
from its neighborsetandforwardsthequery with thedecrementedTTL to thoseneighbors.Neighbors that
receive the query areexpected to acknowledgereceipt by sending an ACK packet back to the client that
forwardedthequery. If no ACK is returnedfrom a client thenanotherclient is selectedat random andthe
query is insteadforwardedto thatclient.

If a client that initiates a query does not receive a copy of requestedobject after a certainperiod of
time, theclient assumesthatno clients reachedby thequery hada copy of theobjectandrepeatsthequery.
Currently, we incrementtheTTL valueby oneeachtime aquery fails until reaching a givenvalue.Because
eachsearch is randomized,eventhefirst few hopsof thenew querycanvisit clients thatwerenot visited on
previousqueries. Thetime time a client waitsbetweensubsequentqueriesis 9;: , where 9 is theTTL of the

7



query and : is somerough estimateof propagationdelay. The sizeof the TTL mustbe chosencarefully.
Thenumber of visits to clientsgrowsexponentially in thesizeof theTTL, sorapidincreasesin its valuecan
causeunnecessary floodingwithin thenetwork. : mustalsobesetcarefully: largevaluesincreasepotential
waiting times,but smallvaluescanleadto theinitiation of new queries prior to thecompletion of previous
queriesthatmayyet returna copy of theobject. We investigatehow thesetting of : affects retrieval times
andtraffic levelsin Section5, anddiscuss waysto avoid traffic floodingin Section6.

4 Robustness

In this section, we evaluatethe natural robustnessof PROOFS. By “natural”, we meanthat no additional
functionality is introduced beyond what implementsthemostbasicfunctionsneededby theprotocol (asis
described in Section3). In particular, we investigatethedesign’s robustnessasa function of the following
networking phenomena:

� Overlay partitio ning: Givena fixedsetof clientsparticipating in the overlay, it is possible that the
ConstructOverlay Protocolproducespartitionsuponthedirectedoverlaygraph suchpreventing
communicationbetween all pairs of clients. We analytically prove that whenthe overlay paritions,
thetypes of partitionscaused arenever permanent(i.e., they areautomatically healedby theprotocol
eventually with probability 1). Wealsopresentsimulationresultsto show thatfor reasonableneighbor
setsizes, partitions arerareoccurences and,whenthey do occur, arequickly healed.

� Joins/Leaves: Oneexpects thatover time,clientswill join andleavetheoverlay, andthatclientsmay
leave without warningor notification. We showvia simulation that the majority of clients canstill
reach a very large fraction of clients in the overlay even whenjoin and/or leave ratesareextremely
high.

� Pseudo-participants: Theremayexist clientsthatwish to retrieveobjectsusingthePROOFSsystem
but wish to limit participation assisting other clients within LocateObject. Clients that do not
participate in theConstructOverlay Protocolmaintain a fixed setof neighbors throughout the
duration of their session. This limits their own ability to retrieve contentassomeof these neighbors
mayleave thesystem.2 We show that,evenwith up to 80%of clientslimiting their participation, our
design maintains acceptabletraffic levelsandtimesfor object delivery.

4.1 Overlay Partitioning

We saythat an overlay is partitio ned if there exists a pair of clients, � 2 and �<5 in the overlay whereno
pathexistsfrom � 2 to �=5 . Suchanoccurencewouldpreventany queriesforwardedby � 2 from reaching �>5 .
In our discussionsbelow, we will considerboth partitions in thedirectedgraph (that takes into account the
directionsof theedges) aswell aspartitionsof theunderlying undirected graph (wheredirectionsof edges
do not matter). Clearly, if theundirected graphis partitioned, then thedirectedgraphmustbepartitionedas
well, but thereverseneed not betrue.

Partitioning of theundirected, connectedgraphis of particular concern. It is easyto show that a parti-
tioned undirected graph cannot berepaired via shuffling. In contrast,it is easy to show thata directedgraph
that is partitionedbut whoseunderlying undirectedgraph is not partitioned canberepaired by shuffling.

The practical complications in maintaining an undirected overlay graph(wherean edgepermitsbi-
directional communicationbetweenthe nodesit connects) compels us to usean overlay whoseedgesare

2Note that under the bootstrapping process,thesenodesareassignedasneighborsto othernodesandremainasparentsuntil
explicitly removed.
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unidirectional. Unfortunately, it is conceivablethatshuffling operationswill partition theunderlying overlay.
However, we now present a theoretical result that demonstratesthat any partitioning of the graph due to
shuffling is only temporary. With probability one(givenenoughtime), theshuffling processwill eventually
reconnecttheseparatedparticipants. Weemphasizethatthis theoretical result holdsconclusively only when
nodes do not leave theoverlay.3

The result is proved by considering the underlying undirected graph (i.e., removing the directions on
edges in theoverlaygraph). We first prove thatshuffling will not partition such a graph, andthen show that
if theunderlying undirectedgraphis not partitioned, theneventually a pathwill exist from any node � 2 to
anothernode �?5 within thedirectedgraph.

An undirectedgraph / is saidto beconnectedif a pathexistsbetween every pair of nodes, � 2 and �=5 .
Theorem 1 Let / be an undirectedconnectedgraph, and let /<@ be the graph that is derivedfrom / by
applying an arbitrary shuffle operation. Then / @ is an undirectedconnectedgraph.

Proof: A shuffle consistsof anexchangeof apairof A nodes. Thisexchangecanbedoneby first removing
those nodes thatappear in bothshuffle setsandthenperforming theexchangeonenodeat a time (wherean
exchangemight bein a singledirection for thecasewhereonenodehasfewer than A nodesin its neighbor
setto swap).4 Hence,we canrestrict our attention to thecasewheretwo nodes exchangeat mostoneentry.
It follows from induction that if thegraph remainsconnectedaftera singleswap,it remainsconnected after
all swapsperformedwithin theshuffle.

Let BDCFE	�7GIHKJKJKJLHM�7N3O be an arbitrary sequenceof nodes that forms a pathin / asdepicted in Figure
3(a).Sincewe areconsidering a single swap,therearethreecases to consider:

� Case1: neither node implementingthe swap lies on the path. This meansthat while there may be
nodeson the pathwhoseedgeschange(asa result of the swap), the changed edgesconnect to the
nodesimplementing theswap. Hence,no edgesthat form thepatharechanged,so thepathremains
after theswapis complete.

n
0

n1 n j n j+1 nkn j−1

(a) Initial topology andno swaps

n
0

n1 n j n j+1 nkn j−1

(b) Oneswapon thepath

Figure3: A generic pathwherethenodebeingswappedwith is off thepath.

� Case2: onenode, �QP , that implements the swap lies on the pathandthe other lies off the path(call
this other node �RG ). Sincethe nodesthat implementthe swap areconnectedboth beforeandafter
they perform theswap(but thedirection of theedgechangeswithin thedirectedgraph), two possible
scenariosoccur: thenodeon thepathswapsaway no edges or swapsaway oneedge.As canbeseen
in Figure3(b),a pathbetween � 2 and �<N remains aftertheswap.

3It is trivial to constructcaseswhereleaving nodescancreatea partition that cannot be healedwithout outsideintervention.
Subsequent simulationresultswill demonstratethatsuchpermanentpartitionsareextremelyrare.

4Onceduplicatesareremoved,theswappingoperationis associative, i.e.,theorderin which nodesareactuallyexchanged does
not alterthefinal outcome.
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nkn j+2n j+1n jn j−1n1

(a) Initial topologyandno swaps

nkn j+2n j+1n jn j−1n1

(b) Oneswapon thepath

nkn j+2n j+1n jn j−1n1

(c) Two swapson thepath

Figure4: A generic pathwherethenode beingswappedwith is on thepath.

� Case3: both nodes lie on the path. It follows that if � P and � PTSVU arethe nodesimplementing the
swap, theneither � P is a neighbor of � PWSVU or � PWSVU is a neighbor of � P . In either case, there is an
edge connecting � P and � PWSVU in theundirectedgraph. We canrestrict our attention to thealternative
path E	��2KHKJKJKJXHM�?PYHM�?PWSVUZHKJKJKJXHM�7N3O connecting �=2 to �=N in / . We usethis pathinstead andrelabel all�V[KH]\_^a` as �>[Mb UcS�2 suchthat �dP and �ePTS�2 arethe nodes that implementthe swap. Here,thereare
three casesto consider: a) no edgeson the pathareswapped between the nodes, b) � P forwards to� PTS�2 its connectionto node � P b 2 and � PTS�2 forwards � P a nodethat lies off thepathor no node(this
casealsocoversthecasewheretheroles of � P and � PWS�2 arereversed), andc) � P forwards node � P b 2
to � PWS�2 and � PWS�2 forwards edge � PWS 5 to � P . As shown in Figure4, for all threecases, the resulting
graph remainsconnected.For case b), thenew pathskipsover node � P andfor case c), thenew path
goes from � P b 2 to � PWS�2 to � P to � PWS 5 .

Theorem 2 Let / be a directed graph for which a path (in the undirectedsense) �f2KHM� 5 HKJKJKJIHM�7N , exists
connecting � 2 to �=N , but where no directedpath existsfrom � 2 to �7N . Thenthere exists a seriesof shuffle
operationsthat will form thedirectedpath.

Proof: Due to lack of space, we simply present a sketch of the proof. Consider the undirected path
between� 2 and �=N . Then,by inductionon g , weperform aprocedurethatbuildsadirectedpathfrom � 2 to a
node�V@ where�V@ is atmost hji�g hopsfrom �?N along anundirected path. Onceg reachesh wehaveachieved
our result. By choosing theclosest node �k@ to �=N (in theundirectedsense) thatcanbereachedvia directed
edges from � 2 andvia undirectededges to �QN , thedirection of theedge between�Y@ andthenext hopnode,� @ @ on theundirected pathcanbereversed by having � @ @ init iatea shuffle operation with � @ . Theundirected
component of the path to �dN is now onehop shorter, either becauseof the additional hop on the directed
pathfrom � @ to � @ @ , or because� @ @ transferedits directededge to the next hop on the pathto � @ during the
shuffle. Sincetheproper sequenceof shuffling operations is a finite setof shuffles, with probability onean
appropriate sequenceis eventually selected.

Last,we have performedsimulation results thatdemonstratethatwhenthesetof clients remainsfixed,
thereis apartition in thedirectedsenselessthan95%of thetime,andthatduring thesepartitions, all clients
arestill ableto reachmorethan95%of theclients in thegraph. Thesesimulationsarediscussedin thenext
subsection.

4.2 Handling Dynamic Joins and Leaves

We now evaluate the likelihood of a partition for the casewhereclients dynamically join and leave the
PROOFS system. Clearly, onecanconstruct samplepathsof joins andleavesthat causea partition in the
underlying directed graph. However, we usethe foll owing result of Erdös andRényi in [2] to argue that
partitionsin thedirectedgraph arehighly unlikely.
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Theorem 3 (Erdös) Let / be a graph containing � nodesand lLm3nk�o�p

���rqts7�uqwve����� edges where the
nodes connectedby theedge are drawnfroma uniform distribution over thesetof all possible edges. Then
thegraphis not paritioned(i.e., is connected) with probability xfy{z|�]i~} b 5M� � as �r��� .

By setting s to a reasonable-sizedvalue (e.g.,11), theprobability of sucha random graph beingparti-
tioned is lessthan lK� b?� . Sincenodesin suchgraphs have an expected degreeof lLm3n���

���uqts�qwvd�]lL� , a
onemillion nodegraph, with s�C�l
l , would attain this low partitioning probability wheneachnode hasan
averageof 13 neighbors. We suspect that the distribution of graphs generatedby shuffling combinedwith
dynamic joins and leavesof clients is similar, though not exactly the same,to the distribution of graphs
generatedin Theorem3 suchthat a similar resultwould hold andhence, the likelihoodof the undirected
graph paritioning for a reasonably-sizedneighbor setis miniscule. However, we have yet to formally prove
this result. Instead,we resortto simulation to make our case.

We now present simulation results to evaluate how clients joining and leaving the overlay affect the
overlay’s ability to provide communication between arbitrary setsof clients. In eachsimulation, an upper
bound, � , is placed on the numberof clients participating in the overlay. Theseclients join andleave the
overlay, eachclient’s join andleave timesareexponentially distributedwith ratesof � and � , respectively.
Eachclient initiatesshuffleswherethetimebetweenthese initiations is exponentially distributedwith mean
rate1. In theseexperiments,whenclients left the overlay, thereareno explicit attemptsto self-heal the
overlay, i.e., edges that pointed to clients sincedepartedsubsequently point to nowhere until the client
returns. Upontheir returnto theoverlay, a client would inform thebootstrapserver of its arrival, obtaining
a new list of neighbors from the bootstrapserver and updating the bootstrap server’s (potentially short)
list of active participants. We variedthe likelihood with which a client would inform the bootstrapserver
of its departure from the overlay. However, we found this announcement to have negligible impact on
performance,soresultspresentedhereareonly for thecasewhereclientsdonot inform thebootstrapserver
of departures.

Duringasimulation,wesamplethestatusof theoverlay atanaveragerateof lLmT� , with thetimebetween
samplesdrawn from anexponential distribution. We collect 1200samplesanddiscardthefirst 200to allow
theexperiment time to convergetowarda steady state. By PASTA, thefact that thetimesbetweensamples
areexponentially distributed guaranteesthatthesamples indeed reflectsteady-state behavior.5

During each sample,for eachactive client � (currently joinedto theoverlay), we computedthefraction
of otheractive clients thatcanbereachedby � via somepathalong a sequenceof directededgeswithin the
overlaygraph. We call this quantity the reachability of � . During eachsample, we compute theminimum,
mean,median,andmaximumreachability over all active clients. Table1 lists the setof parametersvaried
during experimentsaswell asthevaluesto which thedifferent parameterswereset.

Table1: Parametersvaried for partition simulations

# clients 50,100,500,1000,2000
client neighborhoodsize 5,10,25,50� 0.01through1� 0,0.01,0.1,1
shuffle size 2,5,10
bootsrapserver cache 5, 10,50,100

5This of courseassumesthatthesystemhasreachedsteadystateby the200thsample.
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4.2.1 Results
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Figure5: 95%boundson reachability

Figure5 presents results for experimentsin which ��C�n3�
�
� clients formedthe overlay, eachwith a
bound of 25 on thesizeof its neighborset.Theshuffle sizeis setto 5 andbootstrapcachesizeis setto 25.
Figure5(a)plots, asa function of � and � , the level of reachability that is exceeded in at least95%of the
samplesby all clients. In otherwords, fewer than1 of 20samplesshould containaclient whosereachability
is lower than the values plotted in the figure. � is variedon the � -axis with the different curvesplot the
results for differing valuesof � . Figure5(b) is similar to Figure5(a) except that theaveragereachability is
usedin placeof theminimumreachability.

We seeat least95% of the time, the averagereachability equals one (all clients areable to reach all
other active clients). A client with the minimum reachability within a sample can drop as low as 20%,
which meansthata clients’ querycanreachat most400of the2000 clientsparticipating in thesystem. We
emphasize thattheseplotsarebasedonthereachability of theclientwith lowestreachability ateachsample.
A singleclient remains“the worst” for shortperiodsof timeandsoanindividualclient’saveragereachability
is muchhigher thanwhat is plotted here. In addition, we notethat low levels of reachability occur only in
extremecaseswheretheexpectedtime for which a client remains in thesystem is 50 timessmallerthanthe
expectedtimefor which theclient is exited from thesystem. Notethatsucharatiocorrespondsto ascenario
in which clients thatusewebbrowsers twice a dayrun thebrowseron averagefor lessthan15 minutes per
sitting. This makesthesehigh ratios unlikely in practice. We therefore expectunder realistic conditions,
reachability will behigh for all active clients at all times.

We now discuss the case wherethe set of clients arefixed is covered by setting ��CF� (clients join
andnever leave). We omit theplots since they overlapwith the casewhere ��C��d���el . In summary, in our
experimentswith ��C�� , client reachability dipped below 1 lessthan5% of the time, andnever dipped
below0.95.

Wenow examinehow thesizeof clients’ neighborsetsaffectsminimumreachability. In Figure6,apoint
plottedat ����HM�e� indicatesthat theminimumclient hasreachability of � for at least a fraction � of the time.
Thedifferentcurvesarefor thedifferentsizesof neighborhoods. We seethat increasingtheneighborhood
sizehasa dramatic effect on the reachability when ���o��� . Theorem 3 givesus intuition that the sizeof
theneighborhood mustgrow at a rateproportional to the ��

� of thenumberof participating clients.

Weconcludetheexamination of thereachability within overlaysgeneratedby theshuffling algorithmby
noting thatwehaveexaminedthealgorithm in anenvironment wherewemakenoexplicit attempts to repair
partitions. In practice, it would be simpleif desired to addan additional mechanism to explicitly perform
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Figure6: Effect of neighborhoodsize

repairs. For instance,a client, upondetecting an unresponsive neighbor could remove the neighbor from
its neighbor setandshuffle with anactive neighborto replenish its neighborset.On therareoccasionsthat
a client finds itself partitionedor unable to increaseits neighborhood to the desired sizeby shuffling can
contactthebootstrapserver to obtain a freshsetof neighbors.Suchtypesof mechanismswould reduce the
likelihoodof partitioning, improving reachability, if deemednecessary.

4.3 Non-cooperatingclients

We now turn our attention to evaluating the robustnessof PROOFSaswe vary the level of participation of
clientswithin protocolLocateObject. BecausePROOFSis designedto runonusers’ desktop machines,
wemustaccount for thefactthatnotall clientswill bewilling to full y participate. In somecases,clientsmay
even attemptto deceive othersabout their levels/ability to participate[13]. Often, the ability to adjust the
level of participation is a feature in file-sharing systems.We introducethreebasicmeansby which a client
canlimit its participation in PROOFS:

� Query-only: a query-only client will actasthough it hasnot receiveda copy of theobject. However,
theclient will forwardqueriesfurtherin thenormal fashion(forwarding thequery to 8 neighborsafter
decrementing theTTL aslong astheTTL is larger than0.)

� Tunneling: uponreceivingaquery, atunnelingclientselectsasingleneighborandforwardsthequery
to theneighbor with a decrementedTTL.6

� Mute: a muteclient drops all queries it receiveswithout notifying otherclients of this behavior. We
assumethatother clientsarenot awarethata givenclient is muteandthereforeno action is taken to
compensatefor muteclients.

Usingdiscrete-event simulation, we evaluate theperformanceof PROOFS asa function of thenumber
of messages transmitted to eachclient7 and the averagetime taken for a client to receive the requested
object. In these simulations,time is measured in hops: the time for a client to communicate with another
client (i.e., forward a query) takesa single time unit. A client cantransmit anunlimitednumber of queries
to neighboring clients within thesametime unit.

6Our original intentionwasto not decrementthe TTL but this createdlarge bandwidthoverheads as the number of limited-
participationclientswaslarge.

7A subtlepoint shouldbe madeherethat the averagenumber of queriesreceived equalsthe averagenumberof queriessent
(sinceevery querythatleavesa client mustarrive atanotherclient.
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Following theleadof [12], weevaluatethesemeasuresof performanceusing two differentclient arrival
processesthat determine the proximity in time with which clients become interestedin the “hot” object
and initiate queries. In the isolated arrival process, only one client is interestedat any given time. A
client’ssearch for theobjectmustcompletebefore thenext client’ssearchcommences.In the joined arrival
process,thetimesat which client searchesareinitiatedfollow thedistribution of a branchingprocess.This
is implementedby probabilistically initializing aclient’ssearchthathasnotyetbegun ateachtimeunit. The
probability for time unit 9 is ��q��M�Q ¢¡¤£ , where� and � areconstantand ����9M� is thenumberof clients thathad
beeninitiatedby time unit 9�i¥l . This emulatesa scenario wherea client self-initializeswith probability� or is “told” about the object by eachother client that hasalready started its searchindependently with
probability � . In our experiments,we set�¦Ct�d���
�el and �ZCt�d���el .

0.4 0.5 0.6 0.7 0.8 0.9 1
Probability of node not cooperative

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n 
of

 n
od

es
 fi

nd
in

g 
do

cu
m

en
t

mute
tunneling
query-only

Figure7: Non-cooperation searchcompletion rates: Isolatedarrival process

We begin by considering thefraction of searchesthat fail to locate a copy of thedesired object. As the
fraction of clients thatarewilling to forward queriesor return copiesof objectsdecreases,thelikelihoodof a
search failing increases.Figures7 and8 plot results of simulationsusingtheisolatedarrival process.In both
figures,the � -axis indicatesthe fraction of clients that arenon-participants. The type of non-participants
(query-only, tunneling, or mute)is indicatedby thedifferentbarsin Figure7 anddifferentcurvesin Figure8.
When �rC§� , all clients are“behaving” foll owing thebasicrulesof theprotocol. Here,theoverlayusedto
generatetheseplots contains lK�
�
� clients,eachwith a neighbor setof size n
¨ . Thefanout, 8 , usedhereis¨ . Eachpoint plotted is the theaverage of ©3�
� runs. Whenshown, 95%confidenceintervalsaregenerated
from 20 samplesthat average15 datapoints at a time (suchthat eachsample is drawn from a distribution
that is approximately normal).

Figure7 illustratesthe fraction of clients that locate a documentasa function of the fraction of non-
cooperative clients. Thoseclientswho limit their participationall do soin anidentical fashion: thedifferent
curvesindicatethe type. We seethat even whenthe fraction of non-cooperating clients is ashigh as0.5,
all clients’ queriesaresuccessful whenthenon-cooperation typeis query-only or tunneling. Whenthetype
is mute,a client’s query is successful 99.5%of the time. We alsoobserve that the fraction of clients that
find the document doesnot degrade as the fraction of non-cooperating clients increasesfurther with the
exception of themutetypeof non-cooperation. There,fewer than20%of searchesfail to locate theobject.

Figure 8 plots the averagenumber of messages per client and averagetime units required using the
isolated arrival process.From Figure8(a) we observe that whenthe fraction of non-cooperating clients is
0.5, theaverage number of messages doesnot evendouble. In fact, for muteandtunneling types, levelsof
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Figure8: Non-cooperation overhead: Isolated arrival process

traffic increaseby only 50%. We seethat typestunneling andmutehave lessof an impacton traffic than
doestype query-only. We note a rather largeconfidenceintervalsat �uC«�d�¢¬ for themutetype. Thesearea
result of thesmallnumberof searchesthatdo not locatetheobject becausenopathexiststhroughnon-mute
clients to theobject.This creates a smallsetof searchesthatusea significantly larger amountof traffic.

Figure8(b) plots theaveragenumberof time units taken for a client to retrieve theobject. We observe
herethat types query-only andtunneling cause minimal increasesin searchtimes. The mute type causes
a minimal increasewhenthefraction non-cooperatingclients falls below0.6. However, the time increases
dramatically oncethis fraction is passed.

We ran similar experiments for the casewhereclients initiatedqueries according to the joined arrival
process.There,we observe similar trends in both theaverage numberof messagesandtheaveragenumber
of time units. Theonly differenceis that theaveragesareslightly (no morethan20%)higher thanfor the
isolatedarrival process.
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Figure9: Non-cooperation searchcompletion rates: Isolatedarrival process

Next we examinethe effect of varying the sizeof the neighbor set. Theparametersfor the number of
clients andfanout remainsimilar to those in the previous experiments. Figure9 illustratesthe fraction of
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clients thatareableto locate thedocument.Thedifferent barsplot thesevaluesfor variousfractionsof mute
non-cooperating clientsandvarious fanouts. We find whenfanout 8­C®n , increasingthe neighbor setsize
doeslitt le to improve the likelihoodof a search succeedingwhenthe fraction of non-cooperative clients is
large. However, such an increasedoesyield significant improvementswhenthe fanout is 5: increasingthe
neighborsetsizefrom lK� to ¨3� changesthefraction of searchesthatsuccedfrom �d�¯n
¨ to �d�¯°
n when °3�²± of
theclients arenon-cooperative.

Our findings indicatethata fanout of 8�C³¨ is sufficient to handle overlays in which large fractionsof
client arenon-cooperative of type mute. With query-only, andtunneling type of non-cooperation,we find
thatthefraction of clients thatareableto locate theobject is near lK�
�²± evenwith a fanout aslow as 8´Can
andhalf of theclientsarenon-cooperative.
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Figure10: Non-cooperation overhead:Isolatedarrival process

Figure10 illustratesthe average number of messagesper client andaverage number of time units for
thesamesetof simulationsusedto plot Figure9. We observe that increasing neighborsetsizesignificantly
reducesthemessagesandthe time required to locatethedocumentfor smallerfanoutsandlarger fractions
of non-cooperative clients. Again,we observe thata fanout of ¨ upon anoverlay in which clients’ neighbor
setsaresize n
¨ keeps the average numbermessages received per client small (around n
¨ ), and the time
required lessthan ¨ hops. Evena neighbor setsizeassmallas lK� is sufficient to locatethedocumentwithin¨ hopswhenhalf the clients arenon-cooperative. We observe similar trends to that explored in Figure8
with query-only andtunneling non-participants.

In summary, thesesimulation results indicatethatPROOFSis robust in overlaysevenwhenthefraction
of clientsthatarenon-cooperative 0.5.

5 Experiments

In thissection,wepresentresults of ouruseof anexperimentalprototypewithin awide-areanetwork setting.
Our experimental testbedconsistsof a variety of machines gatheredat the following academic institutions
around the globe: MIT(MA), USC(CA),Columbia(NY), UCL (London), GeorgiaTech(GA), UKentucky
(KY), NTUA (Athens, Greece), UNC (NC), CMU (PA), UCSD (CA), UDelaware (DE), UMass(MA),
UWisconsin (WI), UoA(Athens,Greece),UMN (Minnessota), andUniversityof Maryland (MD). Thehosts
yielded a hetergeneousmix of operating systems(mostly Linux andSolaris), bandwidth capabilities, pro-
cessor speeds andmemories.

Ourgoalwasto examinePROOFSwithin awidescaleexperimentcontaining thousandsof participating
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Figure11: Experiments with 180clients,simultaneous searches

clients. However, doing so would have overloadedthe small numberof distributed machinesto which we
hadaccess. To generatemoreparticipants, multiple clients (between5 and15) wereassignedto a single
machine asseparateprocesses.Sincea client’s neighborsareassignedrandomly via theshuffling process,
the selection of neighbors is not biasedby their network or physical proximity. Hence,the only effect
that this artificial proximity hason theexperimentsis thatapproximately lLmI� th of the time, theend-to-end
transmissiondelaybetweenpairsis smaller thanwould be expected in practice, where � is the number of
hosts.

Our prototype is a multi-threaded Java executable that usesTCP sockets to form and maintaincon-
nectionsbetweenneighbors in the overlay. We selectedJava becauseof its inherent portability to all the
machines,though the executablecode is slower thanwhatcanbe achievedby coding in C. By using TCP
sockets,we did not needto concernourselveswith handling lost transmissionswithin thenetwork. Whena
client shufflesa neighbor away, it closestheTCPsocket that leadsto thedepartedneighbor. Whena client
is informedof a new neighbor (during a shuffle) it theninitiatesa TCPconnection with thatneighbor. We
alsoimplementedabootstrapserver to provide theclientswith avalid setsof neighborsduring their startup.
In all experiments, the timesat which eachclient initiatesshuffle operations areexponentially distributed
with anexpected timeof two minutesbetweenshuffle initations.Welet theshuffling proceedfor ahalf hour
before initiating our experimentsto give theoverlaytime to “randomize” itself.

Figure11plotsresultsof 8 experimentsusinganoverlayconsistingof 180clientswith aneighborsetsize
of 15. In eachexperiment,a single client starts with a copy of theobject. All otherclientssimultaneously
search for thatobject usinga fanout 8uC�n . Figure11(a) plots, for eachexperiment,theaverage numberof
query requestsreceivedby eachclient, aswell asthemaximumnumber of requestsreceivedoverall clients.
On the � -axis,we vary : , wherea client waits :o9 millisecondsafter initiating a querywith TTL 9 before
initi ating its next query (the maximumvalues are shifted slightly to the right to more easily distinguihs
betweenaverageandmaximumpoints). Figure11(b) plots thecorresponding average andmaximumtimes
taken from thetime thataclient’ssearch is initiatedto thefirst time thattheclient retrievestheobject (since
multiple copies canbereturneddueto theparallel natureof thesearch).

Weseethatby setting : to smallvalues,theexpectedtimeto delivery is reduced.However, therecanbe
substantial increasesin traffic levelsdueto premature transmission of queries(before previousquerieshave
hada chance to complete). We seethat for values of :·^a©3�
� , averagetraffic levelsareapproximately the
same,with eachclient receivingon averagefewer than25 queriesto allow all clients to obtain thecontent.
This follows from our observation that typical responsetimesto queriesvaried between 100msand350ms.
The results indicatethat a client should give ampletime for a queryto complete its search beforestarting
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Figure12: Experimentswith 80 clients,simultaneoussearches

another.
Figure12 plotsresultsof between 10and25 experimentsfor each50 msincrementof : usingasimilar

setupasbeforeexcept that here, only 87 clients participate. Theconclusionswe draw from theseplotsare
roughly thesame.We notethat traffic levelsandretrieval timesareroughly the sameasfor the180 client
case. This indicatesthat the numberof requestsandthe retrieval time doesindeedgrow slowly with the
numberof clients participating in thesystem.

Theseexperiments demonstrate that (admittedly, on a smallerscale), PROOFS can retrieve popular
objects in an efficient fashion. The time betweenqueries should be no lessthan250 msec,giving ample
time for thelarge majority of queriesto reachtheir intendeddestinations.

6 Discussion

Theappeal of PROOFSis thesimplicity, scalability, androbustnessof its basic architecture. The fact that
often nodesreceive redundantcopiesof queries does increasethe levels of traffic it adds to the network..
However, this redundancy proves to be helpful in naturally prevent partitions and allows the system to
operateeffectively evenwhena large fraction of clients limit their participation.

While we have demonstrated PROOFS’ ability to scalably androbustly deliver objects underheavy de-
mand,wehavenotevaluatedthepotential damagesto thenetwork via misuseor intentional abuse. PROOFS’
scalability relieson the fact that the object a client searchesfor is alsobeingsearchedfor by many other
clients in thenetwork. In practice,it is necessaryto limit theamountof floodingcausedby searchesthatare
not looking for popular content. We envisiontwo simplewaysto control suchflooding:

� Placelimits on the rate at which clients are willing to service queries. If all clients bound therate
atwhichthey processqueriesby somefixed ¸ , theneachclient canonly inject queriesinto thenetwork
at a maximumrateof 8V¸ (the ratecanbe lower dueto queries for which a copy of theobjectcanbe
returned). This canleadto a high querydrop rate(i.e., processing only oneout of every 8 queries),
worsening performance. However, it should effectively bound the amountof traffic that PROOFS
adds to the network, irrespective of the numberof clients searching or participating in the overlay.
Second, we have run other setsof simulations(not presentedhere) in which eachclient participating
in the overlay dropsrequestswith a probability of � . The results aremorefavorable thanwhat we
have observed whena fraction, � , of clients drop all requests. Hence,PROOFSshould continue to
locate objectsefficiently evenwhenthequeryratemodestly exceeds ¸ .
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� Place limits on the maximum TTLs for queries. Large TTLs are required when few clients are
searching for an object so that their queries cover the majority of nodes in the overlay. In contrast,
whennumerousclientssearchfor acommonobject,repeatedsearcheswith smallTTLswill spreadthe
objectsaround theoverlayquickly asa result of theoverlay’s randomly connectedstructure. Hence,
thenumberof smallscopedsearchesthatfind theobject is expectedto grow exponentially with time.

Thefollowing is a list of openissuesthatstill require further investigation:

� Search Initiat ion: Weareinterestedin automating PROOFSinsideof awebbrowserto automatically
retrieveobjectsduring flashcrowd conditions. A reasonableapproachis to first attemptto contact the
server and,after a shorttimeout, initiateLocateObject.

� DoS attacks: Protocols that fan out requestscan be used to generatelarge amounts traffic in the
network by placing bogus queries. While therate-limiting andTTL-bounding techniquescanprotect
the restof the network from being overwhelmed with queries, the generation of a large number of
bogus queries cansuppressthe ability to service valid queries. Onefix would be to prioritize the
servicing of queries to sitesthat aremore likely to legitimately contain flashcrowds suchasnews
sites. Another possibility is to prioritize service of the morefrequently occuring queries,which are
morelikely to belegitimate.

� Unavailable Objects: When an object does not reside anywherewithin the overlay, it cannot be
retrieved,nor replicatedat intermediatepoints in thesearchspace. This meansthatsearchesfor that
object will flood the system. Handling this caseremains an open problem. We point out that this
problem alsoexistswithin secondgenerationapproachesthat rely on caching to prevent flooding the
focal point of a directedquery for a popular object[1, 7, 11].

� Neighbor Proximit y: Wehave not madeany attemptwhatsoever to shapetheoverlayto theunderly-
ing network topology. We find thatclients canrecover popular objects in a smallnumber of seconds
upon an overlay producedby simpleshuffle operations. It remainsto be seenwhetheror not opti-
mizing the overlay topology cansignificantly reduce search times,given that it will alsoreduce the
“randomness” of the searchwithin theoverlay graph sincesearcheswill tendto cluster morewithin
local geographical areas.

� Failed Bootstrap Server: Having a single bootstrapserver is a limitation that is easilyaddressedby
replicating thebootstrapserver at severalfixedlocations.

� Object verification: A client participating in the overlay could easily transmit a fake copy of the
requestedobject uponreceivinga query. For sitesthatarevisited frequently, a browser could obtain
a copy of a public key usedby thesitebefore a flashcrowd arrivesat thesite. By including a unique
certificateinto anobject(suchasanMD5 digestof theobject[10]), encryptedby theoriginating site’s
private key, this certificate could be used to verify that an object did indeed originatefrom whereit
wasclaimedto have originatedfrom.

Thereareseveral waysto optimizethemannerin which theoverlayis constructedthatcouldpotentially
improve the protocol’s performance. Our simulations assumedthat all clients had identical capabilities
andour experimentswereconducteduponwell-connected, well-provisioned end-systemsat academic in-
stitutions. Oneimmediatedirection of future work is to determine how to construct overlays uponwhich
randomizedsearchesproceedefficiently throughtheoverlaygraphwith anincreaseduseof high bandwidth
clients anda reduceduseof low bandwidth clients.

One example is using the method described in [6] to generatebounded-diameteroverlays. Another
would beto give preferenceto neighborswhoarenearby (either topologically, via hop-count, or end-to-end
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delay). A third is to focusdesign towardgraphsthat exhibit smallworld phenomena.We areinterestedin
pursuing thesedirectionsasfuturework. It wouldalsobeinteresting to theoretically prove results involving
the“shape” of thegraphsgeneratedby shuffling. For instance,arethey truly random,andif so,how quickly
do they converge to a random shape? It would alsobeof interestto analytically modelthebehavior of this
type andotherprotocols asmembership, levels of participation, andprocessing capabilities of clients are
varied.

Finally, we notethat it is convenient to have connections between neighborsin theoverlay maintained
via openTCP connections so that we neednot worry about lost messages. Sincethese connections are
bidirectional, it wouldbeworthconsidering allowingthemto beusedby both endpoints, effectively making
theoverlaygraphanundirected graph. In theory, sincedirectedoverlayscanpartition muchmorefrequently
than their underlying undirectedstructures,making eachedge in the overlay graphbidirectional would
improve clients’ expectedreachabilities.

7 Conclusion

WehavepresentedPROOFS, asystem designedto deliver objectswhoseserversof originsareexperiencing
flashcrowdconditions. Thesystem usesoverlaysthatareformedvia a distributedshuffling proceduresuch
thatneighborsareselectedat random.Randomized,scoped,floodingsearchesarethenusedby clientsupon
the overlay to locate theobject thatcannot be retrieved from the overwhelmedserver. We have shownvia
a mix of theoretical results, simulation, andexperimentation that by relying on randomness,PROOFScan
achieve low latency delivery utilizing modesttraffic levels,evenwhenmembership to theoverlay changes
dynamically with time andwhenthereexist membersthat limit their participation in thesystem.
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