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Abstract— Fast spreading worms are a reality, as amply
demonstrated by worms such as Slammer, which reached its peak
propagation in a matter of minutes. With these kinds of fast
spreading worms, the traditional approach of signature-based
detection is no longer sufficient. Specifically, these worms can
infect all vulnerable hosts well before a signature is available. To
counter them, we must devise fast detection algorithms that can
detect new worms without signatures as they first begin to appear.
We present the design and evaluation of such an algorithm in
this paper.

The key to the algorithm is the identification of certain
invariant characteristics of worm propagation. Specifically, we
are able to demonstrate using real network traces how worm
propagation can perturb the arrival process distribution of
unsolicited packets. Our algorithm employs a novel two-step
procedure that combines a first stage change point detection with
a second stage growth rate inference to confirm the existence of
a worm.

To evaluate the algorithm, we have applied it to multi-year
network traces that cover many of the major worm outbreaks in
recent years, including Slammer, Witty, Nimda and Blaster. In
all cases, the new algorithm is able to detect the worm within a
very short time, well before significant infection has taken place.

I. INTRODUCTION

The release and propagation of the Slammer [1] worm in
2003 was a watershed event in the study of Internet worm epi-
demiology. It not only demonstrated in an unprecedented way
the scale and disruption that is possible in the real world with
a relatively compact worm; it also showed the ineffectiveness
of current techniques in detecting and countering these new
super fast spreading worms. More specifically, in the early
phase of Slammer propagation, it doubled in size every 8.5
seconds. It reached a maximum scan rate of of 55M addresses
per second and was able to infect more than 90 percent of
vulnerable hosts within 10 minutes [1]. Eventually, the spread
of Slammer was slowed by its own self-interfering nature and
a flawed pseudo-random number generator used in IP address
generation. In the end, Slammer served as a wake-up call as
it carried no malicious payload and its main damage was in
resource (bandwidth and CPU) consumption.

Our defense against fast spreading worms needs to be im-
proved significantly. Worms like Slammer must be countered
with extremely fast detection and containment mechanisms.
The traditional approach of human-mediated worm detection,
dissection and signature development is no longer sufficient.
By the time a worm signature can be manually obtained,
typically in hours, all vulnerable hosts will be infected. Some
studies estimate that the defense must be put in place for a

new worm in minutes [2]. There have been some proposals
on automating the detection process [3]–[7] and these are
discussed in Section II.

In this paper, we propose and study a novel algorithm for
detecting new worms, i.e., worms that appear for the first
time and are thus without an identified signature. In this case,
the detection must rely solely on observing some invariant
properties of worm propagation. This paper does not solve
the followup problem of reacting to a worm once it has been
detected. Traditionally, the reaction process involves a human
in the loop, and is therefore slow. With fast spreading worms,
automated reaction is required. Typically, this involves some
form of filtering, which can be based on network headers
or deep packet inspection. The reaction can also involve
automated generation of a worm signature and this will feed
back into the detection stage. Reaction approaches can be very
diverse, and are themselves topics of research in their own
right. This paper does not study them further.

Basis of Worm Propagation

There are many types of worm, some spread by compro-
mising well-known services and others spread using email
as a carrier. In this paper, our interest is only in scan-based
worms. These are worms that spread themselves by exploiting
the presence of certain network service vulnerabilities at the
new hosts. Fundamental to all scan-based worm propagation
is some form of probing (transmission of packets) from an
infected host to a new host, this is called a scan. In general
without a signature of the worm’s payload, it is not possible
to determine whether a given service request is legitimate
or the result of a worm that is scanning for new host to
infect. However, at the edges or enterprise or service provider
networks, where worm detection is often performed and where
one may have knowledge of valid destination address ranges,
one heuristic for detecting worms is to track the rate of probes
to unallocated IP addresses because these are considered
suspicious. We call such probes unsolicited scans in this paper.

Without a signature, a new worm must be identified by
observing only its propagation characteristics, that is, the
pattern of the scans generated as the worm spreads. To be
accurate and robust, the key is to find a “signal” that is
invariant across different breeds of worms and strong enough
to be detected. In this paper, we use real network traces to
demonstrate that the arrival process of unsolicited scans can
offer such a signal. More specifically, the propagation of a
worm can significantly alter the arrival rate of unsolicited
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scans and exhibit an exponential growth pattern in the early
phase, which is consistent with the epidemic model for worm
propagation. Details of this characterization are presented in
Section III. The core design of our algorithm is directly driven
by this characterization and design details are presented in
Section IV.

Requirements for Fast Worm Detection

General requirements for a fast worm detection algorithm
are discussed below. An algorithm that meets these require-
ments is given in Section IV and evaluated in Section V.

Fast. There is always a race between propagation and
detection. The faster a worm spreads, the faster it must be
detection. Detection is useless after most of the vulnerable
hosts have been infected. As discussed earlier, some recent
worms have done their damage in a matter of minutes. A
good detection algorithm should signal at the inception of the
worm spread as it hits its exponential growth rate.

Accurate. A major complaint against existing intrusion
detection systems is their poor accuracy: they have too many
false positives, raising an alarm when an attack is not present,
and false negatives, missing an ongoing attack. It should be
obvious that a low false alarm rate is critical. This is even more
so for fast propagating worms because the reaction process
needs to be automated and then a false alarm could trigger
defensive actions that could be exploited to cause damage.
That would represent a new level of Denial-of-Service attack.

Robust. A detection algorithm is robust if it works well
for various worms with different propagation characteristics
under different network conditions. The detection algorithm
should automatically adapt and produce desirable performance
regardless of the worm’s propagation rate or the size of the
network. The latter is particularly important because a smaller
network tends to produces fewer samples and thus may require
a longer amount of time before an alarm can be triggered. This
notion of scale insensitivity or scale free effectiveness is an
important one.

Main Contributions

In summary, the main contributions of this paper are:
• Original observations and statistical characterizations on

the arrival processes of unsolicited packet and unsolicited
scanners

• A novel two-step worm detection algorithm with firm
analytical foundation and whose design is motivated by
the above observations

• A thorough evaluation of the effectiveness of the new
algorithm against the design requirements (mentioned
above) using real network traces that cover multiple
years and many recent worm outbreaks. Our results
demonstrate extremely fast—in seconds and minutes—
worm detection for several well-known worms in the past
few years including Nimda, Slammer, Blaster and Witty.

The balance of the paper is organized as follows. Section II
surveys related work on worm detection. Section III presents
observations and statistical characterization of unsolicited

packets. A two-step worm detection algorithm and its analyti-
cal foundation are described in Section IV. Section V presents
extensive results on the application of the new algorithm to
real network traces. Section VI briefly describes a number of
design and implementation issues and Section VIII gives our
conclusions.

II. RELATED WORK

Worm detection has been an active area of research, es-
pecially after several major outbreaks in recent years. Many
approaches have been proposed. The following are most
relevant to our work.

Singh et al. [8] and Gu et al. [4] both proposed to detect
a worm by monitoring correlation in the content (headers or
payload) of incoming and outgoing packets. However, the cor-
relation may not be reliable. Some worms have started to ran-
domize portions of their payloads [1]. To avoid being stopped
by signature-based protection mechanisms, future worms will
likely strive to have more and more random content in their
payloads. For example, packet header correlation can take
advantage of the fact that a unique destination port was used
by an attacking worm. Unfortunately, Worm Witty may send to
any destination port. A detection algorithm based on counting
victims is proposed in [5]; it looks for increases in the rate of
newly infected outside hosts. In [6], [7] a proposal is made to
contain worms based on the observation that scanning worms
cause high failed connection ratios. This technique requires
keeping track of a large number of connection states. Our
algorithm is not based on connection state and is thus more
scalable and robust to spoofed address flooding. In addition,
triggering on connection failures requires waiting for a preset
timeout value to infer that a failure has occurred. A fast worm
could grow very large before enough failed connections are
identified.

Reference Zou et al [3] is the most closely related work.
They are the first to propose the idea of detecting a worm
by identifying an exponential growth trend at its early stage.
However, their estimate of the exponential rate is based on a
counting process for a given time interval. It is not obvious
how to pick an interval that is appropriate for a variety of
worms both fast and slow. In addition, the counting process
represents a reduction of information from the arrival process
and this information loss could make some worms too difficult
to detect effectively with their approach. We show some
examples using real traces in Section III.

Several authors analyze illegitimate scans due to worm
propagation [1], [9], [10]. We use them to verify that our local
view of network traffic is consistent with the views that other
networks present.

Many tools have been created to monitor the Internet for
illegitimate traffic. Symantec Corp. has an “early warning
solution” [11] that collects IDS and firewall attack data from
the security systems of thousands of partners to keep track
of the latest attacks. The SANS Institute set up the “Internet
Storm Center” [12] for gathering log data from intrusion
detection sensors around the world. Moore et al. [13] present
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the concept of distributed “network telescopes” that monitor
dark (unused) IP addresses to observe security incidents in the
Internet. Using a network of honey-pots to identify attacks and
gather information is proposed in [14], [15]. The unsolicited
packets gathered by these networks can be used as input to
our worm detection algorithms.

Wang et al. [16] use a CUSUM for detection of SYN flood
DoS attacks by tracking increases in incomplete SYN/FIN
pairs. Detecting worms is more challenging than detecting
DoS attacks because we look not just for a change, but for
specific types of changes–those with the exponential increases
associated with worms. For this purpose we utilize both
CUSUM signals and a second stage exponential detector.

III. CHARACTERIZING UNSOLICITED TRAFFIC

Bell Labs has collected traffic traces from the Internet
gateway in Murray Hill, NJ and these have been used to
shape the development of the worm detection algorithms.
Performance evaluations are also based on these traces. This
section describes the traces and several properties of the
network traffic that are relevant to the detection algorithm.

A. Unsolicited traffic collection

The Bell Labs trace collector resides at the corporate firewall
and records headers of all packets that reach it from either
inside or outside of the corporate network. Bell Labs has two
/16 subnets behind its firewall with less than 10% of the IP
address space occupied and the remaining 90% unassigned.
These unused addresses are used as a network telescope as
defined in [13]. All packets sent to the unused portion of the
address space are considered to be unsolicited. Packet header
traces have been collected for about six years at this location
with a small number of few missing days due to both technical
and human factors.

Scan packets arriving from propagating worms are only a
portion of the unsolicited traffic that hits the firewall. Our
goal is to identify the outbreak of new worms by monitoring
the arrival process of unsolicited packets or the arrival of
new sources that send these packets. For worms that scan
random IP addresses, successful detection requires monitoring
a network of sufficient size [13]. The calculations in [13]
indicate that the two /16 subnets at Bell Labs are large enough
to detect even slow worms. Designing an effective detection
algorithm, however, requires understanding the arrival process
of unsolicited traffic. The remainder of this section presents
some observations on inter-arrival times of unsolicited packets.

B. Inter-Arrival times of unsolicited packets and sources

Two different traffic streams are investigated in this
section—the stream of all unsolicited packets and the stream
of unsolicited packets from external sources that have not
been observed in the previous t seconds. We call the latter
stream a t-sample. Typically a large portion of the unsolicited
packets are generated by a small fraction of observed sources
in the absence of a fresh worm outbreak [17]. A t-sample,
however, will not be dominated by a small number of sources

and thus has the advantage that any erratic behavior of the top
scanners will have little affect on the t-sample packet stream.
As t → ∞ it is obvious that the t-sample will record each
unsolicited source exact once. Therefore, we refer a t-sample
as the scanner arrival process.

Figure 1 plots one-second counts of scanning traffic in
12-hour periods containing the outbreaks of four worms—
Nimda, Slammer, Blaster and Witty—with dates ranging from
September 2001 to March 2004. Two panels are shown for
each worm. The top panel, labeled “Scans”, shows the number
of unsolicited packets arriving from external sources to the
firewall. A single source could contribute one or many packets
to any of the counts. The bottom panel, labeled “Scanners”,
shows the number of unsolicited arrivals of a t-sample with
t = 5. The black curves in each plot are 10 minute moving
averages.

For each worm, the “Scan” counts are much more erratic
than the corresponding “Scanner” counts. This makes sense
because a single external machine can momentarily flood the
firewall with unsolicited packets and drastically affect the Scan
count but not the Scanner count. If external sources do not
coordinate the Scanner counts will tend to behave like Poisson
random variables because each source acts independently and
has a small chance of hitting the firewall in a given one-second
interval. Poisson variables have equal mean and variance.
However, square-root scaling is used in Figure 1; the square
root of a Poisson random variable has a standard deviation
of about 1/2, independent of the mean. Thus, the width of the
gray bands of Scanner counts is approximately 3 (six standard
deviations) at any time of the night or day. This is not true
for the Scan counts.

One difficulty with using counts at fixed intervals, such as
the one-second counts of Figure 1, is that the appropriate count
interval depends on both the baseline rate of new scanners and
on the speed needed to detect new worms. For example, in
the Blaster plot between 6 and 8 PM, many of the counts are
equal to zero, one or two; if the baseline rate of new scanners
were a factor of 10 smaller, then one-second count windows
would be too wide. On the other hand, when Slammer arrives,
the impact is sudden and the worm should be detected very
quickly. Obviously using a count interval that is too long could
slow down detection. For these reasons we develop a detection
scheme based, not on counts, but on the inter-arrival times of
the new scanner sources. Using inter-arrival times results in
a scheme that is inherently self-scaling, in terms of both the
baseline rate of new scanner arrivals and the speed of detection
when a new worm arrives.

The above reasoning for scanner counts to behave like
Poisson random variables also suggests that scanner arrival
times come from a Poisson process. During normal time
periods, the process should be relatively stationary, having
a nearly constant mean. Slow trends or the outbreak of a
worm would affect the mean, but we expect that a non-
stationary Poisson process will be adequate to model these
effects. In Section V we demonstrate, using real traces, that
the early stage of worm propagation looks very much like a
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Fig. 1. One-second counts of scan traffic in 12 hour time-frames surrounding the arrivals of four different worms. Scans are unsolicited packets arriving at
the firewall. Scanners are source IP addresses that generate unsolicited packets. The dark lines are 10 minute moving averages. Scanner counts are far cleaner
than Scan counts.

non-stationary Poisson process with exponentially increasing
rate.

If the stationary model is appropriate then scanner inter-
arrival times should be exponentially distributed with constant
mean over long periods of time, except during worm outbreaks
or other events affecting a large number of external sources.
Figure 2 shows probability plots of inter-arrival times in the
quiet periods preceding the four worm outbreaks shown in
Figure 1. The figure shows a log-log plot of sorted inter-
arrival times against quantiles of the exponential distribution,
labeled on a cumulative percentage scale. The 45 degree grid
lines correspond to exponential distributions with different
means. The scanner inter-arrival times clearly pass this check
of the Poisson process model. Additional probability plots (not
shown) over many different time periods, both before and after
the worm outbreaks, are similar.

The worm detection algorithm proposed in [3] uses a
Kalman filter to estimate the growth of infected hosts based on
arrival counts in fixed time intervals. As discussed above, these
counts will have Poisson distributions, and not the constant
variance Gaussian distributions assumed by the Kalman filter.
The new detection method developed in the following section
is based on a Poisson process model for scanner inter-arrival
times. It avoids using count data in fixed time intervals and
thereby achieves the goal of being self-scaling—it can operate
over a large range of baseline scanner arrival rates without
having to be re-tuned.

To summarize, a t-sample records unsolicited packet arrivals
from the same source at most once every t-seconds. Whereas
the process of all unsolicited packet arrivals is erratic, a t-
sample of scanners is nearly a stationary Poisson process
outside of the brief periods following the release of a new
worm. During a worm outbreak the scanner arrival rate is
expected to increase exponentially. We have evaluated samples
for various values of t ≥ 1 and the results are similar to those
presented for t = 5. In the rest of the paper we only consider
t-samples and not the process of all unsolicited packets.

IV. DETECTION ALGORITHM: DESIGN AND FOUNDATION

The previous section demonstrated, using packet header
traces, that t-sample scanners have exponential inter-arrival
times with locally constant mean in the absence of a worm
outbreak. Upon the arrival of a new worm and during its early
phase of propagation, we will model the scanner arrivals as a
Poisson process with a non-stationary rate.

The worm detection algorithm developed in this section is
strongly based on these observations. The algorithm follows
a two-stage procedure. The first stage employs a change
detection algorithm to detect an increase in the rate of un-
solicited packet arrivals in a t-sample. When an increase is
detected a second stage is launched in an attempt to verify that
the arrival rate is, indeed, increasing exponentially as would
be expected from a worm outbreak. The first stage uses a
CUSUM procedure to detect an increase in the scanner arrival
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Fig. 2. Exponential probability plots of 1000 consecutive inter-arrival times
of new scanners IP addresses. The exponential distribution is a good fit in
each case. Diagonal grid lines correspond to exact exponential distributions.

rate. The second stage uses a Maximum Likelihood Estimation
(MLE) procedure to fit a non-stationary Poisson process
with exponentially increasing rate function. The second stage
throws a worm alarm if the exponential rate estimate differs
significantly from zero with a high level of confidence.

In Section IV-A, we explain how CUSUM is used for
change detection. Section IV-B provides details on maximum
likelihood inference of the worm propagation model. The two
stages are combined in Section IV-C where the complete worm
detection algorithm is presented.

A. Change Detection using CUSUM

Let Tn denote the arrival time of the n-th unsolicited packet
in a t-sample, and let Xn = Tn−Tn−1 be the inter-arrival time
where T0 = 0. We assume that the inter-arrival times {Xn :
1 ≤ n < nw} before the worm starts are i.i.d. exponential
with mean µ, where Tnw

represents the time of the first worm
scan. After a worm arrives, the inter-arrival times {Xn : nw ≤
n < ∞} have a decreasing mean, which is less than µ. This
shift in the distribution of inter-arrival times may be considered
a change point in statistical terms and CUSUM schemes are
optimal (in a sense made precise in [18]) for detecting changes
from one distribution to another.

The CUSUM scheme can be applied as follows. Let S0 = 0
and define

Sn = max(0, Sn−1 + µ − Xn − pµ), n = 1, 2, · · ·
where p depends on the expected drop in mean inter-arrival
times due to a worm. Typically pµ is set to about half the
size of drop in mean inter-arrival time that is crucial to detect
quickly. A change of inter-arrival time is signaled whenever Sn

exceeds a certain threshold h. The intuition behind CUSUM is
that if the mean of Xn shifts from µ to something smaller than

µ−pµ at sample nw then Sn will tend to accumulate positive
increments after nw and thus eventually cross the threshold
h and signal a change. In practice, µ is not known; but an
estimate, such as an Exponentially Weighted Moving Average
(EWMA) can be used in its place. The details of the EWMA
are provided in Section IV-C.

Choosing the threshold parameter, h, requires trading off be-
tween detection delay (i.e., sensitivity) and the false detection
rate. Small values of h provide quick detection when changes
are present but also give more false alarms. In our case, the
CUSUM is not used to directly trigger alarms but only as a
first stage toward detection. We prefer small h values to reduce
the first stage detection delay and we rely on the second stage
to separate out real worms from false alarms. The threshold h
can be calculated from the expected time between false alarms,
known as the Average Run Length (ARL) in quality control
literature. Details for computing an appropriate h are provided
in Appendix B.

Although worm arrivals always reduce mean inter-arrival
times in t-samples, not all reductions are due to worms. Our
experience with real traces suggests the arrival process of
unsolicited packets in a t-sample is well-modeled as stationary
over periods of many hours but shows slow drift over longer
periods and is sometimes impacted by sudden non-worm
events such as denial-of-service attacks. These effects can
often cause Sn to exceed h incorrectly, contribute to false
alarms and make the CUSUM less effective. It is possible
to use a large p or h to filter out many changes in the
background, but this approach may miss slow worms and delay
the detection of fast worms. As a remedy, we design a second
stage detection algorithm to filter out non-worm events; the
second stage raises an alarm only when inter-arrival times
show a definitive exponential pattern of decrease. Whereas
CUSUM charts in quality control are usually intended to
detect all process changes, the present application is more
discriminating; alarms are desired only for process changes
that can be positively identified as having the behavior of a
worm.

B. Maximum Likelihood Inference of Worm Propagation Rate

A CUSUM signal triggers the second stage detection in
which a worm propagation model is estimated. However, if a
new worm outbreak is in progress, it is probable that some time
has elapsed between the outbreak and the CUSUM signal. Let
Tn0 denote the most recent time (prior to the current signal)
when the CUSUM transitioned from a value of 0 to a positive
value. If a worm exists, its arrival is most likely earlier than
Tn0 (Case 1). It is possible for a worm to arrive between Tn0

and the CUSUM signaling time (Case 2), but this happens with
small probability and the lag from worm to CUSUM signal is
most likely small. The third case is that no worm exists (Case
3); this is the usual situation. We first focus on the statistical
estimation of the worm propagation model based on Case 1;
this also includes Case 3 and serves as a good approximation
for Case 2, which we investigate further in Section VI-A.
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Scanner arrivals in a t-sample before a worm outbreak
are well-modeled as a Poisson process with rate b(t) that
changes slowly with time. Scanner that arise from a fresh
worm outbreak can be modeled as a non-stationary Poisson
process with rate

λ(t) = aer(t−tw)I(t ≥ tw)

where tw is the time when the first worm scan arrives; a is the
expected number of worm scanner arrivals in the first second;
r is the exponential propagation rate; and I(x) is an indicator
function having value 1 when x is true and 0 otherwise. We
assume that the background scanners and the ones caused by a
new worm are independent.1 The superposition of background
and worm scanners is thus modeled as a non-stationary Pois-
son process with rate

λ(t) = b(t) + aer(t−tw)I(t ≥ tw).

Because the background traffic is approximately stationary,
its rate b(t) can be estimated easily using local averaging.
Propagation characteristics are described by the parameters a
and r that depend on the efficiency of the worm and the size
of the network being monitored. We show later in this section
that although a is not identifiable (i.e., cannot be estimated
statistically) when tw is unknown, the exponential rate r is
identifiable. A worm alarm is triggered when the data indicates
that r is significantly higher than a small tolerable rate r0 with
high statistical confidence.

For simplicity, assume that the worm starts at 0 (i.e., tw =
0), unsolicited scanners arrive at times T1, T2, . . . according
to a Poisson process with rate λ(t) = b + aert, t ≥ 0,
and the corresponding CUSUM sequence S1, S2, . . . remains
below the threshold h until some arrival Tn0 (n0 ≥ 1)
when the CUSUM exceeds h and therefore signals. Define
T j = Tn0+j − Tn0 for j = 1, 2, . . . , n, where Tn is the
current arrival relative to the signaling time Tn0 . Note that
we can only observe T 1, . . . , Tn and not the complete stream
of arrivals T1, . . . Tn0 , Tn0+1, . . . , Tn0+n because the worm
outbreak time tw = 0 is not generally known.

Thus any estimators of a and r must be based on
(T 1, . . . , Tn) whose distribution depends on the unknowns n0

and Tn0 . The following Theorem (proved in Appendix A) and
its Corollary demonstrate that the r can be estimated from the
T j , but a cannot.

Theorem 1. Let T1, T2, . . . denote consecutive arrival times
from a Poisson process with positive rate λ(t) = b + aert

beginning at t = 0. Define T j = Tn0+j −Tn0 for j = 1, 2, . . .
and for some n0 ≥ 1. Then given Tn0 = t0, the relative
times T 1, T 2, . . . are arrivals from a Poisson process with rate
λ(t) = b + aert, t ≥ 0, where a = aert0 . �

Corollary 1. Under the conditions of Theorem 1 and assuming
that a > 0, the parameters a, b and r are identified by the data
(T 1, . . . , Tn) for n ≥ 3 but the parameter a is not identified
unless t0 is known. �

1This is reasonable in the early stages but propagation can eventually
congest the network and cause normal traffic to back off in response.

The exception a = 0 corresponds to no worm and in this
case the propagation rate r has no meaning. Fortunately, for the
purpose of worm detection, r is the most interesting parameter
and it can be estimated by maximum likelihood inference as
discussed next.

Let Λ(t) =
∫ t

0
λ(s)ds. Then the normalized arrival times

Λ(T 1),Λ(T 2), . . . follow a stationary Poisson process with
rate 1 [19]. Let ln(r, a) = log p(T 1, . . . , Tn|Tn0 = t0) be the
log-likelihood function for the T j’s conditional on Tn0 . By
the density transformation formula [20],

ln(r, a) =
n∑

j=1

log λ(T j) − Λ(Tn)

=
n∑

j=1

log(b + aerT j ) − {bTn +
a

r
(erT n − 1)}

The maximum likelihood estimates (MLE) are defined as

(r̂, â) = arg max ln(r, a). (1)

Let θ = (r, a)T and θ̂ = (r̂, â)T . Denote ln(θ) = ln(r, a).
Then the MLE θ̂ has good properties as summarized in
Theorem 2 below.

Theorem 2. Under the conditions of Theorem 1, if θ is
bounded, then as n → ∞,

θ̂ → θ,

in probability and
√

n(θ̂ − θ) → N (0, I(θ)−1),

in distribution where I(θ) is the information matrix,

I(θ) = limitn→∞ − E[
1
n

∂2

∂θ∂θT
ln(θ)],

and can be estimated consistently by

Î = − 1
n

∂2

∂θ∂θT
ln(θ̂). (2)

�

An explicit expression for Î is straightforward to derive but
omitted here. See Theorem VI.1.2 of [19] for a formal proof
of the theorem.

The MLE r̂ and its estimated asymptotic variance are used
repeatedly in the second stage to test whether r is significantly
positive. In particular, we test r > r0 against r ≤ r0, where
r0 (say 0.0001) is the maximal rate that can be ignored. Let
se(r̂) be the asymptotic standard error of r̂, that is,

se(r̂) =
√

[Î−1]11/n. (3)

Since Zn ≡ (r̂ − r0)/se(r̂) is asymptotically normal dis-
tributed with mean 0 and variance 1 [20] under the null
hypothesis r = r0, the second stage declares a worm outbreak
when the Zn > qc where qc is a threshold such as the 99.99
percentile of the standard Normal distribution. For example
qc = 3.8 is the 99.99% quantile of the Normal distribution.
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WormDetection(T)
1. S0 = 0;
2 Initialize µ with the median of the first c0 = 100

observed inter-arrival time divided by log(2)
3. For each new arrival Ti, Xi = Ti − Ti−1

4. Si = max(0, Si−1 + µ − Xi − pµ)
5. µ = (1 − w) · µ + w · Xi

6. If Si > 0
7. If Si−1 = 0
8. j = 0;n0 = i; Smax = Si

9. Else
10. j = j + 1; Smax = max(Smax, Si);
11. If Si < 0.8 · Smax, Si = 0
12. If Si > h
13. Estimate MLE of r̂ and se(r̂)
14. from Tn0 . . . Tn0+j

15. If (r̂ − r0) > qc · se(r̂)
16. Raise an alarm;
17. Skip estimate until CUSUM drop to zero;
18. EndFor

Fig. 3. Worm detection algorithm

C. The Complete Worm Detection Algorithm

Figure 3 shows the complete worm detection algorithm
that operates a stream of scanner arrival times from a t-
sample of unsolicited packets. After reviewing a number of
implementation details the algorithm is explained line by line
below.

In most CUSUM monitoring applications, the CUSUM
statistic is reset to zero after a signal is triggered. In our
scheme, however, a large CUSUM is required for the second
stage to operate so the CUSUM is not reset immediately
upon crossing the threshold h but the reset occurs only after
a substantial downward trend is seen following the trigger.
The algorithm identifies a downtrend a case in which the
current CUSUM value is less than 80% of the maximum value
recorded since the previous reset.

Although scanner arrivals, for the most part, resemble a
locally stationary Poisson process, outliers do occasionally
occur in our traces. These are cases where the inter-arrival
time between scanners is abnormally large for one reason or
another. These outliers never trigger a false alarm because the
MLE does not yield a large r in the second stage. However,
the outliers can easily lead to a CUSUM signal and thus
needlessly trigger the MLE computations in the second stage.
To reduce the impact of outliers, we implement the following
random tail-draw technique proposed in [21]. Let µn−1 be the
most recent exponentially weighted moving average (EWMA)
estimate of E(Xn). If Xn lies outside of the 0.01% and
99.99% percentiles of the exponential(µn−1) distribution, then
it is replaced with a random draw X̃n from the corresponding
of the distribution for the purpose of calculating Sn.

Line by line, the algorithm proceeds as follows. Lines 1

and 2 initialize the CUSUM and an EWMA estimate of
the mean inter-arrival time. Starting the EWMA based on
the median of an initial sample provides robustness against
outliers. Dividing the median by log(2) produces an estimate
of the mean. For each new unsolicited scanner packet, Line 4
computes the current CUSUM and Line 5 the current EWMA.
No further action is required if the CUSUM is zero. The
EWMA parameter w determines the depth of the memory
and the relative weight between the current and previous data.
Although there is no general rule for the optimal choice of
w, in our experiments performance of the algorithm is similar
for various values of w between 10−4 to 10−7. Whenever the
CUSUM becomes positive, Lines 7 and 8 initialize indices
used to record the transition and track the local maximum: j
is used to track the number of consecutive positive CUSUM’s
and Smax is the local maximum. If the CUSUM remains
positive on subsequent steps then Line 10 updates j and
Smax and Line 11 resets the CUSUM to zero if a downtrend
is recognized with respect to the local maximum. Line 12
triggers estimation of the propagation rate in Lines 13 and 14
if the CUSUM has become large. Lines 15 through 17 test
whether the data suggest a significantly large propagation rate
with high confidence. If so, the alarm is raised until such time
as the CUSUM is reset to zero again.

V. EVALUATION USING REAL TRACES

This section presents results of extensive evaluations of the
algorithm using multi-year network traces that cover many of
the well-known worm outbreaks in the last few years. For
brevity, we selected four of the most well-known worms in
this time period—Slammer, Witty, Nimda and Blaster—and
provide snapshots of the operation of our algorithm during
the periods surrounding the worm outbreaks. We would have
liked to include the Code Red worm, but unfortunately traces
for those days are missing.

In all cases the algorithm is able to detect the worm
outbreak with a short delay relatively to the time it takes for
the worms to infect all vulnerable hosts. These worms are
quite diverse with respect to the method of exploitation, the
vulnerable population size and the propagation rate. This di-
versity demonstrates the effectiveness of our algorithm across
different breeds of worms with different characteristics.

A set of three plots for each worm shows performance of the
algorithm. The first plot shows packet counts before, during
and after the worm outbreak with reference lines to indicate
outbreak and detection times. The second plot shows the
CUSUM statistic growing to trigger the rate estimation stage
of the algorithm. Finally, a QQ-plot is shown as a diagnostic
to judge whether the model of exponential growth adequately
describes the outbreak. In all experiments, we used w = 10−5,
p = 1/32, qc = 3.8, and h selected to achieve the Average
Running Length ARL = 1000 seconds (see Appendix B).
We have experimented with other reasonable choices of these
parameters and seen little variation in the results.
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Fig. 4. Slammer is detected in 16 seconds
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Fig. 5. CUSUM turns positive in 2 seconds after first Slammer scan

A. Slammer

Figure 4 plots the number of scanners arriving at the Bell
Labs firewall every second observed 1,000 seconds surround-
ing the outbreak of Slammer. The first (left) dashed vertical
line marks the arrival the first Slammer scan at Bell Labs
and the second (right) dashed vertical line marks when the
worm detector signals the outbreak. The average number of
unsolicited packets is about 2.5 per second before the first
worm scan arrives at time 364 seconds. The alarm is raised
at just 16 seconds after the initial Slammer scan and at the
time the scanners rate has increased to about 6.5 per second.
Scans from Slammer peak at about 600 seconds when almost
all vulnerable hosts world-wide have become infected.

The algorithm was able to give a warning in as little as 6.7%
of time it took for Slammer to infect all hosts. In the Bell
Labs trace only 60 hosts had been affected before Slammer
was detected whereas a total of 72,516 were infected in total.

Figure 5 plots the CUSUM statistic during the same period
of time. The CUSUM turns positive within 2 seconds after the
first Slammer scan arrival. Then worm-rate estimation operates
for an additional 14 seconds before the data can confidently
demonstrate a significantly large exponential rate of growth.
Before the Slammer outbreak, the CUSUM statistic grew to
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Fig. 6. Model fitting for Slammer: outlier less than 2%
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Fig. 7. Witty is detected in 230 seconds

large and significant values twice but no alarm was raised
because the second stage MLE inference did not demonstrate
a significant exponential propagation rate.

Figure 6 is a QQ-plot intended to help evaluate how well
the estimated non-stationary Poisson model fits the data. As
described in Appendix C, standardized inter-arrival times are
computed using the estimated model of exponential growth
The standardized inter-arrival times are expected to be expo-
nential(1) random variables which is the reference distribution
used on the horizontal axis. A perfect fit between the model
and the data would be seen if all points plotted on the line
y = x. The actual values are very close to the ideal other
than a few points in the left tail that account for less than
2% of the data. This suggests the estimated Poisson model
with exponential growth describes the scanner traffic fairly
accurately.

B. Witty

Figure 7 shows counts of scanners arriving at Bell Labs
in five second interval for 100,000 seconds surrounding the
outbreak of Witty. Five-second intervals are used because
Witty spreads much more slowly than Slammer where one
second intervals were more appropriate. The first Witty scan
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Fig. 8. CUSUM turns positive in 79 seconds after first Witty scan
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Fig. 9. Model fitting for Witty: outlier less than 3%

arrives at time 3720 seconds and is detected at 3950 seconds
after a 230 second delay. The average scanner counts increase
410 to 480 during this period. The worm reaches its peak at
about 6000 seconds when the number of unsolicited packets
has grown to about 820 per five seconds. The detection
algorithm signals a worm outbreak when the worm is only
one tenth on its way to the peak. The detailed packet trace
shows that only 320 hosts were infected by the time of the
alarm whereas Witty eventually infected 11,171 hosts.

In Figure 8, 79 seconds elapse from the first Witty scan
to the time the CUSUM statistic turns positive. Another
151 seconds elapse before the MLE r̂ becomes significantly
positive and the alarm is triggered. The QQ-plot in Figure 9
suggests a good fit between the real trace and our estimated
model. Only about 3% of the data in the lower tail lie any
marked distance from the line y = x.

C. Nimda

The first Nimda worm scan arrives at Bell Labs at time 3120
seconds in Figure 10. An alarm is raised after a 316 second
delay. The peak is reached at 9410 seconds. Note that there is a
dip about 1000 seconds before the peak and we conjecture that
this may be an effect from some networks being disconnected
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Fig. 10. Nimda is detected in 316 seconds
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Fig. 11. CUSUM turns positive in 19 seconds after first Nimda scan

from the Internet in response to the worm outbreak. The early
detection algorithm signals an outbreak when the worm is
1/20 of its way to its peak. 19 seconds elapse between first
Nimda scan and when the CUSUM turns positive and MLE
estimation begins. Another 297 seconds elapse before the MLE
confirms that the exponential rate is significantly positive and
the alarm is raised. The QQ-plot in Figure 12 demonstrates
that the model of exponential increase fits the scanner arrival
data reasonably well. Only smallest three values, 0.15% of the
points, are removed from the diagonal line.

D. Blaster

The Blaster worm starts at time 3040 seconds in Figure 13
and the detection is made at time 3381 second after a delay
of 341 seconds, which is less than 1/10 of time to reach a
peak at 6320 seconds. We observe from Figure 14 shows the
CUSUM becoming positive at 3054 seconds, 14 seconds after
the first scan, and the final alarm being raised after another
327 of rate estimation. In Figure 15, only about 1% of the
points in the left tail are removed from the line y = x.

E. Summary

Table I summarizes the detection results for all four worms.
Column 2 gives the date of outbreak. Column 3 has the
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Fig. 12. Model fitting for Nimda: outlier less than 0.15%
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Fig. 13. Blaster is detected in 341 seconds

estimated propagation rate at the time of the signal. Columns 4
and 5 record the time until detection and the total propagation
time and the last column is the ratio of these times. Because
worm growth is exponential, the ratio of infected hosts to
vulnerable hosts is significantly lower that the fraction of
total time until detection and this reinforces the value of fast
detection.

Worm Date Growth Detection Propag. Early Warn.
Rate Time Time By Time

Slammer 1/25/03 0.1325 16 236 6.8%
Witty 2/19/04 0.0055 230 2280 10%
Nimda 9/18/01 0.0042 316 6290 5%
Blaster 8/11/03 0.0042 314 3280 9.6%

TABLE I

SUMMARY OF WORM DETECTION RESULTS

VI. DISCUSSION

A. Impact of MLE Start Time

Although the validity of our approach is only formally
proved for Cases 1 and 3 in Section IV, we conjecture that
Case 2 occurs with small probability and the impact on
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Fig. 14. CUSUM turns positive in 14 seconds after first Blaster scan
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Fig. 15. Model fitting for Blaster: outliers less than 1%

accuracy is limited even when it does occur. Because our
collection of traces does not contain enough information to
allow testing the conjecture, we verify it using simulation of
a propagation process as follows. The first 200,000 arrivals
follow a stationary Poisson process with rate λ = b per second
and the remaining 20,000 arrivals have a non-stationary rate
of λ(t) = b + aert per second, where b = 78 counts per
second, a = 5 and r = 0.01. The outbreak of the worm
is at the change point from a stationary to a non-stationary
process. The detection algorithm is run with w = 0.0001 and
h = 60/b2 and record is kept of the number of false alarms,
the worm start time (tw), the alarm time, and the latest time,
t0, that the CUSUM becomes positive before the worm alarm
is raised. The simulation was repeated 500 times.

Case 1 occurs when t0 > tw and Case 2 when t0 < tw.
Figure 16 shows a histogram of t0 − tw. Case 2 occurs in
only about 10% of simulations and when it does occur, the
difference between t0 and tw is not large. The worm detection
time is equal to the alarm time minus the worm start time.
A histogram of these times for the 500 simulation runs is
provided in Figure 17.

2This corresponds to a 12 minute ARL.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.



−50 0 50 100 150
0

10

20

30

40

50

t
0
 − t

w
  (seconds)

fr
eq

ue
nc

y

Fig. 16. Histogram of the delay between worm start time and CUSUM
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Fig. 17. Histogram of the detection time

B. False Alarms

In our experiments, CUSUM is triggered very often due to
a rate change on the unsolicited packet arrival. However, most
of these changes do not follow an exponential growth trend
and thus the MLE inference does not produce a significant
rate estimate, which in turn yields no alarm. We ran the
algorithm on six non-consecutive months of traces to pinpoint
the well known worms and saw only 19 unexpected alarms.
Zooming into the traces that triggered these alarms, they are all
cases with exponential-type increases in the rate of unsolicited
scanners. We are able to confirm that 11 of these correspond
to re-launches of some well-known worms (Re-launches of
existing worms are also observed by [2]). For the remaining
eight alarms, we conjecture that they are caused by worms that
did not have widespread effects and are thus not publicized.
Because the t-sampling technique filters the unsolicited packet
arrivals in such a way that no small set of hosts is able to
affect the arrival process, an exponential increases in the rate of
uncoordinated scanning hosts is very unlikely to occur unless a
new worm has been released. Unfortunately, our traces record

only the packet headers so we do not have the information
to perform additional analyses based on payload to find out
what exactly triggered the exponential increase. We are in the
process of obtaining traces from other parts of the network to
delve further into the eight alarms of unknown origin.

VII. ROBUSTNESS OF UNSOLICITED PACKET SAMPLING

We have worked with t-samples of scanner arrivals rather
than the full set of unsolicited packets because the scanner
process is much better behaved due to elimination of the
fluctuations introduced by a few top scanners. Implementation
of the t−sample involves keeping track of the source addresses
of unsolicited packets. However, source addresses may be
spoofed. It has been showed in [17] that most of the scanners
do not spoof their addresses. If a scanner spoofs its source
address consistently for all scans with different hosts using
different addresses, then there will be no effect on the statistics
of the t-sample. This is because we sample based on distinct
source addresses but not the exact value of address. The most
challenging scenario is when all scanners spoof the same
address, where we would get one count every t seconds. We
can apply various spoof detection algorithm such as the one
based on TTL field in packet header [22] to make the sampling
more robust.

Another challenge to the source based sampling is NAT
where many unsolicited source may share a single address.
However, the unsolicited packets arrival rate will still grow
exponentially but may at slightly lower rate. Since our detec-
tion algorithm has a very low threshold for worm propagation
rate, the impact of NAT to our detection algorithm should be
minimal.

VIII. CONCLUSION

Worm outbreaks are increasingly a major threat to the
Internet. The release and propagation of Slammer provided
ample evidence of the scale and disruption possible with a
fast-spreading worm.

To counter these worms, we have devised a fast and robust
worm detection algorithm that does not use a payload signature
and relies solely on observing certain invariant characteristics
of propagating worms. The algorithm has been applied to real
network traces to demonstrate the effectiveness of the new
approach.

We plan to further evaluate the algorithm using traces col-
lected from a variety of Internet locations to test its sensitivity
to the fraction of occupied addresses on the subnet being
monitored and to the traffic volume on the link. We would also
like to reduce the computational complexity of the algorithm.
One possibility is to reduce the false signal rate of the CUSUM
such that the more expensive MLE computations will be
invoked less frequently. However, a better solution would be
to replace the MLE algorithm with an online version that
provides approximated MLEs. Two possible technologies for
this approach are the particle filter and the extended Kalman
filter that are under our further investigation.
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APPENDIX

A. Proof of Theorem 1.

For r > 0 let Λ(t) =
∫ t

0
λ(s)ds = bt + a(exp(rt) − 1)/r

and for r = 0 define , Λ(t) by the limit as r → 0. Then {T ∗
j =

Λ(Tj) : j = 1, 2, · · · } follows the standard Poisson process
with stationary rate 1. By the probability density transforma-
tion formula, the joint distribution of {Tk, Tk+1, · · · , Tk+n}
is :

p({Tk, Tk+1, · · · , Tk+n})

= (
k+n∏
j=k

|∂T ∗
j

∂Tj
|)p({T ∗

j : k ≤ j ≤ k + n})

= (
k+n∏
j=k

λ(Tj))p(T ∗
k )

k+n−1∏
j=k

p(T ∗
j+1|T ∗

j )

= (
k+n∏
j=k

λ(Tj))gk(Λ(Tk)) exp(−(Λ(Tk+n) − Λ(Tk))),

where gk is the Gamma density function with degree k. Since
p(Tk) = λ(Tk)gk(Λ(Tk)), thus

p({Tk+1, · · · , Tk+n}|Tk)

= (
k+n∏

j=k+1

λ(Tj)) exp(−(Λ(Tk+n) − Λ(Tk))).

Let T j = Tk+j − Tk, j = 1, · · · , n. Then

p({T j : 1 ≤ j ≤ n}|Tk = t0)

= (
n∏

j=1

λ(T j + t0)) exp(−(Λ(Tn + t0) − Λ(t0)))

= (
n∏

j=1

λ(T j)) exp(−(Λ(Tn))),

which coincides with the non-stationary Poisson process with
rate λ(t) = b + aert0ert. Here Λ(t) =

∫ t

0
λ(s)ds.

B. Calculation of h.

Let τ be the first false alarm time with the background inter-
arrival distribution F0 with probability density f0. That is,
τ = infn{Sn ≥ h, Sk < h for k = 1, · · · , n − 1}, where Sn

is defined in Section II.A. Then h is decided by the average run
length (ARL) E0[τ |S0 = 0] = L0 with a pre-specified L0, for
example 1 million seconds (about half a month). By defining
the ARL function L(t) = E0[τ |S0 = t], 0 ≤ t < h, then h can
solved by the following integral equation (let δ = (1 − p)µ)

L(t) = 1 + L(0)(1 − F0(t + δ)) +
∫ h

0

L(s)f0(t + δ − s)ds,

with initial value L(0) = L0. In this paper, f0 and F0 are
the density and distribution functions of exponential(µ). The
closed form solution to the above integral equation has been
developed in [23].

C. QQ-plot for evaluating accuracy of MLE based model
inference

Notice that if {T 1, · · · , Tn} are arrival times from a non-
stationary Poisson process with cumulative rate Λ(t), then the
transformed arrival process {Λ(T 1), · · · ,Λ(Tn)} follows a
stationary Poisson model with rate 1, whose inter-arrival times
are i.i.d. exponential (1). We use this fact to test the goodness-
of-fitting of our data. The steps are as follows: 1). calculate
{Λ̂(T 1), · · · , Λ̂(Tn)}, where Λ̂(t) = bt + â

r̂ (exp(r̂t) − 1);
2). calculate transformed inter-arrival times Xj = Λ̂(T j) −
Λ̂(T j−1), j = 1, · · · , n, T 0 = 0; 3). compare the empirical
quantiles of {Xj : j = 1, · · · , n} with quantiles of exponen-
tial(1), so-called QQ-plot, in the logarithmic scale. The x-axis
is the logarithmic quantiles of exponential (1) and the y-axis
is the logarithmic quantiles of {Xj : j = 1, · · · , n}.
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